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This paper considers the design of a formation control for multivehicle systems that uses only local information.
The control is derived from a potential function based on an undirected infinitesimally rigid graph that specifies
the target formation. A potential function is obtained from the graph, from which a gradient control is derived.
Under this controller the target formation becomes a manifold of equilibria for the multivehicle system. It
is shown that infinitesimal rigidity is a sufficient condition for local asymptotical stability of the equilibrium
manifold. A complete study of the stability of the regular polygon formation is presented and results for directed
graphs are presented as well. Finally, the controller is validated experimentally.
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1 Introduction

This paper considers distributed control of systems of agents that are interconnected dynamically
or have a common objective, and where control is local, with the possible exception of high-
level intermittent centralized supervision. Undoubtedly these kinds of systems will become more
and more prevalent as embedded hardware evolves. An interesting example and area of ongoing
research is the control of a group of autonomous mobile robots, ideally without centralized control
or a global coordinate system, so that they work cooperatively to accomplish a common goal.
The aims of such research are to achieve systems that are scalable, modular, and robust. These
goals are similar to those of sensor networks—networks of inexpensive devices with computing,
communications, and sensing capabilities. Such devices are currently commercially available and
include products like the Intel Mote. A natural extension of sensor networks would be to add
simple actuators to the sensors to make them mobile, and then to adapt the network configuration
to optimize network coverage.

If global coordinates are known and there is an omniscient supervisor, these problems are
routine: Each robot could be stabilized to its assigned location. The current technology to provide
global coordinates is the Global Positioning System (GPS). However, the use of GPS for position
information in multi-agent applications has several problems: The precision of GPS depends on
the number of satellites currently visible; during periods of dense cloud cover, in urban areas,
and under dense vegetation, there may be no line of sight between the receiver and the GPS
satellite. These problems in obtaining global coordinates make it natural to study decentralized
control.

The simplest problem is stabilizing the robots to a common location, frequently called the
rendezvous problem. Many different techniques have been used to solve this problem, for example,
cyclic pursuit (Marshall et al. 2004) and the circumcentre law (Cortés et al. 2004). The solution
in Lin et al. (2004) involves asynchronous stop-and-go cycles. Goldenberg et al. (2004) considers
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a problem of decentralized, self organizing communication nodes with mobility. In this case, the
mobility is used to improve communication performance. Another possible goal for mobile sensor
networks is to optimize sensor placement by minimizing a cost function. This type of problem
is studied in Cortés et al. (2004).

An interesting approach to formation control is that of Olfati-Saber (2006). The robots are
point masses (double integrators) with limited vision, and he proposes using rigid graph theory
to define the formation; he also proposes a gradient control law involving prescribed distances.
The limitation is that the network is not homogeneous—special so-called γ-agents are required
to achieve flocking.

Finally Smith et al. (2006) considers the problem of achieving polygon formations without
global coordinates, but the solution is complete only for three robots.

The starting point for our paper is Olfati-Saber and Murray (2002). Following that paper, we
use graphs to define formations, but instead of global rigidity we use infinitesimal rigidity and
instead of the double integrator model we use the simpler single integrator (kinematic point).
More substantially, our stability analysis is complete whereas, being a conference paper, Olfati-
Saber and Murray (2002) provides only a sketch. In particular, Olfati-Saber and Murray (2002)
has no topological analysis of the equilibrium set and does not note that the equilibrium set is not
compact. Moreover, Olfati-Saber and Murray (2002) uses a LaSalle argument to prove stability,
but since the equilibrium set is not compact, this is open to question. Furthermore, Olfati-Saber
and Murray (2002) does not address if the trajectories have a limit on the equilibrium set.
Additional, more technical remarks follow in Remark 2.

The first contribution of the paper is a decentralized gradient control law to stabilize a group
of point mass robots to any formation corresponding to an infinitesimally rigid framework. A
complete stability analysis is provided in Section 5. Regular polygon formations are studied in
Section 6, where it is shown that the conditions of our theory can be applied to this case. A
drawback of the proposed controller is that it requires two-way communication between robots:
if robot i can sense robot j, then robot j can sense robot i. In Section 7 we address the formation
stabilization problem under the constraint that, instead, the sensor graph is directed. It is shown
that when the formation graph is constructed using a Henneberg insertion procedure to achieve
an infinitesimally rigid framework, the foregoing stability analysis for undirected graphs still
applies.

Before presenting the main results in Sections 5, 6, and 7, we first give an overview of concepts
from graph theory and particularly graph rigidity theory in Section 2. In Section 3 the stabiliza-
tion problem is formulated and in Section 4 the gradient control law is proposed and some of its
properties are analyzed.

2 Background

2.1 Notation

We denote the Jacobian of a function f : Rn → Rm evaluated at a point x as Jf (x). In the
special case when f : Rn → R, the Jacobian of f is the gradient of f and we denote it by ∇f(x).
Occasionally for convenience during calculations of the Jacobian, the notation ∂

∂x
will be used

to represent Jf (x) = ∂
∂x
f(x).

2.2 Graph Theory

A directed graph G = (V,E) is a pair consisting of a finite set of vertices V := {1, . . . , n} and
a set of edges E ⊂ V × V . We assume the edges are ordered; that is E = {1, . . . ,m}, where
m ∈ {1, . . . , n(n−1)}. We exclude the possibility of self loops. An undirected graph is a directed
graph such that if there is an edge ei from vertex j to vertex k, then there is also an edge el from
vertex k to vertex j. For undirected graphs, we omit the arrows in the pictorial representation
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(a) A flexible framework. (b) A rigid framework.

Figure 1.

of the graph. A special undirected graph is the graph Kn, the complete graph with n vertices,
which has an edge between every pair of vertices. A useful matrix associated with a graph G is
the m× n incidence matrix, H. It is determined by the edges ei of G: row i of H is determined
by ei and has two non-zero entries: a 1 in column k and a −1 in column j, where ei is the edge
between vertex j and vertex k. Thus, by definition, H1 = 0, where 1 is the vector with a 1 in
each component.

Lemma 2.1: (Biggs (1974), p. 23) The incidence matrix H has rank n − c where c is the
number of connected components of G.

For the remainder of this work we assume that all graphs are connected and thus Ker(H) is
one dimensional. Also, directed graphs are considered connected if the corresponding undirected
graph is connected.

2.3 Graph Rigidity

To introduce the notion of rigidity of graphs we must view a graph as a framework embedded in
the plane, R2. Let G = (V,E) be an undirected graph with n vertices. We embed G into R2 by
assigning to each vertex i a location pi ∈ R2. Define the composite vector p = (p1, . . . , pn) ∈ R2n.
A framework is a pair (G, p).

We define the rigidity function associated with the framework (G, p) as the function gG :R2n → R|E| given by

gG(p) := (. . . , ‖pk − pj‖2, . . .),

The ith component of gG(p), ‖pk − pj‖2, corresponds to the edge ei in E, where vertices j and
k are connected by ei. Note that this function is not unique and depends on the ordering given
to the edges.

2.3.1 Rigidity and Global Rigidity

There are several equivalent definitions of rigidity. The definitions below are taken from Asi-
mow and Roth (1979).

Definition 2.2 A framework (G, p) is rigid if there exists a neighbourhood U ⊂ R2n of p such
that g−1

G (gG(p)) ∩ U = g−1
K (gK(p)) ∩ U , where K is the complete graph with the same vertices

as G.

