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Abstract— This paper proposes a local gradient control law to  [6] uses a LaSalle argument to prove stability, but since
stabilize a group of robots to a target formation. The contrd  the equilibrium set is not compact, this approach is open

is derived from a potential function based on an undirected to question. Finally, [6] does not address if the trajeeri
infinitesimally rigid graph that specifies the target formation. have a Iimit. on the 'equilibrium set

It is shown that infinitesimal rigidity is a sufficient condition

for local asymptotical stability of the equilibrium manifo Id The main contribution of the paper is a decentralized
describing the target formation. gradient control law to stabilize a group of point mass
robots to any formation corresponding to an infinitesimally

|. INTRODUCTION rigid framework. A complete stability analysis is provided

This paper considers distributed control of systems dft Section V. Regular polygon formations are studied in
agents that are interconnected dynamically or have a cormection VI where it is shown that the conditions of our theory
mon objective, and where control is local, with the possibléan be applied to this case.
exception of high-level intermittent centralized supsion.
Undoubtedly these kinds of systems will become more
and more prevalent as embedded hardware evolves. AnNotation We denote the Jacobian of a functign R" —
interesting example and area of ongoing research is tfe" evaluated at a point as.J¢(z). In the special case when
control of a group of autonomous mobile robots, ideally’ : R" — R, the Jacobian of is the gradient off and we
without centralized control or a global coordinate systenflenote it byV f(z). Occasionally for convenience during
so that they work cooperatively to accomplish a commofalculations of the Jacobian, the notati§£| will be used to
goal. The aims of such research are to achieve systems theRresent/s(z) = = (x).
are scalable, modular, and robust. These goals are similar&
those of sensor networks—networks of inexpensive devices
with computing, communications, and sensing capabilities A directed graphG' = (V. E) is a pair consisting of a
Such devices are currently commercially available and irfinite set of verticest” := {1,...,n} and a set of edges
clude products like the Intel Mote. A natural extension off C V x V. We assume the edges are ordered; thaf is
sensor networks would be to add simple actuators to tHe.---,m}, wherem € {1,...,n(n —1)}. We exclude the
sensors to make them mobile, and then to adapt the netwdiRssibility of self loops. An undirected graph is a directed
configuration to optimize network coverage. graph such that if there is an edgefrom vertex; to vertex

An interesting approach to formation control is that ofs» then there is also an edge from vertexk to vertex .

[5]. The robots are point masses (double integrators) withor undirected graphs, we omit the arrows in the pictorial
limited vision, and he proposes using rigid graph theory téepresentation of the graph. A special undirected graph is
define the formation; he also proposes a gradient contrle graphk,, the complete graphwith n vertices, which
law involving prescribed distances. The limitation is ttreg  ha@s an edge between every pair of vertices. A useful matrix
network is not homogeneous—special so-caljegigents are associated with a graphi is them xn incidence matrixH . It
required to achieve flocking. Anderson et al. [1] propose & determined by the edgesof G row i of H is determined
novel modification of rigidity within the context of directe Y €: and has two non-zero entries:lan columnk and a
visibility graphs and provide control laws not derived from—1 in columnj, wheree; is the edge between vertgxand
potential functions. The starting point for our paper is. [6]Vertexk. Thus, by definition H1 = 0, wherel is the vector
Following that paper, we use graphs to define formations, b¥ith 2 1 in each component.

instead of global rigidity we use infinitesimal rigidity and Lemma 1:([3], p. 23) The incidence matriX/ has rank
instead of the double integrator model we use the simplé— ¢ wherec is the number of connected components:of
single integrator (kinematic point). More substantiallye For the remainder of this work we assume that all graphs
provide a more detailed stability analysis. In particulé}, ~are connected and thus Kéf) is one dimensional. Also, di-
has no topological analysis of the equilibrium set and dod§cted graphs are considered connected if the corresppndin
not note that the equilibrium set is not compact. Moreovekndirected graph is connected.
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into R? by assigning to each vertexa locationp; € R2.
Define the composite vectgr = (p1,...,p,) € R?™. A
frameworkis a pair(G, p).

