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Abstract— We study control to facet problems for affine hy-
persurface systems on simplices. An easily verifiable necessary
and sufficient condition is derived that allows one to determine
whether there is a linear affine feedback driving all trajectories
of the closed-loop system out of the simplex through a desired
facet. In cases where the condition is violated, methods are
developed to establish the largest subset of the simplex such
that there is still a feedback control (not necessarily linear)
which can steer all trajectories starting from this set to the
desired facet without crossing other facets. The results are
demonstrated on a circuit with a piecewise linear resistor.

I. INTRODUCTION

The control to facet problem for systems on polytopes
is to find, if possible, a feedback control such that all
trajectories of the closed-loop system leave the polytope
via some desired facets. The problem was first introduced
by Habets and van Schuppen in [4]. It is a subproblem
of reachability analysis of hybrid systems. That is, does
there exist a controller driving a system from an initial
operating region to a desired one while not entering an
unsafe region? Partitions of the state space of the system
with adjacent polytopic cells are made in terms of either
the piecewise linear nature of the system itself, the control
specification such as safety or reachability, or the switching
control paradigm in which different controllers operate in
each region of the state space. What arises is a class of hybrid
systems. The reachability problem of hybrid systems has
been widely studied over the past decade. More recently, the
control to facet problem has received considerable attention
in reachability analysis, see for example, [1]–[3], [5]–[7],
[12]–[14].

In this paper we restrict our attention to the study of affine
hypersurface systems; that is, linear affine systems with n-
dimensional state and n − 1 independent control inputs.
Such systems received significant attention in controllability
studies (see [8], [9]) as a first step in solving a more general
setup. For the same reason, this paper is devoted to the
control to facet problem for affine hypersurface systems. The
contributions of the paper are threefold. We redevelop an eas-
ily verifiable necessary and sufficient condition for existence
of a linear affine feedback control solving the problem, which
requires only a few algebraic steps. The result improves
that of [14] where necessary and sufficient conditions for
construction of a linear affine feedback only are given. Here
we clarify the role of linear affine feedback in obtaining new
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necessary and sufficient conditions. A second contribution
is that, if the conditions fail, we find the largest subset of
the simplex such that there is still a feedback control (not
necessarily continuous or linear affine as required in [5],
[6], [12]) which can steer all trajectories starting from this
set to a selected facet without crossing other facets. This
result is important toward refinement of partitions in order
to solve the reachability problem in general. Our approach
extends results in [11] where a classification of failures called
vertex, facet, and region failures is introduced and analyzed.
Third, the analysis also produces a necessary and sufficient
condition for solving the control to facet problem, in contrast
to the results in [5], [6], [12] where it is only sufficient. We
show that if there is a control solving the problem then a
piecewise linear affine control will do so.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

Consider an n-simplex in R
n described by S =

co{v1, . . . , vn+1}, where v1, . . . , vn+1 are its vertices and
co{· · · } represents the convex hull. The convex hull
of any m + 1 of the n + 1 points is also a sim-
plex, called an m-face. The (n − 1)-faces are called the
facets. For i ∈ Ī := {1, . . . , n + 1}, denote the facet
co{v1, . . . , vi−1, vi+1, . . . , vn+1} by Fi (which is indexed by
the vertex it does not contain). Let hi denote the correspond-
ing normal vector and by convention, hi is of unit length and
points out of the simplex. Write H = [h1 · · ·hn] ∈ R

n×n

and let Hi ∈ R
n×(n−1) be the matrix obtained from H by

removing the i-th column.
Remark 1: With the above conventions, we can see that

for every j 6= i: hi · (x − vj) = 0 for every x ∈ Fi and hi ·
(x−vj) < 0 for every x ∈ S−Fi. In addition, {h1, . . . , hn}
are linearly independent (i.e., H is invertible).

