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Abstract— This paper proposes a local gradient control law to
stabilize a group of robots to a target formation. The control
is derived from a potential function based on an undirected
infinitesimally rigid graph that specifies the target formation.
It is shown that infinitesimal rigidity is a sufficient condit ion
for local asymptotical stability of the equilibrium manifo ld
describing the target formation.

I. I NTRODUCTION

This paper considers distributed control of systems of
agents that are interconnected dynamically or have a com-
mon objective, and where control is local, with the possible
exception of high-level intermittent centralized supervision.
Undoubtedly these kinds of systems will become more
and more prevalent as embedded hardware evolves. An
interesting example and area of ongoing research is the
control of a group of autonomous mobile robots, ideally
without centralized control or a global coordinate system,
so that they work cooperatively to accomplish a common
goal. The aims of such research are to achieve systems that
are scalable, modular, and robust. These goals are similar to
those of sensor networks—networks of inexpensive devices
with computing, communications, and sensing capabilities.
Such devices are currently commercially available and in-
clude products like the Intel Mote. A natural extension of
sensor networks would be to add simple actuators to the
sensors to make them mobile, and then to adapt the network
configuration to optimize network coverage.

An interesting approach to formation control is that of
[5]. The robots are point masses (double integrators) with
limited vision, and he proposes using rigid graph theory to
define the formation; he also proposes a gradient control
law involving prescribed distances. The limitation is thatthe
network is not homogeneous—special so-calledγ-agents are
required to achieve flocking. Anderson et al. [1] propose a
novel modification of rigidity within the context of directed
visibility graphs and provide control laws not derived from
potential functions. The starting point for our paper is [6].
Following that paper, we use graphs to define formations, but
instead of global rigidity we use infinitesimal rigidity and
instead of the double integrator model we use the simpler
single integrator (kinematic point). More substantially,we
provide a more detailed stability analysis. In particular,[6]
has no topological analysis of the equilibrium set and does
not note that the equilibrium set is not compact. Moreover,
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[6] uses a LaSalle argument to prove stability, but since
the equilibrium set is not compact, this approach is open
to question. Finally, [6] does not address if the trajectories
have a limit on the equilibrium set.

The main contribution of the paper is a decentralized
gradient control law to stabilize a group of point mass
robots to any formation corresponding to an infinitesimally
rigid framework. A complete stability analysis is provided
in Section V. Regular polygon formations are studied in
Section VI where it is shown that the conditions of our theory
can be applied to this case.

II. BACKGROUND

Notation. We denote the Jacobian of a functionf : R
n →

R
m evaluated at a pointx asJf (x). In the special case when

f : R
n → R, the Jacobian off is the gradient off and we

denote it by∇f(x). Occasionally for convenience during
calculations of the Jacobian, the notation∂

∂x
will be used to

representJf (x) = ∂
∂x

f(x).

A. Graph Theory

A directed graphG = (V, E) is a pair consisting of a
finite set of verticesV := {1, . . . , n} and a set of edges
E ⊂ V × V . We assume the edges are ordered; that isE =
{1, . . . , m}, wherem ∈ {1, . . . , n(n − 1)}. We exclude the
possibility of self loops. An undirected graph is a directed
graph such that if there is an edgeei from vertexj to vertex
k, then there is also an edgeel from vertexk to vertexj.
For undirected graphs, we omit the arrows in the pictorial
representation of the graph. A special undirected graph is
the graphKn, the complete graphwith n vertices, which
has an edge between every pair of vertices. A useful matrix
associated with a graphG is them×n incidence matrix, H . It
is determined by the edgesei of G: row i of H is determined
by ei and has two non-zero entries: a1 in columnk and a
−1 in columnj, whereei is the edge between vertexj and
vertexk. Thus, by definition,H1 = 0, where1 is the vector
with a 1 in each component.

Lemma 1: ([3], p. 23) The incidence matrixH has rank
n− c wherec is the number of connected components ofG.

For the remainder of this work we assume that all graphs
are connected and thus Ker(H) is one dimensional. Also, di-
rected graphs are considered connected if the corresponding
undirected graph is connected.

B. Graph Rigidity

To introduce the notion of rigidity of graphs we must view
a graph as a framework embedded in the plane,R

2. Let G =
(V, E) be an undirected graph withn vertices. We embedG



into R
2 by assigning to each vertexi a locationpi ∈ R

2.
Define the composite vectorp = (p1, . . . , pn) ∈ R

2n. A
frameworkis a pair(G, p).