We define theigidity function associated with the frame-
work (G, p) as the functiorye : R** — RIF! given by

ga(@) = (.., llpx — pi 11, .. ),

The ith component ofgi(p), ||lpx — p;||%, corresponds to b
the edgee; in I, where verticeg and k are connected by
e;. Note that this function is not unique and depends on the (a) A rigid and in- (b) A rigid but
ordering given to the edges. finitesimally  rigid not infinitesimally
1) Rigidity and Global Rigidity:There are several equiv- framework. rigid framework.
alent definitions of rigidity. The definitions below are take
from [2].
Definition 2: A framework (G, p) is rigid if there exists
a neighbourhoot¥ c R?" of p such thatgal(gg(p)) nU =
95" (gre(p)) NU, where K is the complete graph with the
same vertices a&'.
It is also possible to define a global version of rigidity. (©) A rigid but not infinitesimally rigid
Definition 3: A framework (G,p) is globally rigid if framework.
9c' (96(p) = 9% (9 ().
The level setg;'(gc(p)) consists of all possible points Fig. 1.
that have the same edge lengths as the framey@rk). For
the complete grapl the setgi}1 (9x(p)) consists of points
related by rotations and translations, i.e., rigid bodyior, If a framework is infinitesimally rigid, then it is also rigid
of the frameworkK K, p). We conclude that a graphiis rigid ~ The converse is not true. The following theorem outlines
if the level setg.,' (9 (p)) in a neighbourhood of contains  when rigidity and infinitesimal rigidity are equivalent.
only points corresponding to rotations and translationthef Theorem 6:( [2] ) A framework (G, p) is infinitesimally
formation atp. rigid if and only if (G, p) is rigid andp is a regular point.
2) Infinitesimal Rigidity: We refer to the matrix/,.(p) Observe that for a graph to be infinitesimally rigid in the
as therigidity matrix of (G, p). The rigidity matrix is useful plane it must have at leagt — 3 edges. If it has exactly
in defining some other concepts related to graph rigidity. 2, — 3 edges, we say that the graphnisnimally rigid.
Definition 4: A point p is aregular pointof the graphG The two different embeddings @3 shown in Figure 1(a)-
with n vertices if (b) illustrate some of the rigidity properties. Both franeks
shown are embeddings of the complete graph. They are both
rigid and globally rigid. The framework shown in Figure
_ : 1(a) is also infinitesimally rigid. If we check the rigidity
a regular point. Instead, Figure 1(b) shows the grddh matrix for any pointp where the vertices are not collinear
embedded at a point that is not regular. ~we will find it has rank3. The framework in Figure 1(b) is
The idea of infinitesimal rigidity is to allow the vertices ot infinitesimally rigid. We can check this using the rigjdi

to move infinitesimally, while keeping the rigidity functio 5trix. Let the embedding of the points in the planezpe=
constant up to first order. Lélp be an infinitesimal motion (0,0), z2 = (0,1), 23 = (0,2). The rigidity function for this
of the framework(G, p). Then the Taylor series expansiongréph is ’ ’

of go aboutp is |21 — 22||?
go(z) = | llz2a —2l* |.

9a(p+0p) = ga(p) + Joo (p)dp + higher order terms 25 — 21 |2

rank.Jy, (p) = max { rankJy, (q) | ¢ € R*" }.
In Figure 1(a) we see that the grapgty is embedded at

The rigidity function remains constant up to first order whemhen

Jge (p)p = 0, that is, whendp belongs to Key,, (p). The

dimension of this kernel is at least 3 becaysép) will not

change ifp is perturbed by a rigid body motion. Infinitesimal

rigidity is when the dimension of the kernel is not largentha

3. If we check the rank at a collinear point we obtain

Definition 5: ([2] ) A framework (G, p) is infinitesimally rank J,, (p) = 2 < 2n — 3. As the rigidity matrix does not

rigid in the plane ifdim(KerJ,, (p)) = 3, or equivalently if have maximal rankp is not a regular point; consistent with