We now consider a linear affine hypersurface system on
the simplex S. As long as the state x is in S, the system is
governed by the affine differential equation

ẋ = Ax + a + Bu, x(0) = x0, (1)

where A ∈ R
n×n, a ∈ R

n, and B ∈ R
n×(n−1) with

rank(B) = n − 1. We consider the following problems.
Problem 1: Consider system (1). Find, if possible, a feed-

back u = f(x), f : S → R
n−1 such that for every x0 ∈ S

there exists a unique solution x(t, x0) and there exist t1 ≥ 0
and ε > 0 satisfying

(i) x(t, x0) ∈ S for all t ∈ [0, t1],
(ii) x(t1, x0) ∈ Fn+1,

(iii) x(t, x0) /∈ S for all t ∈ (t1, t1 + ε).



The problem requires that all solutions of the closed-loop
system leave the simplex S in finite time through only one
specified facet, called the exit facet, that without loss of
generality, is Fn+1. In addition, no trajectory of the closed-
loop system exits through other facets, which are called
restricted facets. We denote I = Ī − {n + 1} the index set
of restricted facets. The problem was first studied in [6] and
[12], but only linear affine control u = Fx+g is considered.
In this paper we study the existence of any type control (not
necessarily linear affine feedback) to solve the problem. But
first we reformulate a necessary and sufficient condition for
the existence of linear affine feedback to solve Problem 1
from [14]. The proof is omitted due to page limitations.

Let β be a unit length vector normal to the range of B,
denoted by B. Since {h1, . . . , hn} are linearly independent
and span R

n, β can be written as a linear combination
β = λ1h1 + · · · + λnhn, or in matrix form, β = Hλ,
where λ = [λ1 · · · λn]T . Note that β is not unique (it
can point in two opposite directions). In the case when β
can be spanned by either a non-positive or non-negative
combination of h1, . . . , hn, we choose β to be the non-
positive combination. In what follows, we denote by Bx the
hyperplane parallel to B passing through the point x ∈ R

n.
Let λmax := max{λ1, . . . , λn}. We give an interpretation

for the possible signs of λmax which elucidates the geo-
metrically distinct cases that appear in the main theorem
of this section. λmax > 0 if and only if Bvn+1

is not a
supporting plane for the simplex S (see Fig. 1(i)). When
λmax = 0, we let J = {i ∈ I : λi = 0} and let m be the
cardinality of J (clearly, 1 ≤ m ≤ n − 1). λmax = 0 if
and only if Bvn+1

is a supporting plane of S containing at
least two vertices. Specifically, it contains the vertex vn+1

and the vertices vi, i ∈ J (that is, it touches an m-face of
the simplex) (see Fig. 1(ii)). Condition λmax < 0 occurs if
and only if Bvn+1

is a supporting plane of S containing only
one vertex vn+1. (see Fig. 1(iii)).

Theorem 1: There exists a linear affine feedback u =
Fx+g solving Problem 1 if and only if one of the following
conditions holds:

(i) λmax > 0;
(ii) λmax = 0 and β ·(Avi +a) ≥ 0 for all i ∈ J∪{n+1};

(iii) λmax < 0, β · (Avn+1 + a) > 0, and ∃k ∈ I such that
β · (Avk + a) > 0.
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Fig. 1. Illustration for Theorem 1 in 2D.

Theorem 1 provides a very simple condition to check the
existence of linear affine control solving Problem 1. Once
one of the conditions in Theorem 1 is satisfied, one can
choose a vector ξ based on the following rules: if λmax > 0,

set ξ to be any one of {hi : i ∈ I}; if λmax = 0, set ξ to be
any one of {hi : i ∈ J}; if λmax < 0, set ξ to be any one
of {hi : i ∈ I such that β · (Avi + a) > 0}. Next solve the
following linear inequalities at each vertex to obtain ui:

{

HT
i (Avi + a + Bui) � 0

ξT (Avi + a + Bui) < 0
for i ∈ I

and
{

HT (Avn+1 + a + Bun+1) � 0
ξT (Avn+1 + a + Bun+1) < 0.