We define therigidity function associated with the frame-
work (G, p) as the functiongG : R

2n → R
|E| given by

gG(p) := (. . . , ‖pk − pj‖2, . . .),

The ith component ofgG(p), ‖pk − pj‖2, corresponds to
the edgeei in E, where verticesj and k are connected by
ei. Note that this function is not unique and depends on the
ordering given to the edges.

1) Rigidity and Global Rigidity:There are several equiv-
alent definitions of rigidity. The definitions below are taken
from [2].

Definition 2: A framework (G, p) is rigid if there exists
a neighbourhoodU ⊂ R

2n of p such thatg−1
G (gG(p))∩U =

g−1
K (gK(p)) ∩ U , whereK is the complete graph with the

same vertices asG.
It is also possible to define a global version of rigidity.

Definition 3: A framework (G, p) is globally rigid if
g−1

G (gG(p)) = g−1
K (gK(p)).

The level setg−1
G (gG(p)) consists of all possible points

that have the same edge lengths as the framework(G, p). For
the complete graphK the setg−1

K (gK(p)) consists of points
related by rotations and translations, i.e., rigid body motions,
of the framework(K, p). We conclude that a graphG is rigid
if the level setg−1

G (gG(p)) in a neighbourhood ofp contains
only points corresponding to rotations and translations ofthe
formation atp.

2) Infinitesimal Rigidity: We refer to the matrixJgG
(p)

as therigidity matrix of (G, p). The rigidity matrix is useful
in defining some other concepts related to graph rigidity.

Definition 4: A point p is a regular pointof the graphG
with n vertices if

rankJgG
(p) = max

{

rankJgG
(q) | q ∈ R

2n
}

.
In Figure 1(a) we see that the graphK3 is embedded at
a regular point. Instead, Figure 1(b) shows the graphK3

embedded at a point that is not regular.
The idea of infinitesimal rigidity is to allow the vertices

to move infinitesimally, while keeping the rigidity function
constant up to first order. Letδp be an infinitesimal motion
of the framework(G, p). Then the Taylor series expansion
of gG aboutp is

gG(p + δp) = gG(p) + JgG
(p)δp + higher order terms.

The rigidity function remains constant up to first order when
JgG

(p)δp = 0, that is, whenδp belongs to KerJgG
(p). The

dimension of this kernel is at least 3 becausegG(p) will not
change ifp is perturbed by a rigid body motion. Infinitesimal
rigidity is when the dimension of the kernel is not larger than
3.

Definition 5: ([2] ) A framework(G, p) is infinitesimally
rigid in the plane ifdim(KerJgG

(p)) = 3, or equivalently if

rankJgG
(p) = 2n − 3.

(a) A rigid and in-
finitesimally rigid
framework.

(b) A rigid but
not infinitesimally
rigid framework.

(c) A rigid but not infinitesimally rigid
framework.

Fig. 1.

If a framework is infinitesimally rigid, then it is also rigid.
The converse is not true. The following theorem outlines
when rigidity and infinitesimal rigidity are equivalent.

Theorem 6:( [2] ) A framework (G, p) is infinitesimally
rigid if and only if (G, p) is rigid andp is a regular point.
Observe that for a graph to be infinitesimally rigid in the
plane it must have at least2n − 3 edges. If it has exactly
2n − 3 edges, we say that the graph isminimally rigid.

The two different embeddings ofK3 shown in Figure 1(a)-
(b) illustrate some of the rigidity properties. Both frameworks
shown are embeddings of the complete graph. They are both
rigid and globally rigid. The framework shown in Figure
1(a) is also infinitesimally rigid. If we check the rigidity
matrix for any pointp where the vertices are not collinear
we will find it has rank3. The framework in Figure 1(b) is
not infinitesimally rigid. We can check this using the rigidity
matrix. Let the embedding of the points in the plane bez1 =
(0, 0), z2 = (0, 1), z3 = (0, 2). The rigidity function for this
graph is

gG(z) =





||z1 − z2||2
||z2 − z3||2
||z3 − z1||2



 .

Then

JgG
(p) = 2





zT
1 − zT

2 zT
2 − zT

1 0
0 zT

2 − zT
3 zT

3 − zT
2

zT
1 − zT

3 0 zT
3 − zT

1



 .