Theorem 6, a rigid framework is not infinitesimally rigid at
rank.Jy (p) = 2n — 3. a non-regular point.
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In general, frameworks that are rigid but fail to be infinitesith term in the rigidity functiongg(z).> We also form the
imally rigid have collinear or parallel edges. For instanceomposite vectoe = (e, ..., e,,) € R*™. This vector is a
the graph in Figure 1(c) is rigid but not infinitesimally linear function ofz via the incidence matrixdH € R™*",
rigid because the framework could undergo an infinitesimalf the graphG; namely, with the definition
distortion by perturbing the top link horizontally; the two

& g 2mXx2n
triangles would then rotate infinitesimally, and the middle H=H®LeR ’ @
link rotate infinitesimally. we have
[1l. PROBLEM FORMULATION e=Hz. (3)

Considem robots in the plané®?. The robots are wheeled A. Control Law
veh!gles with sensors that allow them to measure the relativ We now consider a gradient control law to maintain an
pOS|t_|ons of-some of the other vehicles. Such data can t%ﬁ:bitrary formation of robots. First we define a vector norm
obtained using a camera or a radar system. The S'mplefﬁhctionv . R2M _, R™M-
model for a wheeled vehicle is the kinematic unicycle. To
simplify the analysis, using a standard procedure we assume vie) = (|le1] %, .- -, llem|?).
the unicycle model has been feedback linearized about
point some distance in front of each unicycle. The robot
then have a point kinematic model given by the differential g(2) == v(e) = U(ﬁz), (4)
equation

en using (3) we defing : R?® — R™ by

Gi=uw;, i€{l,....n} (1) Notice thatg(z) is precisely the rigidity functiongc(z)
(henceforth the subscript is dropped).

_ 2 ; . ; . . ) . ”
wherez; = (x;,y;) € R* is the location of theth robot in - A a candidate potential function, we consider the positive
the plane and;; € R? is the control input for theth robot.  yefinite function ofg(z) — d

We define the composite state vectos (z1,...,2,), as a )
vector in (E2)". 6(=) = 5ll9(=) - dII*. (5)
The target formationis described by a paifG, d} where 2
G is an undirected graph whose vertices represent the robdigte thaté(z) is a positive semidefinite function of and
and vectord € R™ specifiesm target lengths for the edges. ¢(z) = 0 if and only if g(z) = d. We propose the gradient
We refer toG as theformation graph The robots achieve the control
target formation when the length of edgés the prescribed u=—(Vo(2)T.
distanced; > 0. . .
AssociatZd with the formation control problem is also 4t follows from (1) and applying the chain rule to (5) that
sensor graphthat describes the sensor data seen by each s = (Jg(z))T (9(2) = d)
robot in the closed-loop system. The sensor graph is a

S A T
directed graph with each robot represented as a vertex in o _I?TJ”(H;) (v(Hz) —d)

the graph. Given a controller, if u; is a function ofz;, = —H Jy(e)" (v(e) —d), (6)
then the sensor graph will have an edge from veitd® |\ here the Jacobian of is

vertex;j. Also, we require that the control be a function only -

of relative measurements. For example if robot 1 can see €1 0

robots 3 and 5, then the measurements available to robot 1 Ju(e) =2 oo . @)
arezs — z; andzs — 2z, andu; can be a function of these 0 ... &

two measurements. We refer to this adistributed control . . . . )
law. We have the following problem. It is evident that the control is a function only of the relati