Finally, a unique linear affine feedback u = Fx + g can be
constructed based on these correspondences ui = Fvi + g,
i = 1, . . . , n + 1 (see [6], [12]).

Instead, we would like to consider the following problems.
If no linear affine control can solve Problem 1, does there
exist some other feedback control (noncontinuous or nonlin-
ear) to solve it? Furthermore, if no control can solve Problem
1, what is the feasible initial set such that there is a control
to make all trajectories starting in this set leave the simplex
through the exit facet?

Problem 2: Consider system (1) and a subset X of S.
Find, if possible, a feedback u = f(x) such that for every
x0 ∈ X there exists a unique solution x(t, x0) and there
exist t1 ≥ 0 and ε > 0 satisfying the conditions (i–iii) of
Problem 1.

If there is a subset X of S such that Problem 2 is solvable
by any control (not necessarily continuous linear affine), then
it is called a feasible set; otherwise it is called a failure set.
Clearly, if there is a controller so that all trajectories starting
in some subset of S enter into a known feasible set without
crossing restricted facets, then this subset is also a feasible
set. Our goal is to find the largest such set X in S.

III. MAXIMAL FEASIBLE SET

In this section, we focus on Problem 2 to find the maximal
feasible initial set so that there is a control to drive the state
from this set to the exit facet. From Theorem 1, we know that
there is no linear affine feedback when one of the following
happens:
1) λmax = 0 and ∃i ∈ J∪{n+1} such that β ·(Avi+a) < 0;
2) λmax < 0 and additionally either β · (Avn+1 + a) ≤ 0 or
β · (Avi + a) ≤ 0 for all i ∈ I .

We first deal with the failure 1) which we call a face
failure. Recall that when λmax = 0, the hyperplane Bvn+1

contains only an m-face of S (where m is the cardinality
of J). Specifically, this m-face can be represented by E =
co{vn+1, vi|i∈J}, or simply E = ∩

i/∈J∪{n+1}
Fi.

Theorem 2: Suppose λmax = 0 and ∃i ∈ J ∪ {n + 1}
such that β · (Avi + a) < 0. Then the feasible set solving
Problem 2 is X = S − E .
Proof: If necessary, we renumber the vertices v1, . . . , vn so
that λ1, . . . , λr < 0 and λr+1 = · · · = λn = 0, where
r = n − m < n. Then J = {r + 1, . . . , n} and

β = λ1h1 + · · · + λrhr. (2)

Let v′n+1 = (1 − ε)vn+1 + εv1, where ε > 0 is chosen
to be sufficiently small. Then we have a new simplex S ′ =
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co{v1, . . . , vn, v′n+1} inside the original one (see Fig. 2 for
an example).

By (2) and Remark 1, it follows that

β · (v1 − vn+1) = (λ1h1 + · · · + λrhr) · (v1 − vn+1)
= λ1h1 · (v1 − vn+1) > 0

β · (v′n+1 − vn) = (λ1h1 + · · · + λrhr) · (v
′
n+1 − vn)

= λ1h1 · (v
′
n+1 − vn) > 0.

Thus, from above we have

β · (v1 − v′n+1) = β · (v1 − (1 − ε)vn+1 − εv1) > 0
β · (vn − v′n+1) < 0.

This means that Bv′

n+1
is not a supporting hyperplane for

the simplex S ′. Accordingly, for the linear affine system (1)
on the simplex S ′, we have λmax > 0. By Theorem 1, this
shows there is a linear affine feedback control such that all
the trajectories of the closed-loop system leave S ′ in finite
time via the facet F ′

n+1, which is exactly Fn+1. Furthermore,
notice that S ′ → S as ε → 0, so for any x0 ∈ S − F1, we
can choose a sufficiently small ε > 0 so that x0 ∈ S ′. This
further implies that Problem 2 is solvable for the initial set
S − F1.