It is also possible to define a global version of rigidity.

Definition 2.3 A framework (G, p) is globally rigid if g−1
G (gG(p)) = g−1

K (gK(p)).

The level set g−1
G (gG(p)) consists of all possible points that have the same edge lengths as
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Figure 2. Possible embeddings of a graph with four vertices.

the framework (G, p). For the complete graph K the set g−1
K (gK(p)) consists of points related

by rotations and translations, i.e., rigid body motions, of the framework (K, p). We conclude
that a graph G is rigid if the level set g−1

G (gG(p)) in a neighbourhood of p contains only points
corresponding to rotations and translations of the formation at p. For example, consider the
framework in Figure 1(a). It is possible to translate the top two points of the framework while
maintaining the four edge lengths to obtain a graph that is not isomorphic to the original graph;
the lengths of the diagonals change, so the framework is not rigid. If we add one more edge to
the framework we obtain the framework in Figure 1(b). For this framework, every perturbation
of the vertices that maintains the edge lengths is isomorphic to the original framework, so this
graph is rigid.

To illustrate the difference between rigidity and global rigidity consider the example of a graph
with four vertices and

gG(z) =













||z1 − z2||2
||z2 − z3||2
||z3 − z4||2
||z4 − z1||2
||z3 − z1||2













and d =













1
22

1
22

5













. (1)

There are four possible distinct frameworks for this graph, as shown in Figure 2. Each of these
frameworks is rigid, but not globally rigid, since solutions z of gG(z) = d can correspond to
either of two different complete graphs (when part of the graph is flipped over). Instead, if the
graph were also globally rigid, then gG(z) = d would have solutions corresponding to only one
complete graph and only two distinct embeddings. These two embeddings would be reflections
of one another. Figure 3 illustrates this case.

2.3.2 Infinitesimal Rigidity

We refer to the matrix JgG
(p) as the rigidity matrix of (G, p). The rigidity matrix is useful in

defining some other concepts related to graph rigidity. (Note that we consider graphs with at
least two vertices; otherwise the concepts introduced here will not be well-defined).

Definition 2.4 A point p is a regular point of the graph G with n vertices if

rankJgG
(p) = max

{

rankJgG
(q) | q ∈ R2n

}

.

In Figure 4(a) we see that the graph K3 is embedded at a regular point. Instead, Figure 4(b)
shows the graph K3 embedded at a point that is not regular.

The idea of infinitesimal rigidity is to allow the vertices to move infinitesimally, while keeping
the rigidity function constant up to first order. Let δp be an infinitesimal motion of the framework
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Figure 3. The two possible embeddings of the graph K4. Note that Figure 3(a) is a reflection of Figure 3(b).

(a) A rigid and
infinitesimally rigid
framework.

(b) A rigid but not
infinitesimally rigid
framework.

(c) A rigid but not infinitesimally rigid
framework.

Figure 4.

(G, p). Then the Taylor series expansion of gG about p is

gG(p+ δp) = gG(p) + JgG
(p)δp + higher order terms.

The rigidity function remains constant up to first order when JgG
(p)δp = 0, that is, when δp

belongs to KerJgG
(p). The dimension of this kernel is at least 3 because gG(p) will not change if

p is perturbed by a rigid body motion. Infinitesimal rigidity is when the dimension of the kernel
is not larger than 3.

Definition 2.5 (Asimow and Roth (1979) ) A framework (G, p) is infinitesimally rigid in the
plane if dim(KerJgG

(p)) = 3, or equivalently if

rankJgG
(p) = 2n− 3.

If a framework is infinitesimally rigid, then it is also rigid. The converse is not true. The
following theorem outlines when rigidity and infinitesimal rigidity are equivalent.

Theorem 2.6 : ( Asimow and Roth (1979) ) A framework (G, p) is infinitesimally rigid if and
only if (G, p) is rigid and p is a regular point.

Observe that for a graph to be infinitesimally rigid in the plane it must have at least 2n − 3
edges. If it has exactly 2n − 3 edges, we say that the graph is minimally rigid.
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The two different embeddings of K3 shown in Figure 4(a)-(b) illustrate some of the rigidity
properties. Both frameworks shown are embeddings of the complete graph. They are both rigid
and globally rigid. The framework shown in Figure 4(a) is also infinitesimally rigid. If we check
the rigidity matrix for any point p where the vertices are not collinear we will find it has rank
3. The framework in Figure 4(b) is not infinitesimally rigid. We can check this using the rigidity
matrix. Let the embedding of the points in the plane be z1 = (0, 0), z2 = (0, 1), z3 = (0, 2). The
rigidity function for this graph is

gG(z) =





||z1 − z2||2
||z2 − z3||2
||z3 − z1||2



 .

Then

JgG
(p) = 2





zT1 − zT2 zT2 − zT1 0
0 zT2 − zT3 zT3 − zT2

zT1 − zT3 0 zT3 − zT1



 .

If we check the rank at a collinear point p we obtain rank JgG
(p) = 2 < 2n − 3. As the rigidity

matrix does not have maximal rank, p is not a regular point; consistent with Theorem 2.6, a
rigid framework is not infinitesimally rigid at a non-regular point.

Typically, frameworks that are rigid but fail to be infinitesimally rigid have collinear or parallel
edges. For instance the graph in Figure 4(c) is rigid but not infinitesimally rigid because the
framework could undergo an infinitesimal distortion by perturbing the top link horizontally; the
two triangles would then rotate infinitesimally, and the middle link rotate infinitesimally.

2.3.3 Constructing Rigid Graphs

Any collection of n points in the plane can be connected to form a rigid framework. For
instance, we can connect the points using Kn, the complete graph. In subsequent sections we
will find that the complexity of the control is proportional to the number of edges in a certain
graph. Using the complete graph will result in a design that is not scalable: as the number of
connections needed for n vertices is n2−n

2 . Instead, from the definition of infinitesimal rigidity,
we see a graph can be infinitesimally rigid with only 2n− 3 edges. For n > 3, this is fewer edges
than the complete graph.

A rigid graph can be constructed for any embedding of n vertices in the plane in the following
manner. First, number all the vertices. Next, add an edge between vertex 1 and vertex 2. If we
consider the framework formed by vertex 1 and vertex 2, we see that it is the complete graph, and
thus is rigid. The remaining vertices are added in order to the connected component of the graph,
connecting each one to the previously connected graph structure by two edges. This operation
is sometimes referred to as a Henneberg insertion, Bereg (2005). This type of insertion preserves
graph rigidity because each vertex has two degrees of freedom. By connecting the vertex to the
previously connected graph structure by two edges the position of the vertex is subject to two
constraints, removing both degrees of freedom. This procedure results in a framework that is not
only rigid but also minimally rigid; that is, if we remove any edge the framework is no longer
rigid.

3 Problem Formulation

Consider n robots in the plane, R2. The robots are wheeled vehicles with sensors that allow them
to measure the relative positions of some of the other vehicles. Such data can be obtained using
a camera or a radar system. The simplest model for a wheeled vehicle is the kinematic unicycle.
To simplify the analysis, using a standard procedure we assume the unicycle model has been
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feedback linearized about a point some distance in front of each unicycle. The robots then have
a point kinematic model given by the differential equation

żi = ui, i ∈ {1, . . . , n} (2)

where zi = (xi, yi) ∈ R2 is the location of the ith robot in the plane and ui ∈ R2 is the control
input for the ith robot. We define the composite state vector z = (z1, . . . , zn), as a vector in
(R2)n.