If we check the rank at a collinear pointp we obtain
rank JgG

(p) = 2 < 2n − 3. As the rigidity matrix does not
have maximal rank,p is not a regular point; consistent with
Theorem 6, a rigid framework is not infinitesimally rigid at
a non-regular point.



In general, frameworks that are rigid but fail to be infinites-
imally rigid have collinear or parallel edges. For instance
the graph in Figure 1(c) is rigid but not infinitesimally
rigid because the framework could undergo an infinitesimal
distortion by perturbing the top link horizontally; the two
triangles would then rotate infinitesimally, and the middle
link rotate infinitesimally.

III. PROBLEM FORMULATION

Considern robots in the plane,R2. The robots are wheeled
vehicles with sensors that allow them to measure the relative
positions of some of the other vehicles. Such data can be
obtained using a camera or a radar system. The simplest
model for a wheeled vehicle is the kinematic unicycle. To
simplify the analysis, using a standard procedure we assume
the unicycle model has been feedback linearized about a
point some distance in front of each unicycle. The robots
then have a point kinematic model given by the differential
equation

żi = ui, i ∈ {1, . . . , n} (1)

wherezi = (xi, yi) ∈ R
2 is the location of theith robot in

the plane andui ∈ R
2 is the control input for theith robot.

We define the composite state vectorz = (z1, . . . , zn), as a
vector in (R2)n.

The target formationis described by a pair{G, d} where
G is an undirected graph whose vertices represent the robots,
and vectord ∈ R

m specifiesm target lengths for the edges.
We refer toG as theformation graph. The robots achieve the
target formation when the length of edgei is the prescribed
distancedi > 0.

Associated with the formation control problem is also a
sensor graphthat describes the sensor data seen by each
robot in the closed-loop system. The sensor graph is a
directed graph with each robot represented as a vertex in
the graph. Given a controlleru, if ui is a function ofzj,
then the sensor graph will have an edge from vertexi to
vertexj. Also, we require that the control be a function only
of relative measurements. For example if robot 1 can see
robots 3 and 5, then the measurements available to robot 1
arez3 − z1 andz5 − z1, andu1 can be a function of these
two measurements. We refer to this as adistributed control
law. We have the following problem.

Problem 1: Given the system (1) and a target formation
{G, d} such thatg−1

G (d) 6= ∅ and such that the framework
(G, p) is infinitesimally rigid at eachp ∈ g−1

G (d), design a
distributed control lawu whose sensor graph isG such that
everyp ∈ g−1

G (d) is a stable equilibrium of the closed-loop
system.

IV. GRADIENT CONTROL

In this section we propose a controller to solve Prob-
lem 1. We start with the framework(G, p). It has certain
edges joining certain vertices. Using exactly the same link
structure, define relative positions between robot positions,
that is, defineei = zk − zj, wherepk, pj are linked on the
framework. Without loss of generalityj < k. Notice thatei

is an error vector in the direction of edgei and‖ei‖2 is the

ith term in the rigidity function,gG(z).1 We also form the
composite vectore = (e1, . . . , em) ∈ R

2m. This vector is a
linear function ofz via the incidence matrix,H ∈ R

m×n,
of the graphG; namely, with the definition

Ĥ := H ⊗ I2 ∈ R
2m×2n, (2)

we have
e = Ĥz. (3)

A. Control Law

We now consider a gradient control law to maintain an
arbitrary formation of robots. First we define a vector norm
function v : R

2m → R
m:

v(e) = (||e1||2, . . . , ||em||2).
Then using (3) we defineg : R

2n → R
m by

g(z) := v(e) = v(Ĥz). (4)

Notice that g(z) is precisely the rigidity functiongG(z)
(henceforth the subscript is dropped).

As a candidate potential function, we consider the positive
definite function ofg(z) − d

φ(z) =
1

2
‖g(z)− d‖2. (5)

Note thatφ(z) is a positive semidefinite function ofz and
φ(z) = 0 if and only if g(z) = d. We propose the gradient
control

u = −(∇φ(z))T .

It follows from (1) and applying the chain rule to (5) that

ż = − (Jg(z))
T

(g(z) − d)

= −ĤT Jv(Ĥz)T (v(Ĥz) − d)

= −ĤT Jv(e)T (v(e) − d) , (6)

where the Jacobian ofv is

Jv(e) = 2







eT
1 . . . 0
...

. . .
...