Problem 1: Given the system (1) and a target formatiof"€@surements, as required by the problem specification.
(G, d} such thatgél(d) # ) and such that the framework More specifically, the control law for each robot is
G, p) is infinitesimally rigid at eachp € g5'(d), design a . 1
((jistrialuted control law: whose sensor graGprE é such that = U= > §(He-7'”2 —dj)ej,  (8)
everyp € ggl(d) is a stable equilibrium of the closed-loop
system. consistent with the problem specification that the sensor
graph be identically the same as the formation graph. In the
following lemma we list further interesting properties aet

In this section we propose a controller to solve Probgontrolled system (6). Proofs are omitted since the results
lem 1. We start with the frameworkG, p). It has certain gre easily verified.

edges joining certain vertices. Using exactly the same link | emma 7:
struqture, qleflne relative positions between.robot pasitio 1) The centroick® :— L S | 2 is stationary:° = 0.
that is, definee; = 2z, — z;, wherepy, p; are linked on the n =

framework. WIthOL.Jt loss qf ge.nera“tj/< k. Notice thatei 1The notatione; is used to refer both to the edgend as an error vector
is an error vector in the direction of edgeand ||e;||? is the pointing in the direction of edgein the framework.

j€{edges leaving }

IV. GRADIENT CONTROL



2) The control in (6) is independent of the system of

global coordinates.
3) The collinear setC = {z € R?>" | (Jw
R?)(Vi) (z; — 2°) € spanfw)} is invariant under (6).
4) Solutions of (6) exist and are unique.

B. Coordinate Transformation

. . . . A
In this section we perform a coordinate transformation

V. STABILITY RESULTS

In this section we present our main stability result. To
begin, the following assumption is crucial to our approach.
Assumption 8:Given a target formatiod G, d}, we as-
sume thay'(d) # 0 and the frameworkG, p) is infinites-

imally rigid at eachp € g5'(d) .

. Equilibria

that separates the centroid dynamics from the remaining\We are interested in studying the equilibria of (6). First
dynamics of the system. LeP be an orthonormal matrix We have the equilibrium sef; = g~'(d), which represents
whose first two rows aret1? @ I,. Then consider the the desired formations as specified by the formation graph:

o

transformationz = { ZE ] = Pz, wherez° is the centroid

of z, as discussed in Lemma 7. Defie = HP~!. From
the definition ofH it is clear thatl z = Hz. We now solve
for the Z dynamics, obtaining

y P— (Jv(ﬁé))T (v(HZ) — d).

I3

)

So, 2 = —[V¢(2)]7, whereg(2) = L||jv(Hz) - d|2.

Next we consider an interesting property It Note that
since the first two columns oP~! are in KefH), H has
the form [ 0 H |. From Lemma 1, dirfKer(H) = 1, so
dim(Ker(H) = 2. Then by using the dimension of Kg¥),
the invertibility of P, and the block form offf, we know
that Ke(H) = {0}.

ZO

Now expandHz = [ 0 H | _
dynamics from (9) can be rewritten as

= Hz. So thez

(10)

[ < } = - [ HOT ] (J,(F2))" (v(HZ) - d).

If we defined(z) := L|lv(Hz) — d||* thenz = —(Vé(2))7,
and soz is again a gradient system.

C. Existence and Uniqueness of Solutions

Eri={z]9(z)—d=0}={z]|6(z) =0 }.

Unfortunately, these are not the only equilibria of (6). fihe
is also a larger set of equilibrig, := {z | J,(Hz)T(g(z) —
d) =0 }. The matrix

Jo(Hz)T =2
Em

has a nontrivial kernel if and only if somg = 0, that is, two
robots are collocated. So for a pointto be an equilibrium
in &, each||e;||? = d; or ||e;]|> = 0. Finally the complete
set of equilibria of (6) is£ = {z | Vé(z) = 0 }. Notice that
&1 C & C &£. Simulation has shown that, in genei&l,#~ £.
These extra equilibria are not unexpected: The maifixis
2n x 2m, so if m > n, then HZ has a nontrivial kernel. In
particular, the sef includes equilibria where the robots are
collinear.