The target formation is described by a pair {G, d} where G is an undirected graph whose
vertices represent the robots, and vector d ∈ Rm specifies m target lengths for the edges. We
refer to G as the formation graph. The robots achieve the target formation when the length of
edge i is the prescribed distance di > 0.

Associated with the formation control problem is also a sensor graph that describes the sensor
data seen by each robot in the closed-loop system. The sensor graph is a directed graph with
each robot represented as a vertex in the graph. Given a controller u, if ui is a function of zj ,
then the sensor graph will have an edge from vertex i to vertex j. Also, we require that the
control be a function only of relative measurements. For example if robot 1 can see robots 3 and
5, then the measurements available to robot 1 are z3 − z1 and z5 − z1, and u1 can be a function
of these two measurements. We refer to this as a distributed control law. We have the following
problem.

Problem 3.1 Given the system (2) and a target formation {G, d} such that g−1
G (d) 6= ∅ and such

that the framework (G, p) is infinitesimally rigid at each p ∈ g−1
G (d), design a distributed control

law u whose sensor graph is G with the following two properties: (1) every p ∈ g−1
G (d) is a stable

equilibrium of the closed-loop system, and (2) for every initial condition in a neighborhood of
g−1
G (d), the closed-loop trajectory tends to a unique equilibrium point in g−1

G (d).

4 Gradient Control

In this section we propose a controller to solve Problem 3.1. We start with the framework (G, p).
It has certain edges joining certain vertices. Using exactly the same link structure, define relative
positions between robot positions, that is, define ei = zk − zj , where pk, pj are linked on the
framework. Without loss of generality j < k. Notice that ei is an error vector in the direction
of edge i and ‖ei‖2 is the ith term in the rigidity function, gG(z).1 We also form the composite
vector e = (e1, . . . , em) ∈ R2m. This vector is a linear function of z via the incidence matrix,
H ∈ Rm×n, of the graph G; namely, with the definition

Ĥ := H ⊗ I2 ∈ R2m×2n, (3)

we have

e = Ĥz. (4)

For example, for the complete graph K3

H =





1 −1 0
0 1 −1
1 0 −1



 , Ĥ =





I2 −I2 0
0 I2 −I2
I2 0 −I2



 .

1The notation ei is used to refer both to the edge i and as an error vector pointing in the direction of edge i in the framework.
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4.1 Special Case: The Rendezvous Problem

The rendezvous problem is the special case of the formation stabilization problem where d = 0.
If L denotes the Laplacian of the graph G, and L̂ = L⊗ I2, a linear solution to this problem is
to let u = −L̂z, and then

ż = −L̂z. (5)

If G is connected, then 0 is a simple eigenvalue of L (Frobenius’ theorem) and rendezvous follows.
Recall that if G is undirected, the Laplacian is a symmetric matrix. Furthermore, the Laplacian
and incidence matrices are related by L̂ = ĤT Ĥ ( Proposition 4.8 in Biggs (1974)). Thus

L̂z =

[

∇
(

1

2
‖Ĥz‖2

)]T

.

The function 1
2‖Ĥz‖2 is positive semidefinite. So the control law in (5) is not only a gradient

control law, as all symmetric linear controls are, but a gradient control law for a positive semidef-
inite potential function. This suggests considering a gradient control of a positive semidefinite
potential function for the general formation stabilization problem.

4.2 Control Law

We now consider a gradient control law to maintain an arbitrary formation of robots. First we
define a vector norm function v : R2m → Rm:

v(e) = (||e1||2, . . . , ||em||2).

Then using (4) we define g : R2n → Rm by

g(z) := v(e) = v(Ĥz). (6)

Notice that g(z) is precisely the rigidity function gG(z) (henceforth the subscript is dropped).
As a candidate potential function, we consider the positive definite function of g(z) − d

φ(z) =
1

2
‖g(z) − d‖2. (7)

Note that φ(z) is a positive semidefinite function of z and φ(z) = 0 if and only if g(z) = d. We
propose the gradient control

u = −(∇φ(z))T .

It follows from (2) and applying the chain rule to (7) that

ż = − (Jg(z))
T (g(z) − d)

= −ĤTJv(Ĥz)
T (v(Ĥz) − d)

= −ĤTJv(e)
T (v(e) − d) , (8)
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where the Jacobian of v is

Jv(e) = 2







eT1 . . . 0
...

. . .
...

0 . . . eTm






. (9)

It is evident that the control is a function only of the relative measurements, as required by the
problem specification. More specifically, the control law for each robot is

żi = ui = −
∑

j∈{edges leaving i}

1

2
(‖ej‖2 − dj)ej , (10)

consistent with the problem specification that the sensor graph be identically the same as the
formation graph. In the following lemma we list further interesting properties of the controlled
system (8). Proofs are omitted since the results are easily verified.

Lemma 4.1:

(1) The centroid z◦ := 1
n

∑n
i=1 zi is stationary: ż◦ = 0.

(2) The control in (8) is independent of the system of global coordinates; that is, for every
w ∈ R2,

∇φ(z + 1⊗ w) = ∇φ(z),

and for every orthogonal matrix R ∈ R2×2,

∇φ(z)R̂T = ∇φ(R̂z),

where R̂ = In ⊗R.
(3) Define the collinear set C := {z ∈ R2n | (∃w ∈ R2)(∀i) (zi − z◦) ∈ span(w)}. Then C is
invariant under (8).

4.3 Coordinate Transformation

In this section we perform a coordinate transformation that separates the centroid dynamics
from the remaining dynamics of the system. This will be particularly helpful in several of the
analyses that follow.

Let P be an orthonormal matrix whose first two rows are 1
n
1T ⊗ I2. Then consider the trans-

formation

z̃ =

[

z◦

z

]

= Pz,

where z◦ is the centroid of z, as discussed in Lemma 4.1. Define

H̃ = ĤP−1. (11)

From the definition of H̃ it is clear that H̃z̃ = Ĥz. We now solve for the z̃ dynamics, obtaining

˙̃z = P ż

= −H̃T
(

Jv(H̃z̃)
)T

(v(H̃z̃) − d). (12)
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So, ˙̃z = −[∇φ̃(z̃)]T , where φ̃(z̃) = 1
2‖v(H̃z̃) − d‖2.

Next we consider an interesting property of H̃. Note that since the first two columns of P−1

are in Ker(Ĥ), H̃ has the form
[

0 H
]

. From Lemma 2.1, dim(Ker(H)) = 1, so dim(Ker(Ĥ)) = 2.

Then by using the dimension of Ker(Ĥ), the invertibility of P , and the block form of H̃, we
know that Ker(H) = {0}.

Now expand H̃z̃:

H̃z̃ =
[

0 H
]

[

z◦

z

]

= Hz . (13)

So the z̃ dynamics from (12) can be rewritten using (11) and (13) as

[

ż◦

ż

]

= −
[

0

H
T

]

(

Jv(Hz)
)T

(v(Hz) − d). (14)

If we define φ(z) := 1
2‖v(Hz) − d‖2 then ż = −(∇φ(z))T , and so z is again a gradient system.