For i = 1, . . . , r, let v′
n+1 = (1 − ε)vn+1 + εvi. By the

same argument, we show that Problem 2 is solvable for the
initial set S−Fi, i = 1, . . . , r. That is, the feasible set solving
Problem 2 is X = (S − F1) ∪ · · · ∪ (S − Fr) = S − E . �

Remark 2: Although the m-face E is called the failure
m-face, it does not mean that for any initial state x0 ∈ E ,
Problem 2 is unsolvable. Indeed, if β · (Avi + a) < 0 for
all i ∈ J ∪ {n + 1}, then for no initial state in E Problem
2 is solvable. Otherwise, there may exist some initial state
in E such that Problem 2 is solvable. However, the failure
set has to be in the m-face, m ≥ 1, rather than in some
lower dimensional face, because the failure arises from a
condition of the form β · (Avi + a) < 0 which holds in an
open neighborhood in R

n.
Next we are going to study the failure 2). Before present-

ing our main result, we prove several useful lemmas first.
Lemma 1 ( [11]): If β = hn+1 and β · (Avi + a) ≤ 0 for

all i ∈ I , then the failure set is the whole simplex S.
The lemma says if this condition holds, then for any initial

state in S there is no control which can drive the state out
of S through the facet Fn+1 only. The next few lemmas

establish some properties which can be used to find the
largest feasible set and the failure set.

Lemma 2: Suppose λmax < 0. Then for every i ∈ I

β · (vi − vn+1) > 0.
Proof: Recall that for every i ∈ I , by Remark 1 the
following holds:

hi · (vj − vn+1) = 0 ∀j 6= i and hi · (vi − vn+1) < 0.

Substituting β = λ1h1 + · · ·+ λnhn, one obtains, for every
i ∈ I ,

β · (vi − vn+1) = (λ1h1 + · · · + λnhn) · (vi − vn+1)
= λihi · (vi − vn+1) > 0

because λi ≤ λmax < 0. �

Since β is with unit length, we have β · (vi − vn+1) =
‖vi − vn+1‖ cos(θ) where θ is the angle between the vectors
vi−vn+1 and β. This means β ·(vi−vn+1) is just the distance
from the point vn+1 to the hyperplane Bvi

. In addition, from
Lemma 2, since β · (vi − vn+1) > 0, then cos(θ) > 0 and
that the angle |θ| < π/2. Meanwhile, with λmax < 0, it
can be easily shown that the hyperplane Bvi

has a unique
intersection point with every line containing vn+1, vj , j ∈
I . In what follows, for any two points p1, p2 in R

n, we
will use [p1, p2], (p1, p2), and (p1, p2] to represent a closed,
open, and semi-open line segment joining these two points,
respectively.

Lemma 3: Suppose λmax < 0. Let k = arg min
i∈I

β · (vi −

vn+1) and for every i ∈ I , let vi
vk

be the unique intersection
point of the hyperplane Bvk

and the line through vn+1 and
vi. Then for every i ∈ I , vi

vk
∈ (vn+1, vi].
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Fig. 3. Illustration for Lemma 3.

Proof: First we show that vi
vk

does not lie in the open semi-
line leaving the point vi. Assume by way of contradiction it
does (see the right one in Fig. 3). This means [vn+1, vi] ⊂
[vn+1, v

i
vk

]. So

β · (vi − vn+1) = ‖vi − vn+1‖ cos(θ)
< ‖vi

vk
− vn+1‖ cos(θ) = β · (vi

vk
− vn+1).

On the other hand, notice that β · (vi
vk

− vn+1) = β · (vk −
vn+1) because vi

vk
and vk lie in the same hyperplane Bvk

.
Thus,

β · (vi − vn+1) < β · (vk − vn+1),



which contradicts k = argmin
i∈I

β · (vi − vn+1).

Second we show that vi
vk

does not lie in the closed semi-
line leaving the point vn+1. Suppose it does. Let θ be the
angle between vi − vn+1 and β. Thus, the angle between
vi

vk
− vn+1 and β is π − θ and therefore,

β · (vi
vk

− vn+1) = ‖vi
vk

− vn+1‖ cos(π − θ).