It is also possible to define equilibrium sets for the reduced
statez. In particular, the desired target formations are

E1={zecR* 2| y(HZ)=4d}.

The advantage of using; rather than&; in the ensuing
stability analysis is that (it is easily shown thaf) is
compact, whereas; is not.

To conclude this section, we examine some of the alge-

_ . . . . . . S .
Using the coordinate transformation of the previous sedfaic and geometric properties&f = g~ (d). First, observe

tion it is possible to confirm existence and uniqueness dpat&; is a real algebraic variety, since it is the intersection
solutions in the(z°,%) coordinates. The:® dynamics and of the zero level sets of polynomial functions. This implies

the 7 dynamics are decoupled, so we can analyze solutiofishas a finite number of connected components [7]. Under

independently. From Lemma 7 we know th&t = 0 so
solutions trivially exist for all time. The dynamics sfevolve
according to a gradient system with potential functit@),

Assumption 8&; inherits further properties summarized in
the following lemma.
Lemma 9:1f Assumption 8 holds, a sef C g~*(d) is a

a radially unbounded function. Consider the sublevel set topologically connected component @f'(d) if and only if

U, = {ZER™? | $(z) < a}

and define a Lyapunov function to b&(z) := ¢(z). Denote
by —Ly;V(Z) the Lie derivative of-V¢(z)". For thez

system—Ly5V(Z) = —[[V4(2)? a negative semidefinite

function. So the set{, is invariant for anya > 0. Fur-
thermore, on the s, the functionV(z) is Lipschitz
continuous. Therefore, solutior®gt) exist for all time and
are unique, for all initial conditions starting i, .

for eachp, p’ € g~1(d), p andp’ are related by a combination
of rotations and translations &2, andS is maximal with
respect to rotations and translations. Moreo¥eris a three
dimensional embedded submanifold®f".

B. Linearized Dynamics

In order to study the stability of the equilibrium manifold
&1, we will consider the linearized-dynamics or¢; .

Theorem 10:The matrix.J;(z) evaluated at a point o,
has three zero eigenvalues; the rest are real and negative.



Proof: Let zy € & and definee, = Hz,. Also, every(6(0),p(0)) € W there is a solutiorg(¢) of (14) and

let f(2) = —J,(2)T(g(2) — d), the vector field for thez  constants; > 0, v > 0 such that
dynamics. Applying the product rule tb and using the fact
that g(zo) — d = 0 it follows that 0(t) = &(t) + (1)

=h ro(t),
Jp(20) = —Jg(20)" Jg(20) - (11) p(t) = h((t)) +r2(t)
where||r;(t)| < cie .

The matrix Jy(z) is symmetric and thus has real eigen- 1o following is our main result

value_s, z;:nd _al_sd(_) K?‘ﬁf(z_o)) f: Ker(J?go)),dThe fu_nctir(])n Theorem 13:(Main Result) Suppose Assumption 8 holds.
9(2) is the rigidity function for graphG' and Jy(z) is the Then &, is locally asymptotically stable. Moreover, there

rigidity matrix, S0 by Assumption 8, t_he rank oy (z) is exists a neighborhootd of £ such that for each(0) € U
2n — 3 at all points oné;. _Therefore, dinfKer.J,(z0)) = 3, there exists a poinp € & wherelim;_... z(t) = p.
s0.Jy(zp) has three zero eigenvalues. Moreover, the structure Proof: To proveé, is stable we study the-°, %) dy-

of Js(zo) implies that it is a negative semidefinite matr'x’namics. First apply the linear transformatifne R2"*2n of