4.4 Existence and Uniqueness of Solutions

Using the coordinate transformation of the previous section it is possible to confirm existence
and uniqueness of solutions in the (z◦, z) coordinates. The z◦ dynamics and the z dynamics are
decoupled, so we can analyze solutions independently. From Lemma 4.1 we know that ż◦ = 0
so solutions trivially exist for all time. The dynamics of z evolve according to a gradient system
with potential function φ(z), a radially unbounded function. Consider the sublevel set

Ua := { z ∈ R2n−2 | φ(z) ≤ a}

and define a Lyapunov function to be V (z) := φ(z). Denote by −L∇φV (z) the Lie derivative of

−∇φ(z)T . For the z system −L∇φV (z) = −‖∇φ(z)‖2, a negative semidefinite function. So the

set Ua is invariant for any a > 0. Furthermore, on the set Ua, the function ∇φ(z) is Lipschitz
continuous. Therefore, solutions z(t) exist for all time and are unique, for all initial conditions
starting in Ua.

4.5 Simulations

In this section we simulate the control law (8) for two graphs to gain some intuitive understanding
about the controller’s behaviour.

Example 4.2 Consider the complete graph K4 with the rigidity function

g(z) =

















||z1 − z2||2
||z2 − z3||2
||z3 − z4||2
||z4 − z1||2
||z3 − z1||2
||z4 − z2||2

















and d =

















1
22

1
22

5
5

















.

This graph is globally rigid and a point p in g−1(d) forms a rectangle with side lengths 1 and 2.
Figure 5(a) shows the robots achieve the rectangle formation under the control (8). Figure 5(b)
is for a different initial condition and here the final formation is a “twisted” rectangle; this
equilibrium is not in g−1(d). Also, if the robots are initialized on a collinear configuration, then



June 18, 2008 16:28 International Journal of Control KriBroFra

11

6 8 10 12 14 16

4

5

6

7

8

9

10

11

12

(a)

5 6 7 8 9 10 11 12 13 14
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

(b)

Figure 5. Four robots converge to an equilibrium that is a target formation and an equilibrium that is not a target formation.

they remain collinear; the collinear set is invariant and stable collinear equilibria exist. We
conclude that the control (8) produces equilibria other than the target formation, so the set
g−1(d) is not globally attractive. However, simulations suggest that it may be locally stable.

Example 4.3 Consider the control law derived from the minimally rigid graph G with four
vertices with g and d given in (1). This graph has one fewer edge than the one used in the
previous example. Additionally, if we remove any edge the graph will no longer be a rigid graph.
Since G is a subgraph of K4, the target set in Example 4.2 is a subset of the target set in this
example. This is confirmed in simulation. Although we have introduced additional equilibria
in g−1

G (d), no twisted or undesired equilibrium has been found in simulation—other than the
collinear equilibria. We conjecture that this may be because the minimally rigid framework
leads to fewer terms in the control law; thus, there is less likelihood for terms in the control law
to cancel each other to generate undesired equilibria.

5 Stability Results

In this section we present our main stability result. First, we identify several equilibrium sets
associated with the formation control problem and we expose important properties of the desired
set of equilibria, called E1. Then, we linearize the dynamics (8) and, using infinitesimal rigidity
of the formation graph, determine the eigenvalues of the linearized dynamics. Finally, we use
center manifold theory to show that the set E1 is locally asymptotically stable. We conclude the
section by comparing with several other proof techniques. To begin, the following assumption is
crucial to our approach.

Assumption 5.1 Given a target formation {G, d}, we assume that g−1
G (d) 6= ∅ and the framework

(G, p) is infinitesimally rigid at each p ∈ g−1
G (d) .

5.1 Equilibria

We are interested in studying the equilibria of (8). First we have the equilibrium set E1 = g−1(d),
which represents the desired formations as specified by the formation graph:

E1 := {z | g(z) − d = 0 } ≡ {z | φ(z) = 0 }.
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Unfortunately, these are not the only equilibria of (8). There is also a larger set of equilibria

E2 := {z | Jv(Ĥz)T (g(z) − d) = 0 }.

The matrix

Jv(Ĥz)
T = 2







e1 . . . 0
...

. . .
...

. . . em







has a nontrivial kernel if and only if some ei = 0, that is, two robots are collocated. So for a
point z to be an equilibrium in E2, for all i, ||ei||2 = di or ||ei||2 = 0. Finally the complete set of
equilibria of (8) is

E = {z | ∇φ(z) = 0 } .

Notice that E1 ⊂ E2 ⊂ E . Simulation has shown that, in general, E2 6= E . These extra equilibria
are not unexpected: The matrix ĤT is 2n × 2m, so if m > n, then ĤT has a nontrivial kernel.
In particular, the set E includes equilibria where the robots are collinear.

It is also possible to define equilibrium sets for the reduced state z. In particular, the desired
target formations are

E1 = { z ∈ R2N−2 | v(Hz) = d }.

The advantage of using E1 rather than E1 in the ensuing stability analysis is that (it is easily
shown that) E1 is compact, whereas E1 is not.

To conclude this section, we examine some of the algebraic and geometric properties of
E1 = g−1(d). First, observe that E1 is a real algebraic variety, since it is the intersection of
the zero level sets of polynomial functions. This implies it has a finite number of connected
components Whitney (1957). Under Assumption 5.1, E1 inherits further properties summarized
in the following lemma.

Lemma 5.2: If Assumption 5.1 holds, a set S ⊂ g−1(d) is a topologically connected component
of g−1(d) if and only if for each p, p′ ∈ g−1(d), p and p′ are related by a combination of rotations
and translations of R2, and S is maximal with respect to rotations and translations. Moreover,
E1 is a three dimensional embedded submanifold of R2n.

Proof For the first statement, if G is globally rigid, then the result is immediately true because
we know for all p ∈ g−1(d), g−1(d) = g−1

K (gK(p)), where K is the complete graph associated with

G, and the connected components of g−1
K (gK(p)) are generated by translations and rotations in

the plane Asimow and Roth (1978). If G is not globally rigid, then g−1(d) contains additional
points corresponding to parts of G being reflected. But if the points in p are not collinear—as
they must be for G to be infinitesimally rigid—then any reflection in the plane of part of G at p
corresponds to an embedding that is not in the same component of g−1(d) as p. Therefore, the
property that points in a connected component of g−1(d) are generated only by translations and
rotations in the plane is preserved.

For the proof of the second statement, if there are 2n − 3 edges in the graph, then since
rankJg(p) = 2n − 3 for all p ∈ g−1(d), the result is an immediate application of the Preimage
theorem (Boothby (1986), p. 80). However, if m > 2n − 3, a slightly more subtle argument is
needed.