0 . . . eT
m






. (7)

It is evident that the control is a function only of the relative
measurements, as required by the problem specification.
More specifically, the control law for each robot is

żi = ui = −
∑

j∈{edges leavingi}

1

2
(‖ej‖2 − dj)ej , (8)

consistent with the problem specification that the sensor
graph be identically the same as the formation graph. In the
following lemma we list further interesting properties of the
controlled system (6). Proofs are omitted since the results
are easily verified.

Lemma 7:

1) The centroidz◦ := 1
n

∑n
i=1 zi is stationary:ż◦ = 0.

1The notationei is used to refer both to the edgei and as an error vector
pointing in the direction of edgei in the framework.



2) The control in (6) is independent of the system of
global coordinates.

3) The collinear set C := {z ∈ R
2n | (∃w ∈

R
2)(∀i) (zi − z◦) ∈ span(w)} is invariant under (6).

4) Solutions of (6) exist and are unique.

B. Coordinate Transformation

In this section we perform a coordinate transformation
that separates the centroid dynamics from the remaining
dynamics of the system. LetP be an orthonormal matrix
whose first two rows are1

n
1

T ⊗ I2. Then consider the

transformatioñz =

[

z◦

z

]

= Pz, wherez◦ is the centroid

of z, as discussed in Lemma 7. DefinẽH = ĤP−1. From
the definition ofH̃ it is clear thatH̃z̃ = Ĥz. We now solve
for the z̃ dynamics, obtaining

˙̃z = P ż = −H̃T
(

Jv(H̃z̃)
)T

(v(H̃z̃) − d). (9)

So, ˙̃z = −[∇φ̃(z̃)]T , whereφ̃(z̃) = 1
2‖v(H̃z̃) − d‖2.

Next we consider an interesting property ofH̃ . Note that
since the first two columns ofP−1 are in Ker(Ĥ), H̃ has
the form

[

0 H
]

. From Lemma 1, dim(Ker(H) = 1, so
dim(Ker(Ĥ) = 2. Then by using the dimension of Ker(Ĥ),
the invertibility of P , and the block form ofH̃ , we know
that Ker(H) = {0}.

Now expandH̃z̃ =
[

0 H
]

[

z◦

z

]

= Hz . So the z̃

dynamics from (9) can be rewritten as

[

ż◦

ż

]

= −
[

0

H
T

]

(

Jv(Hz)
)T

(v(Hz) − d). (10)

If we defineφ(z) := 1
2‖v(Hz)− d‖2 then ż = −(∇φ(z))T ,

and soz is again a gradient system.

C. Existence and Uniqueness of Solutions

Using the coordinate transformation of the previous sec-
tion it is possible to confirm existence and uniqueness of
solutions in the(z◦, z) coordinates. Thez◦ dynamics and
the z dynamics are decoupled, so we can analyze solutions
independently. From Lemma 7 we know thatż◦ = 0 so
solutions trivially exist for all time. The dynamics ofz evolve
according to a gradient system with potential functionφ(z),
a radially unbounded function. Consider the sublevel set

Ua := { z ∈ R
2n−2 | φ(z) ≤ a}

and define a Lyapunov function to beV (z) := φ(z). Denote
by −L∇φV (z) the Lie derivative of−∇φ(z)T . For the z

system−L∇φV (z) = −‖∇φ(z)‖2, a negative semidefinite
function. So the setUa is invariant for anya > 0. Fur-
thermore, on the setUa, the function∇φ(z) is Lipschitz
continuous. Therefore, solutionsz(t) exist for all time and
are unique, for all initial conditions starting inUa.

V. STABILITY RESULTS

In this section we present our main stability result. To
begin, the following assumption is crucial to our approach.

Assumption 8:Given a target formation{G, d}, we as-
sume thatg−1

G (d) 6= ∅ and the framework(G, p) is infinites-
imally rigid at eachp ∈ g−1

G (d) .

A. Equilibria

We are interested in studying the equilibria of (6). First
we have the equilibrium setE1 = g−1(d), which represents
the desired formations as specified by the formation graph:

E1 := {z | g(z)− d = 0 } ≡ {z | φ(z) = 0 }.

Unfortunately, these are not the only equilibria of (6). There
is also a larger set of equilibriaE2 := {z | Jv(Ĥz)T (g(z)−
d) = 0 }. The matrix

Jv(Ĥz)T = 2







e1 . . . 0
...