so the non-zero eigenvalues are negative. Section IV-B to separate the system irftd, z) components.
The previous results can _aI_soT be extended to thg,q . dynamics are stationary, so we study only the reduced
reggfced systemz = —(Vo(@)". Let fz) "=z system. Without loss of generality assumg= 0. From
—H 2(J3(H5)) (v(HZ) — d). Also define the function corollary 11 and the symmetry of7(0) we know there
g:R*™ = R™ by g(z) = v(H?Z). _ exists an orthonormal transformatigp € R(27—2)x(27-2)
B Corollary 11: The matrix Jf(z) evaluated at a point on g,cp thatQJ?(O)QT is in block diagonal form with a zero
&1 has one zero eigenvalue; the rest are real and negativgy, the first term and a block c R(En=3)x(2n=3) tnat
) is Hurwitz. Then rewrite thez dynamics nead € &, as
C. Main Result % = J+(0)z+ (f(z) — J;(0)z) and defing(0, p) = Q=. Then
Let S ¢ R” be a set and: € R” a point. Then the itis easily verified that thé®, p) dynamics have the form
point to set distance is diat,S) = inf,cs ||z — y||. With .
respect to a dynamical system with stateve say a setS 0 = fi0.p) (15)
is stableif (Ve > 0)(356 > 0) dist(z(0),S) < § = (Vt > p = DBp+ f2(0,p), (16)
0) dist(z(t),S) < e. We say a sef is locally asymptotically
stableif it is stable and if(35 > 0) dist(z(0),S) < § = Where/1(0,0) =0 and f»(0,0) = 0, and Jy, (0,0) = 0 and

limy_ o dist(z(t),S) = 0. J1(0,0) =0. o
Next we review center manifold theory. Consider a system Now we claim thatM := {(0,p) | (3z € &1) (0,p) =
in normal form Qz} is a center manifold for the system (15)-(16). First,
M is invariant because it consists of equilibria of (15)-(16)
0= A0+ f1(0,p) (12) Second it is tangent to thi-axis at0. This can be seen as
p=Bp+ f2(6.p). (13) follows. Let
~ 0
wheref € R"~", p € R*, A has eigenvalues only on the g(0,p) =7 (QT [ p D .

imaginary axis,B is Hurwitz, f1(0,0) = 0 and f2(0,0) = 0.
The C* functionsf, and f, are restricted in order such that Then M = {(0, p) | §(8,p) — d = 0}. We must show that
J1,(0,0) = 0andJy, (0,0) = 0. An invariant manifoldM is  the row vectors{dg; (0), ..., dg(0)} that span the normal
a center manifolebf (12)-(13) if it can be locally represented space ofM at 0, have their first entry equal to zero. Now
as observe that

Mi={ (6,p) €U | p=h(d) }

dg1(0)
wherel/ is a sufficiently small neighbourhood of the origin, : = J5(0)QT,
h(0) = 0, and J,(0) = 0. It can be shown that a center G (0)
manifold always exists [4] and the dynamics of (12)-(13)
restricted to the center manifold are so we must show that the first column o (0)Q” is
) zero. But this follows from the fact that the first entry of
§= A+ f1(&h(E)) 14 QH(0)QT = —(J5(0)QT)T (J5(0)QT) is zero. Thus, there

- . ists a functiom (60 h that i ighborh f
for a sufficiently smalk € R”~*. The stability of the system exists a functiom(¢) such that in a neighborhoady, of 0

(12)-(13) can then be analyzed from the dynamics on the MWy = {0, p)|p = h(0)}.
center manifold using the next theorem.

Theorem 12:([8], p. 195) If the origin is stable under Since M is an equilibrium manifold, we know that
(14), then the origin of (12)-(13) is also stable. Moreoverf;(6,h(6)) = 0 on W,. It follows that the dynamics
there exists a neighbourhodd of the origin such that for restricted toM areé = 0, and thust(t) = £(0).



Fig. 2. The graphGs.

Now applying Theorem 12, we obtain the solutions fo

(0, p) starting inW, are

0(t) = £(0) +r1(t)
p(t) = h(£(0)) +72(t),

where ||r;(t)]] < c¢e " for some cj,ca,y > 0.
This implies lim; . (6(¢), p(t)) = (£(0),h(£(0)) €
M, so0 lim2(t) = QT(£(0),h(£(0))) € &, and
limy o0 2(t) P=1(2°(0), QT (£(0), h(£(0)))) € &, as
desired.