Fix p ∈ g−1(d) and suppose, without loss of generality, that ĝ := (g1, . . . , g2n−3), the first

2n − 3 components of g, satisfy rank Jĝ(p) = 2n − 3. Let Ĝ denote the reduced graph with
edges corresponding to ĝ. Denote by Mp the maximal set of points related by a combination of
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rotations and translations to p. A simple calculation shows that Jĝ(q) and Jĝ(p) are related by an

invertible matrix when q ∈ Mp . So rank Jĝ(q) = 2n−3 for all q ∈ Mp. This implies that (Ĝ, q) is
infinitesimally rigid, and therefore rigid, for all q ∈ Mp. Thus, there exists an open neighborhood
Uq of q such that Mp ∩ Uq = ĝ−1(ĝ(p)) ∩ Uq. Let U := ∪q∈Mp

Uq, a 2n-dimensional manifold, be
an open cover of Mp. Then Mp∩U = ĝ−1(ĝ(p))∩U . Thus, we have that ĝ : U → R2n−3 has rank
2n − 3 for all q ∈ Mp. Again by the Preimage theorem we obtain that Mp is a 3-dimensional
embedded submanifold of U ⊂ R2n. In addition, from the first statement of the lemma, we know
that Mp is also a connected component of g−1(d). Thus, the result follows. �

Remark 1 : On a first reading, the infinitesimal rigidity condition in Assumption 5.1 seems
difficult to check, since E1 is not compact. However, only a finite number of calculations must
be made. It is easily verified that g is invariant under rigid body motions; that is, g(z) =

g(R̂(z + 1 ⊗ w)) where w ∈ R2, R ∈ R2×2 is a rotation matrix and R̂ = In ⊗ R. Therefore the
Jacobian of g(z) has constant rank on the components of E1, so we must check the rank of the
rigidity matrix at only one point on each component of E1, or on one possible embedding. This
is a finite test.

5.2 Linearized Dynamics

In order to study the stability of the equilibrium manifold E1, we will consider the linearized
z-dynamics on E1.

Theorem 5.3 : The matrix Jf (z) evaluated at a point on E1 has three zero eigenvalues; the
rest are real and negative.

Proof Let z0 ∈ E1 and define e0 = Ĥz0. Also, let f(z) = −Jg(z)T (g(z) − d), the vector field for
the z dynamics. Applying the product rule to f and using the fact that g(z0) − d = 0 it follows
that

Jf (z0) = −Jg(z0)TJg(z0) . (15)

The matrix Jf (z0) is symmetric and thus has real eigenvalues, and also Ker(Jf (z0)) =
Ker(Jg(z0)). The function g(z) is the rigidity function for graph G and Jg(z) is the rigid-
ity matrix, so by Assumption 5.1, the rank of Jg(z) is 2n − 3 at all points on E1. Therefore,
dim(KerJg(z0)) = 3, so Jf (z0) has three zero eigenvalues. Moreover, the structure of Jf (z0)
implies that it is a negative semidefinite matrix, so the non-zero eigenvalues are negative. �

The previous results can also be extended to the reduced system ż = −(∇φ(z))T . Let

f(z) := −HT (

Jv(Hz)
)T

(v(Hz) − d) .

Also define the function g : R2n−2 → Rm by

g(z) := v(Hz) .

Corollary 5.4: The matrix Jf (z) evaluated at a point on E1 has one zero eigenvalue; the rest
are real and negative.

Proof First, analogous to the arguments above, we obtain that for z0 ∈ E1

J
f
(z0) = −Jg(z0)TJg(z0).

Now we show that J
f
(z0) has one zero eigenvalue and the remaining eigenvalues are stable. If
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we linearize the (z◦, z) dynamics at a point (z◦0 , z0) = Pz0 on E1 we obtain

[

˙δz◦

δ̇z

]

=

[

0 0
0 Jf (z0)

] [

δz◦

δz

]

.

Since PJfP
−1 and Jf (z0) have the same eigenvalues, we know two zero eigenvalues correspond

to the first two rows of PJfP
−1, while, by Theorem 5.3, the eigenvalues in the remaining block

Jf (z0) are all stable except for one zero eigenvalue.
�

5.3 Main Result

In this section we present our main result concerning asymptotic stability of the set E1. This
requires some background on set stability and on center manifold theory Carr (1981), which is
our main tool for proving stability. After presenting the main result we discuss alternative proof
approaches.

Let S ⊂ Rν be a set and x ∈ Rν a point. Then the point to set distance is dist(x,S) =
infy∈S ||x− y||. With respect to a dynamical system with state x we say a set S is stable if

(∀ǫ > 0)(∃δ > 0) dist(x(0),S) < δ ⇒ (∀t ≥ 0) dist(x(t),S) < ǫ.

We say a set S is locally asymptotically stable if it is stable and if

(∃δ > 0) dist(x(0),S) < δ ⇒ lim
t→∞

dist(x(t),S) = 0 .

Next we review center manifold theory. Consider a system in normal form

θ̇ = Aθ + f1(θ, ρ) (16)

ρ̇ = Bρ+ f2(θ, ρ), (17)

where θ ∈ Rν−κ, ρ ∈ Rκ, A has eigenvalues only on the imaginary axis, B is Hurwitz, f1(0, 0) = 0
and f2(0, 0) = 0. The C∞ functions f1 and f2 are restricted in order such that Jf1(0, 0) = 0
and Jf2(0, 0) = 0. An invariant manifold M is a center manifold of (16)-(17) if it can be locally
represented as

M := { (θ, ρ) ∈ U | ρ = h(θ) }

where U is a sufficiently small neighbourhood of the origin, h(0) = 0, and Jh(0) = 0. It can be
shown that a center manifold always exists Carr (1981) and the dynamics of (16)-(17) restricted
to the center manifold are

ξ̇ = Aξ + f1(ξ, h(ξ)) (18)

for a sufficiently small ξ ∈ Rν−κ. The stability of the system (16)-(17) can then be analyzed from
the dynamics on the center manifold using the next theorem.

Theorem 5.5 : (Wiggins (1990), p. 195) If the origin is stable under (18), then the origin
of (16)-(17) is also stable. Moreover there exists a neighbourhood W of the origin such that for
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every (θ(0), ρ(0)) ∈ W there is a solution ξ(t) of (18) and constants ci > 0, γ > 0 such that

θ(t) = ξ(t) + r1(t)

ρ(t) = h(ξ(t)) + r2(t),

where ‖ri(t)‖ < cie
−γt.

The following is our main result.

Theorem 5.6 : (Main Result) Suppose Assumption 5.1 holds. Then E1 is locally asymptotically
stable. Moreover, there exists a neighborhood U of E1 such that for each z(0) ∈ U there exists a
point p ∈ E1 where

lim
t→∞

z(t) = p.

Proof To prove E1 is stable we study the (z◦, z) dynamics. First apply the linear transformation
P ∈ R2n×2n of Section 4.3 to separate the system into (z◦, z) components. The z◦ dynamics are
stationary, so we study only the reduced z system. Without loss of generality assume z0 = 0. From
Corollary 5.4 and the symmetry of Jf (0) we know there exists an orthonormal transformation

Q ∈ R(2n−2)×(2n−2) such that QJ
f
(0)QT is in block diagonal form with a zero for the first term

and a block B ∈ R(2n−3)×(2n−3) that is Hurwitz. Then rewrite the z dynamics near 0 ∈ E1 as

ż = Jf (0)z + (f(z) − Jf (0)z) .

and define (θ, ρ) = Qz. Then it is easily verified that the (θ, ρ) dynamics have the form

θ̇ = f1(θ, ρ) (19)

ρ̇ = Bρ+ f2(θ, ρ) , (20)

where f1(0, 0) = 0 and f2(0, 0) = 0, and Jf1(0, 0) = 0 and Jf2(0, 0) = 0.