. . .
...

. . . em







has a nontrivial kernel if and only if someei = 0, that is, two
robots are collocated. So for a pointz to be an equilibrium
in E2, each||ei||2 = di or ||ei||2 = 0. Finally the complete
set of equilibria of (6) isE = {z | ∇φ(z) = 0 }. Notice that
E1 ⊂ E2 ⊂ E . Simulation has shown that, in general,E2 6= E .
These extra equilibria are not unexpected: The matrixĤT is
2n × 2m, so if m > n, thenĤT has a nontrivial kernel. In
particular, the setE includes equilibria where the robots are
collinear.

It is also possible to define equilibrium sets for the reduced
statez. In particular, the desired target formations are

E1 = { z ∈ R
2N−2 | v(Hz) = d }.

The advantage of usingE1 rather thanE1 in the ensuing
stability analysis is that (it is easily shown that)E1 is
compact, whereasE1 is not.

To conclude this section, we examine some of the alge-
braic and geometric properties ofE1 = g−1(d). First, observe
that E1 is a real algebraic variety, since it is the intersection
of the zero level sets of polynomial functions. This implies
it has a finite number of connected components [7]. Under
Assumption 8,E1 inherits further properties summarized in
the following lemma.

Lemma 9: If Assumption 8 holds, a setS ⊂ g−1(d) is a
topologically connected component ofg−1(d) if and only if
for eachp, p′ ∈ g−1(d), p andp′ are related by a combination
of rotations and translations ofR2, andS is maximal with
respect to rotations and translations. Moreover,E1 is a three
dimensional embedded submanifold ofR

2n.

B. Linearized Dynamics

In order to study the stability of the equilibrium manifold
E1, we will consider the linearizedz-dynamics onE1.

Theorem 10:The matrixJf (z) evaluated at a point onE1

has three zero eigenvalues; the rest are real and negative.



Proof: Let z0 ∈ E1 and definee0 = Ĥz0. Also,
let f(z) = −Jg(z)T (g(z) − d), the vector field for thez
dynamics. Applying the product rule tof and using the fact
that g(z0) − d = 0 it follows that

Jf (z0) = −Jg(z0)
T Jg(z0) . (11)

The matrix Jf (z0) is symmetric and thus has real eigen-
values, and also Ker(Jf (z0)) = Ker(Jg(z0)). The function
g(z) is the rigidity function for graphG and Jg(z) is the
rigidity matrix, so by Assumption 8, the rank ofJg(z) is
2n − 3 at all points onE1. Therefore, dim(KerJg(z0)) = 3,
soJf (z0) has three zero eigenvalues. Moreover, the structure
of Jf (z0) implies that it is a negative semidefinite matrix,
so the non-zero eigenvalues are negative.

The previous results can also be extended to the
reduced system ż = −(∇φ(z))T . Let f(z) :=

−H
T (

Jv(Hz)
)T

(v(Hz) − d). Also define the function
g : R

2n−2 → R
m by g(z) := v(Hz).

Corollary 11: The matrixJf (z) evaluated at a point on
E1 has one zero eigenvalue; the rest are real and negative.

C. Main Result

Let S ⊂ R
ν be a set andx ∈ R

ν a point. Then the
point to set distance is dist(x,S) = infy∈S ||x − y||. With
respect to a dynamical system with statex we say a setS
is stable if (∀ǫ > 0)(∃δ > 0) dist(x(0),S) < δ ⇒ (∀t ≥
0) dist(x(t),S) < ǫ. We say a setS is locally asymptotically
stable if it is stable and if(∃δ > 0) dist(x(0),S) < δ ⇒
limt→∞ dist(x(t),S) = 0 .

Next we review center manifold theory. Consider a system
in normal form

θ̇ = Aθ + f1(θ, ρ) (12)

ρ̇ = Bρ + f2(θ, ρ), (13)

whereθ ∈ R
ν−κ, ρ ∈ R

κ, A has eigenvalues only on the
imaginary axis,B is Hurwitz,f1(0, 0) = 0 andf2(0, 0) = 0.
TheC∞ functionsf1 andf2 are restricted in order such that
Jf1

(0, 0) = 0 andJf2
(0, 0) = 0. An invariant manifoldM is

a center manifoldof (12)-(13) if it can be locally represented
as

M := { (θ, ρ) ∈ U | ρ = h(θ) }

whereU is a sufficiently small neighbourhood of the origin,
h(0) = 0, and Jh(0) = 0. It can be shown that a center
manifold always exists [4] and the dynamics of (12)-(13)
restricted to the center manifold are

ξ̇ = Aξ + f1(ξ, h(ξ)) (14)

for a sufficiently smallξ ∈ R
ν−κ. The stability of the system

(12)-(13) can then be analyzed from the dynamics on the
center manifold using the next theorem.