This argument can be repeated for each point€ernto
obtain a cove{W,} of £;. Since&; is compact, we pass
to a finite subcover to form a neighborhood &f. Local

asymptotic stability oE, then follows. Finally, this argument
can be trivially lifted to&; since the center of mass dynamic

are stationary.

In summary, the infinitesimal rigidity of the formation
graph was the key assumption in proving that the target set
an embedded submanifold and that the linearized dynami
have the required structure to apply center manifold theor% c

VI. REGULAR POLYGON FORMATIONS

An application of the formation stabilization control de-
veloped in the previous sections is to stabilize the robmts lfor
a regular polygon. A regular polygon is a useful formation

for forming a large aperture antenna array.

Now consider a graph denotég with n vertices an®n
edges, such that vertgxs connected to verticest 1, i + 2,
i — 1 andi — 2. The graphG{ is shown in Figure 2. We

order the edges in the graph so that the expanded incide

S S Iy, — P*
_ Anx2n R 2n
matrix H = H® I, € R is H := Ign_(P*)Q }
- Lo, . e
Note thatH = { Iy, + P* } (Ia, — P*) thus ife = Hz

then|[ I, + P* —Is, | e = 0. Thus the components of
have a special form with;,, = ¢; + ;0.1 fori=1,... n.
Let L
* c
0 [ < ] ,

where/c € R is the side length of the regular polygon and

¢* := 4ccos® Z. We assume that # 0. If p is a point where
the robots form a regular polygon, theg:-(p) = d*. By

To show ¢ € Ker(J,(e)), we must showel¢;

rigid and therefore, the robots locatedjate R?" form a
regular polygon if and and only if € g;!(d*). Thus, the
regular polygon formation is the only formation in the et
with two distinct embeddings (up to translation and rota}jo
corresponding to reflections of each other. All that remains
to be done to apply our theory is to check the rank of the
rigidity matrix on &;.
Lemma 14:The framework G*, p) is infinitesimally rigid
for all p € g5l (d*).
Proof: The rigidity matrix is.J,.. (p) = J,(e) H, with
e = Hp. The graphG* is connected, so from Lemma 1
we know that dingKer(H)) = 2. The strategy of the
roof is to show that Irtf) N Ker(J,(e)) = 1, from
hich it follows that rank.Jy, (p)) = 2n — dim(Ker(f)) —
dim(Im(H) n Ker(J,(e))) 2n — 3. Without loss of
generality, we consider the counterclockwise embedding of
G*. Let &€ = (&,...,6,) € R, with & € R2, be
a vector of the form¢ = (w, Rw, R*w, ..., R" tw, (I +
R)w, R(I + R)w, ... R" (I + R)w). wherew € Ker(el),
and R € R?*? is the rotation matrix by2r/n radians. We
claim that Ke(J, (e)) = spar{§}. SinceJg, (p) cannot have
rank greater than — 3 the result immediately follows.
From the geometry of the regular polygon we have that
fori=1,....n

Ri—lel ’
R™YI + R)e; .

(17)
(18)

€

Cn+4i

0, i = 1,...,2n. From (17) we have thael¢;
gi‘lel)T(Ri‘lw) =efw =0, fori = 1,...,n. From

8) we have that? &, = (R (I + R)er)" (R (I +
w) =0, fori=1,...,n, as desired. Conversely, suppose

Ker(J,(e)); thatis,el n; = 0, ande’ , ;n,4; = 0, fori =

1,...,n. But this immediately implies, from the geometry
of the plane, that);, = Ri='n; andn,,; = R (I + R)n,
i=1,...,n, with ef'n; =0, as desired.

[ |
Since graphG* forms an infinitesimally rigid framework
at regular points, our gradient control can be applied to
stabilize a regular polygon.
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