Now we claim that M := {(θ, ρ) | (∃z ∈ E1) (θ, ρ) = Qz} is a center manifold for the system
(19)-(20). First, M is invariant because it consists of equilibria of (19)-(20). Second it is tangent
to the θ-axis at 0. This can be seen as follows. Let

g̃(θ, ρ) := g

(

QT
[

θ
ρ

])

.

Then M = {(θ, ρ) | g̃(θ, ρ) − d = 0}. We must show that the row vectors {dg̃1(0), . . . , dg̃m(0)}
that span the normal space of M at 0, have their first entry equal to zero. Now observe that







dg̃1(0)
...

dg̃m(0)






= Jg(0)QT ,

so we must show that the first column of Jg(0)QT is zero. But this follows from the fact that
the first entry of QJf (0)QT = −(Jg(0)QT )T (Jg(0)QT ) is zero. Thus, there exists a function h(θ)
such that in a neighborhood W0 of 0

M∩W0 = {(θ, ρ)|ρ = h(θ)}.

Since M is an equilibrium manifold, we know that f1(θ, h(θ)) = 0 on W0. It follows that the
dynamics restricted to M are ξ̇ = 0, and thus ξ(t) = ξ(0).
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Now applying Theorem 5.5, we obtain the solutions for (θ, ρ) starting in W0 are

θ(t) = ξ(0) + r1(t)

ρ(t) = h(ξ(0)) + r2(t),

where ‖ri(t)‖ < cie
−γt for some c1, c2, γ > 0. This implies limt→∞(θ(t), ρ(t)) = (ξ(0), h(ξ(0)) ∈

M, so limt→∞ z(t) = QT (ξ(0), h(ξ(0))) ∈ E1, and limt→∞ z(t) = P−1(z◦(0), QT (ξ(0), h(ξ(0)))) ∈
E1, as desired.

This argument can be repeated for each point on E1 to obtain a cover {Wk} of E1. Since E1 is
compact, we pass to a finite subcover to form a neighborhood of E1. Local asymptotic stability
of E1 then follows. Finally, this argument can be trivially lifted to E1 since the center of mass
dynamics are stationary. �

In summary, the infinitesimal rigidity of the formation graph was the key assumption in
proving that the target set is an embedded submanifold and that the linearized dynamics have
the required structure to apply center manifold theory. The local stability of the formation
implies that if the robots experience small perturbations away from an equilibium formation
they will converge back to another nearby equilibrium point in the target set.

Remark 2 : The proof approach of Olfati-Saber and Murray (2002) is to quotient out the
dynamics on the equilibrium manifold so the equilibrium is topologically equivalent to a point.
Suppose we have a system ẋ = f(x) where x ∈ Rn and E is an (n − k)-dimensional manifold of
equilibrium solutions. Quotienting out the dynamics on the manifold is equivalent to asking if
there exists a diffeomorphism ϕ : Rn → Rn−k × Rk such that

θ̇ = f1(θ, ρ)

ρ̇ = f2(ρ),

where (θ, ρ) = ϕ(x), ∂f1
∂θ

∣

∣

∣

θ=0
= 0 and E = { x ∈ Rn | x = ϕ−1(θ, 0) }. If such a normal form

exists then the stability of the equilibrium set becomes a study of the stability of ρ = 0. There
are several difficulties in this approach. First, the change of coordinates must be global on the
manifold E . More importantly, it is not known if such a diffeomorphism exists for the formation
problem (it was not derived in Olfati-Saber and Murray (2002)), and it can be computationally

difficult to show ∂f1
∂θ

∣

∣

∣

θ=0
= 0. A few examples of this type of analysis for multi-agent systems

exist in the literature (Marshall et al. (2006), p. 8), but they are rare due to the complexity of
the computations.

Remark 3 : It is possible to obtain the main result by other proof approaches. One approach
is via Malkin’s theorem (Malkin 1958), which provides the same result using standard Lyapunov
arguments. However, Malkin’s theorem requires that the system be placed in a normal form
that is more difficult to obtain than the normal form for center manifold theory. In addition,
Malkin’s theorem is itself a special case of center manifold theory and indeed can be proved
using center manifold theory (Sundarapandian 2003). LaSalle’s theorem (Theorem 4.4, p. 128
in Khalil (2002)) can also be used to obtain a stability result, with the advantage that it does
not require an eigenvalue analysis. However, it has several disadvantages. First, one must find a
suitable Lyapunov function (this is not difficult in our case since φ is an obvious choice). Second,
to conclude stability of E1 it must be proved that E1 is isolated from all other equilibrium sets.
One way to do this is to exploit properties of gradient systems ( Lojawiewicz 1959). Third, and
most importantly, LaSalle’s theorem gives no information about the behavior of trajectories as
they approach E1. In particular, it cannot be concluded that trajectories converge to a point on
E1. In summary, center manifold theory is the most concise and elegant way to obtain our result.
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Figure 6. The graph G∗

6
.

6 Regular Polygon Formations

An application of the formation stabilization control developed in the previous sections is to
stabilize the robots to a regular polygon. A regular polygon is a useful formation for forming a
large aperture antenna array.

We must first design a formation graph with a corresponding framework that is infinitesimally
rigid. We can use the procedure outlined in Section 2.3.3 to build this graph, but there are other
possible graphs. In particular, we are interested in graphs that result in cyclically homogeneous
controls. Cyclical homogeneity is a type of symmetry in the control law such that when the indices
1 to n undergo a cyclic permutation, the control law is permuted by the same permutation. An
example of cyclically homogeneous control laws is cyclic pursuit: u1 = z2 − z1, . . . , un = z1 − zn.
Cyclically homogeneous controls are desirable because an identical controller on each robot
makes implementation easier. For our two dimensional robots the cyclic homogeneity property
can be stated precisely in the following way: we define the 2n × 2n fundamental permutation
matrix P ∗ whose first block row is

[

0 I2 0 0 . . . 0
]

.

Then for a closed-loop system of the form ẋ = f(x), if it has the symmetry f(P ∗z) = P ∗f(z)
we say that f has the property of cyclic homogeneity.

Now consider a graph denoted G∗ with n vertices and 2n edges, such that vertex i is connected
to vertices i+ 1, i+ 2, i− 1 and i− 2. The graph G∗

6 is shown in Figure 6. We order the edges

in the graph so that the expanded incidence matrix Ĥ = H ⊗ I2 ∈ R4n×2n is

Ĥ :=

[

I2n − P ∗

I2n − (P ∗)2

]

.

Note that

Ĥ =

[

I2n
I2n + P ∗

]

(I2n − P ∗)

thus if e = Ĥz then
[

I2n + P ∗ −I2n
]

e = 0. Thus the components of e have a special form with
ei+n = ei + ei+1 for i = 1, . . . , n. Let

d∗ :=

[

c1
c∗1

]

,
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where
√
c ∈ R is the side length of the regular polygon and

c∗ := 4c cos2 π

n
.

We assume that c 6= 0. If p is a point where the robots form a regular polygon, then gG∗(p) = d∗.
By construction, g−1

G∗
(d∗) 6= ∅. Techniques from graph theory can be used to show that the

framework (G∗, p) is globally rigid and therefore, the robots located at p ∈ R2n form a regular
polygon if and and only if p ∈ g−1

G∗
(d∗). Thus, the regular polygon formation is the only formation

in the set E1, with two distinct embeddings (up to translation and rotation), corresponding to
reflections of each other. All that remains to be done to apply our theory is to check the rank
of the rigidity matrix on E1.