Theorem 12:([8], p. 195) If the origin is stable under
(14), then the origin of (12)-(13) is also stable. Moreover
there exists a neighbourhoodW of the origin such that for

every (θ(0), ρ(0)) ∈ W there is a solutionξ(t) of (14) and
constantsci > 0, γ > 0 such that

θ(t) = ξ(t) + r1(t)

ρ(t) = h(ξ(t)) + r2(t),

where‖ri(t)‖ < cie
−γt.

The following is our main result.
Theorem 13:(Main Result) Suppose Assumption 8 holds.

Then E1 is locally asymptotically stable. Moreover, there
exists a neighborhoodU of E1 such that for eachz(0) ∈ U
there exists a pointp ∈ E1 wherelimt→∞ z(t) = p.

Proof: To proveE1 is stable we study the(z◦, z) dy-
namics. First apply the linear transformationP ∈ R

2n×2n of
Section IV-B to separate the system into(z◦, z) components.
Thez◦ dynamics are stationary, so we study only the reduced
z system. Without loss of generality assumez0 = 0. From
Corollary 11 and the symmetry ofJf (0) we know there
exists an orthonormal transformationQ ∈ R

(2n−2)×(2n−2)

such thatQJf (0)QT is in block diagonal form with a zero
for the first term and a blockB ∈ R

(2n−3)×(2n−3) that
is Hurwitz. Then rewrite thez dynamics near0 ∈ E1 as
ż = Jf (0)z +(f(z)−Jf (0)z) and define(θ, ρ) = Qz. Then
it is easily verified that the(θ, ρ) dynamics have the form

θ̇ = f1(θ, ρ) (15)

ρ̇ = Bρ + f2(θ, ρ) , (16)

wheref1(0, 0) = 0 andf2(0, 0) = 0, andJf1
(0, 0) = 0 and

Jf2
(0, 0) = 0.

Now we claim thatM := {(θ, ρ) | (∃z ∈ E1) (θ, ρ) =
Qz} is a center manifold for the system (15)-(16). First,
M is invariant because it consists of equilibria of (15)-(16).
Second it is tangent to theθ-axis at0. This can be seen as
follows. Let

g̃(θ, ρ) := g

(

QT

[

θ
ρ

])

.

ThenM = {(θ, ρ) | g̃(θ, ρ) − d = 0}. We must show that
the row vectors{dg̃1(0), . . . , dg̃m(0)} that span the normal
space ofM at 0, have their first entry equal to zero. Now
observe that







dg̃1(0)
...

dg̃m(0)






= Jg(0)QT ,

so we must show that the first column ofJg(0)QT is
zero. But this follows from the fact that the first entry of
QJf (0)QT = −(Jg(0)QT )T (Jg(0)QT ) is zero. Thus, there
exists a functionh(θ) such that in a neighborhoodW0 of 0

M∩W0 = {(θ, ρ)|ρ = h(θ)}.

Since M is an equilibrium manifold, we know that
f1(θ, h(θ)) = 0 on W0. It follows that the dynamics
restricted toM are ξ̇ = 0, and thusξ(t) = ξ(0).
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z2
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Fig. 2. The graphG∗
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Now applying Theorem 12, we obtain the solutions for
(θ, ρ) starting inW0 are

θ(t) = ξ(0) + r1(t)

ρ(t) = h(ξ(0)) + r2(t),

where ‖ri(t)‖ < cie
−γt for some c1, c2, γ > 0.

This implies limt→∞(θ(t), ρ(t)) = (ξ(0), h(ξ(0)) ∈
M, so limt→∞ z(t) = QT (ξ(0), h(ξ(0))) ∈ E1, and
limt→∞ z(t) = P−1(z◦(0), QT (ξ(0), h(ξ(0)))) ∈ E1, as
desired.

This argument can be repeated for each point onE1 to
obtain a cover{Wk} of E1. SinceE1 is compact, we pass
to a finite subcover to form a neighborhood ofE1. Local
asymptotic stability ofE1 then follows. Finally, this argument
can be trivially lifted toE1 since the center of mass dynamics
are stationary.