Lemma 6.1: The framework (G∗, p) is infinitesimally rigid for all p ∈ g−1
G∗ (d∗).

Proof The rigidity matrix is JgG∗
(p) = Jv(e)Ĥ , with e = Ĥp. The graph G∗ is connected, so

from Lemma 2.1 we know that dim(Ker(Ĥ)) = 2. The strategy of the proof is to show that

Im(Ĥ) ∩ Ker(Jv(e)) = 1, from which it follows that

rank(Jg∗G(p)) = 2n− dim(Ker(Ĥ)) − dim(Im(Ĥ) ∩ Ker(Jv(e))) = 2n − 3 .

Without loss of generality, we consider the counterclockwise embedding of G∗. Let ξ :=
(ξ1, . . . , ξ2n) ∈ R4n, with ξi ∈ R2, be a vector of the form

ξ = (w,Rw,R2w, . . . , Rn−1w, (I +R)w,R(I +R)w, . . . Rn−1(I +R)w) ,

where w ∈ Ker(eT1 ), and R ∈ R2×2 is the rotation matrix by 2π/n radians. We claim that
Ker(Jv(e)) = span{ξ}. Since Jg∗G(p) cannot have rank greater than 2n−3 the result immediately
follows.

From the geometry of the regular polygon we have that

ei = Ri−1e1 i = 1, . . . , n (21)

en+i = Ri−1(I +R)e1 i = 1, . . . , n . (22)

To show ξ ∈ Ker(Jv(e)), we must show eTi ξi = 0, i = 1, . . . , 2n. From (21) we have that
eTi ξi = (Ri−1e1)T (Ri−1w) = eT1 w = 0, for i = 1, . . . , n. From (22) we have that eTn+iξn+i =

(Ri−1(I + R)e1)T (Ri−1(I + R)w) = 0, for i = 1, . . . , n, as desired. Conversely, suppose η ∈
Ker(Jv(e)); that is, eTi ηi = 0, and eTn+iηn+i = 0, for i = 1, . . . , n. But this immediately implies,

from the geometry of the plane, that ηi = Ri−1η1 and ηn+i = Ri−1(I + R)η1, for i = 1, . . . , n,
with eT1 η1 = 0, as desired.

�

Since graph G∗ forms an infinitesimally rigid framework at regular points our gradient control
can be applied to stabilize a regular polygon. Figure 7 shows six robots converging to a regular
polygon using this control. In simulation, only initial conditions in the colinear set C have been
found to converge to collinear equilibria.

7 Directed Graphs

A drawback to the control designed so far is that it relies on two-way communication: If robot
i’s control uses the position of robot j, then robot j’s uses the position of robot i. This may
make implementation difficult when using cameras with a limited field of view. A control based
on a directed graph may be easier to implement and is currently an area of active research in
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Figure 7. Six robots converging to a regular polygon.

the field of formation control (Hendrickx et al. 2006a). In this section we extend our procedure
to the case of directed graphs.

7.1 Rigidity and Persistence

In this section we define rigidity and persistence in the context of directed graphs. Let G be a
directed graph with n vertices. A directed framework for a directed graph is a pair (G, p), where
p ∈ R2n. Also denote by gG(p) the same rigidity function as before. Then the directed framework
(G, p) is rigid if the corresponding undirected framework is rigid. Similarly, we define a directed
framework (G, p) to be infinitesimally rigid if rank JgG

(p) = 2n−3. When using a directed graph
to maintain a formation, it is not enough that the framework be rigid. There can be situations
where some inter-robot distances are correct but it is impossible to satisfy the remaining distance
constraints. If such a situation cannot happen, the graph is said to be constraint consistent. The
precise definition of constraint consistence from Hendrickx et al. (2006a) is complex and beyond
what is needed for the implementation proposed in this work. Instead, we will use the following
sufficient condition from Hendrickx et al. (2006a).

Definition 7.1 A directed framework (G, p) is constraint consistent if each vertex has two or
fewer outgoing edges.

Finally, a framework is persistent if it is both rigid and constraint consistent. A graph is
minimally persistent if it is minimally rigid and constraint consistent.

Figure 8 shows why constraint consistency is needed in addition to rigidity when considering
directed formations. Both graphs in Figure 8 are rigid: Figure 8(a) is also constraint consistent
and thus persistent, whereas Figure 8(b) is not. If vertex 4 moves while still maintaining the
distance to vertex 1 it is no longer possible for vertex 3 to maintain the lengths of its three
outgoing edges.

The following useful theorem characterizes minimal persistence.

Theorem 7.2 : ( Theorem 4, Hendrickx et al. (2006a) ) A rigid graph is minimally persistent
if and only if either

(1) there are three vertices that have one outgoing edge, and the remaining vertices have two
outgoing edges, or
(2) there is one vertex that has no outgoing edge, one vertex that has one outgoing edge, and
the remaining vertices have two outgoing edges.
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(a) Example of a persistent framework.
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Figure 8. Two different rigid frameworks with four nodes.
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Figure 9. Graph created by recursively adding vertices in numerical order.

7.1.1 Constructing a Persistent Graph

To construct a persistent directed graph we use a modification of the Henneberg insertion
technique described in Section 2.3.3. Let p be the location of the vertices in the plane. The first
step is to add a directed edge from vertex 2 to vertex 1. All remaining vertices are connected
to the graph in numerical order by creating two edges leaving from the vertex and going to two
already added distinct vertices. Figure 9 shows a graph created using this procedure. Note that
directed graphs formed by a sequence of Henneberg insertions are persistent and satisfy case 2
in Theorem 7.2.

7.2 Control Law

In this section we develop a control law for directed graphs. The primary modification is that
instead of using a global potential function, each robot has its own potential function. Let φi(z)

be the potential function for robot i. Also define e := Ĥz.
In Figure 9, robot 1 has no outgoing edges so define φ1(z) := 0. Robot 2 has only one outgoing

edge, so let φ2(z) := 1
2(‖e1‖2 − d1)2. All other robots have two outgoing edges. For robot i > 2

with outgoing edges ej and ek, define the potential function

φi(z) :=
1

2
(‖ej‖2 − dj)

2 +
1

2
(‖ek‖2 − dk)2.
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z2 = (0, 2)

z1 = (0, 0) z3 = (1, 0) z4 = (2, 0)

Figure 10. A directed graph that is infinitesimally rigid, but has a vertex (z4) with two parallel outgoing edges.

The control law for each robot is then taken to be

ui = − ∂

∂zi
φi(z)

T (23)

so żi = − ∂
∂zi
φi(z)

T . Denote by ż = f(z) the resulting closed-loop system.

7.3 Stability Analysis

Lemma 7.3: For each p ∈ g−1
G (d), Jf (p) is block lower triangular.

The proof follows from the Henneberg insertion construction together with equation (10). For
example, for Figure 9

Jf (p) = 4











0 0 0 0 · · · 0
e1e

T
1 −e1eT1 0 0 · · · 0

e2e
T
2 e3e

T
3 −e2eT2 − e3e

T
3 0 · · · 0

...











.

Theorem 7.4 : Assume p ∈ g−1
G (d) and for each i > 2 the edges leaving vertex i are not

collinear. Then Jf (p) has three zero eigenvalues and the rest are real and negative.

Proof From Lemma 7.3 we know that the matrix Jf (p) is block lower triangular. The first two
rows of Jf (p) are zero. Thus the first 2× 2 block on the main diagonal has two zero eigenvalues.
The second 2×2 block is −e1eT1 , a negative semidefinite matrix with rank 1, and so has one zero
eigenvalue and one negative real eigenvalue. Each subsequent 2 × 2 block on the main diagonal
has the form −ejeTj − eke

T
k and is the sum of two negative semidefinite matrices, and thus is

also a negative semidefinite matrix. By the non-collinearity assumption, edges ej and ek leaving
vertex i are linearly independent, so the third block has rank 2 and thus has two negative real
eigenvalues. �

Remark 1 : Instead of an infinitesimal rigidity condition on the graph as in Theorem 5.3, we
have a non-collinearity condition on the edges leaving a graph. One may ask if the non-collinearity
condition is implied by the infinitesimal rigidity condition. However, Figure 10 provides a coun-
terexample, showing a graph may be infinitesimally rigid and have one vertex with two collinear
edges leaving it.

The following theorem shows that the results of Section 5 can be extended to the special case
of directed graphs constructed using Henneberg insertions.
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Theorem 7.5 : Let G be a directed graph constructed using a sequence of Henneberg insertions.
If, for each p ∈ g−1

G (d), G is infinitesimally rigid and no vertex has collinear outgoing edges,
then E1 is locally asymptotically stable. Moreover, there exists a neighborhood U of E1 such that
for each z(0) ∈ U there exists a point p ∈ E1 such that limt→∞ z(t) = p.

Proof The proof largely follows from the results of Section 5. First we separate the stationary
z1 dynamics from the rest of the system. Define

P2 =















I2 0 0 . . . 0
−I2 I2 0 . . . 0
−I2 0 I2 . . . 0

...
...

. . . . . .
...

−I2 0 . . . . . . I2















.

and (z1, ψ) = P2z. Thus ψ = (z2 − z1, . . . , zN − z1). Note that if ei = zj − z1, then ei = ψj , and if
ei = zj − zk, then ei = ψj − ψi. So it is possible to find a matrix M such that e = Mψ. Further
define

E1 := { ψ ∈ R2N−2 | v(e) = v(Mψ) = d}.

Note that E1 = R2 × E1. Additionally, we see that E1 is compact and each component is diffeo-
morphic to S1. Define ψ̇ = fψ(ψ) to be the closed-loop ψ dynamics. To prove E1 is stable we

study these ψ dynamics. From the structure of f(z) it is clear that E1 is stable if and only if
E1 is stable. In order to apply Theorem 5.6 it remains to show only that the Jacobian of the ψ
dynamics meets the eigenvalue requirement. But this follows from Theorem 7.4 and arguments
analogous to those in the proof of Corollary 5.4. �

7.4 General Directed Graphs

If an arbitrary directed graph is used to derive the potential functions for each robot, the analysis
of the linearized dynamics is not so simple. However, if the linearized dynamics have three zero
eigenvalues and the rest have negative real parts it is still possible to apply Theorem 5.6 to
conclude that the formation is stable. The following example has linearized dynamics that are
not upper triangular, but by checking the eigenvalues numerically we can see that the results of
Section 5 apply.

Example 7.6 Consider the framework in Figure 11. Let the location of the vertices be p. The
graph is infinitesimally rigid, and thus E1 is an embedded submanifold.

If we linearize we see that for z ∈ E1

Jf (z) = 4









0 0 0 0
e1e

T
1 −e1eT1 − e2e

T
2 e2e

T
2 0

e3e
T
3 0 −e2eT2 − e4e

T
4 e4e

T
4

0 e5e
T
5 0 −e5eT5









.

Note that Jf (z) is not block lower triangular, nor is there any way to permute the indices to
make the matrix block lower triangular. The graph in Figure 11 could not have been created
using the Henneberg insertion method. Hendrickx et al. (2006b) discusses other operations that
can produce such a directed graph.) If we evaluate the eigenvalues of Jf (z) numerically we see
that there are three zero eigenvalues and the rest are real and stable. Thus, Theorem 5.6 applies
and the formation is locally asymptotically stable. This example shows that the procedure in
Section 7.1.1 to construct a directed graph to stabilize formations is sufficient but not necessary
for stability.



June 18, 2008 16:28 International Journal of Control KriBroFra

23

z2 = (0, 0)

e1

z3 = (1, 1)

e5

e4

e3

e2

z4 = (1, 0)

z1 = (0, 1)

Figure 11. Due to the arrangement of the edges leaving vertex 3 this graph could not have been created using the Henneberg
insertion procedure.

z2 = (0, 0)

z3 = (1, 1)

z6 = (3, 0)

z5 = (3, 3)

z4 = (2, 2)

z1 = (0, 2)

e1

e2

e3

e4

e5

e6

e7

e8

e9

(a)

z2 = (0, 0)

z3 = (1, 1)

z6 = (3, 0)

z1 = (0, 2)

e1

e2

e3

z4 = (3, 3)

z5 = (2, 2)

e4

e5

e6

e7

e8

e9

(b)

Figure 12. Embeddings of a directed graph for six robots.

Conversely, there are some directed graphs where we cannot apply our results. Related to
Figure 12(a) Jf (z) has 4 zero eigenvalues and the rest are real and stable. Thus the conditions
to apply Theorem 5.6 do not hold as there are more zero eigenvalues than the dimension of the
equilibrium manifold and we can make no conclusion about the stability of this formation using
this analysis technique. It turns out that if we modify the graph as shown in Figure 12(b) (note
that now there is no directed edge from z5 to z3), then there are three zero eigenvalues and the
rest have negative real parts. Thus we can conclude that this formation is stable.

8 Conclusion

This paper considers the problem of stabilizing a group of robots to a desired target formation
using decentralized control. The target formation is defined in terms of a set of inter-robot
distances and we place the restriction that these distances correspond exactly to the sensor
capabilities of each robot. A gradient control law based on a potential function derived from the
target distances is proposed. Our results show that the crucial property to achieve local stability
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is that the framework corresponding to the target formation be infinitesimally rigid. Under the
assumption of infinitesimal rigidity, the set of equilibria of the gradient dynamics corresponding
to the target formation becomes an embedded submanifold, and further, this submanifold is a
center manifold. Thus, standard tools from center manifold theory are applied to obtain a local
stability result. Next, we address the particular case of regular polygon formations where it is
shown that the main assumption of infinitesimal rigidity holds for a suitable formation graph.
A shortcoming of the approach is that it assumes two-way sensor capability of the robots.
This drawback is overcome by extending the theory to the case of directed sensor graphs. It
is shown that the main stability result extends to directed graphs when the target formation
is constructed using a Henneberg insertion procedure. Examples are given to show when our
theory does not apply to more general directed sensor graphs. An experimental validation of the
proposed controller was carried out, though not described here, and details of those results can
be found in Krick (2007).

Acknowledgements. The authors thank Manfredi Maggiore for a helpful discussion on center
manifold theory.
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