In summary, the infinitesimal rigidity of the formation
graph was the key assumption in proving that the target set is
an embedded submanifold and that the linearized dynamics
have the required structure to apply center manifold theory.

VI. REGULAR POLYGON FORMATIONS

An application of the formation stabilization control de-
veloped in the previous sections is to stabilize the robots to
a regular polygon. A regular polygon is a useful formation
for forming a large aperture antenna array.

Now consider a graph denotedG∗ with n vertices and2n
edges, such that vertexi is connected to verticesi+1, i+2,
i − 1 and i − 2. The graphG∗

6 is shown in Figure 2. We
order the edges in the graph so that the expanded incidence

matrix Ĥ = H ⊗ I2 ∈ R
4n×2n is Ĥ :=

[

I2n − P ∗

I2n − (P ∗)2

]

.

Note thatĤ =

[

I2n

I2n + P ∗

]

(I2n − P ∗) thus if e = Ĥz

then
[

I2n + P ∗ −I2n

]

e = 0. Thus the components ofe
have a special form withei+n = ei + ei+1 for i = 1, . . . , n.
Let

d∗ :=

[

c1
c∗1

]

,

where
√

c ∈ R is the side length of the regular polygon and
c∗ := 4c cos2 π

n
. We assume thatc 6= 0. If p is a point where

the robots form a regular polygon, thengG∗(p) = d∗. By
construction,g−1

G∗(d∗) 6= ∅. Techniques from graph theory
can be used to show that the framework(G∗, p) is globally

rigid and therefore, the robots located atp ∈ R
2n form a

regular polygon if and and only ifp ∈ g−1
G∗(d∗). Thus, the

regular polygon formation is the only formation in the setE1,
with two distinct embeddings (up to translation and rotation),
corresponding to reflections of each other. All that remains
to be done to apply our theory is to check the rank of the
rigidity matrix on E1.

Lemma 14:The framework(G∗, p) is infinitesimally rigid
for all p ∈ g−1

G∗(d∗).
Proof: The rigidity matrix isJgG∗

(p) = Jv(e)Ĥ , with
e = Ĥp. The graphG∗ is connected, so from Lemma 1
we know that dim(Ker(Ĥ)) = 2. The strategy of the
proof is to show that Im(Ĥ) ∩ Ker(Jv(e)) = 1, from
which it follows that rank(Jg∗

G
(p)) = 2n − dim(Ker(Ĥ)) −

dim(Im(Ĥ) ∩ Ker(Jv(e))) = 2n − 3. Without loss of
generality, we consider the counterclockwise embedding of
G∗. Let ξ := (ξ1, . . . , ξ2n) ∈ R

4n, with ξi ∈ R
2, be

a vector of the formξ = (w, Rw, R2w, . . . , Rn−1w, (I +
R)w, R(I + R)w, . . . Rn−1(I + R)w). wherew ∈ Ker(eT

1 ),
and R ∈ R

2×2 is the rotation matrix by2π/n radians. We
claim that Ker(Jv(e)) = span{ξ}. SinceJg∗

G
(p) cannot have

rank greater than2n − 3 the result immediately follows.
From the geometry of the regular polygon we have that

for i = 1, . . . , n

ei = Ri−1e1 , (17)

en+i = Ri−1(I + R)e1 . (18)

To show ξ ∈ Ker(Jv(e)), we must show eT
i ξi =

0, i = 1, . . . , 2n. From (17) we have thateT
i ξi =

(Ri−1e1)
T (Ri−1w) = eT

1 w = 0, for i = 1, . . . , n. From
(18) we have thateT

n+iξn+i = (Ri−1(I +R)e1)
T (Ri−1(I +

R)w) = 0, for i = 1, . . . , n, as desired. Conversely, suppose
η ∈ Ker(Jv(e)); that is,eT

i ηi = 0, andeT
n+iηn+i = 0, for i =

1, . . . , n. But this immediately implies, from the geometry
of the plane, thatηi = Ri−1η1 andηn+i = Ri−1(I + R)η1,
for i = 1, . . . , n, with eT

1 η1 = 0, as desired.

Since graphG∗ forms an infinitesimally rigid framework
at regular points, our gradient control can be applied to
stabilize a regular polygon.
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