The right-hand side of the above equation equals to 0 when
vi

vk
equals vn+1 and it is less than 0 when vi

vk
is in the open

semi-line leaving vn+1 because |θ| < π/2. Considering that
vi

vk
and vk lie in the same hyperplane Bvk

, so

β · (vk − vn+1) = β · (vi
vk

− vn+1) ≤ 0,

which contradicts Lemma 2. �

Now we introduce a new set O defined as

O := {x|β · (Ax + a) = 0}.

It can be easily shown that the set can be either a hy-
perplane in R

n, the empty set, or the whole space R
n.

In case O is a hyperplane in R
n, we let {o1, . . . , ol} be

the set of intersection points of O and the line segments
[vn+1, v

i
vk

], i ∈ I . Clearly, the set has at most n elements. In
addition, it may be empty. Furthermore, we introduce the
notation vi

oj
, j ∈ {1, . . . l} and i ∈ I , representing the

intersection point of the line segment [vn+1, v
i
vk

) and the
hyperplane Boj

. An example is given in Fig. 4. Clearly, the
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hyperplane Boj
is closer to the point vn+1 than Bvk

. Hence,
the top part co{v1

oj
, . . . , vn

oj
, vn+1} again forms a simplex.

Theorem 3: Suppose λmax < 0 and let

k = arg min
i∈I

β · (vi − vn+1).

(i) If β · (Avi
vk

+ a) ≤ 0 for all i ∈ I , then the feasible
set solving Problem 2 is X = S −S ′, where S ′ is the
simplex co{v1

vk
· · · vn

vk
, vn+1};

(ii) Otherwise,
(ii-a) if β · (Avn+1 +a) > 0, then the maximal feasible

set solving Problem 2 is X = S;
(ii-b) if β · (Avn+1 +a) = 0, then the maximal feasible

set solving Problem 2 is X = S − {vn+1};
(ii-c) if β · (Avn+1 +a) < 0, then the maximal feasible

set solving Problem 2 is X = S − S ′′, where
S ′′ is the simplex co{v1

os
· · · vn

os
, vn+1} and s =

arg min
j∈{1,...,l}

β · (oj − vn+1).

Proof: (i) If β · (Avi
vk

+ a) ≤ 0 for all i ∈ I , it is
straightforward from Lemma 1 that the new simplex S ′ =
co{v1

vk
· · · vn

vk
, vn+1} is a failure set to solve Problem 2 (see

Fig. 5) since β = h′
n+1, the normal vector to the facet F ′

n+1

of S ′, by construction.
For the set S − S ′, it is a polytope of at most n − 1 + n

points v1
vk

, . . . , vn
vk

and v1, . . . , vn since we know for sure
at least two points are identical (that is, vk

vk
= vk). For

every i = 1, . . . , n, if vi
vk

is not identical to vi, let v̄i
vk

=
(1−ε)vi

vk
+εvi, where ε > 0 is sufficiently small. Thus, we

have a new polytope P composed of the points v1, . . . , vn

and the points v̄i
vk

. As ε → 0, the polytope P tends to S−S ′.
Applying the same argument as for (ii-c), conclusion follows.

(ii-a) If β · (Avn+1 + a) > 0 and there is an i ∈ I such
that β · (Avi

vk
+ a) > 0, then for the linear affine system (1)

on the simplex S ′ = co{v1
vk

· · · vn
vk

, vn+1}, condition (iii)
of Theorem 1 holds. So there is a linear affine controller
such that for all initial states in S ′, the trajectories leave S ′

through the facet co{v1
vk

· · · vn
vk
}. In other words, they enter

into S − S ′. Then applying the same argument as for (i)
shows that S − S ′ is a feasible set to solve Problem 2 and
so the largest feasible set is X = S. The control steering all
the states out of S through the desired exit facet is indeed a
piecewise linear affine controller.

(ii-b) By assumption there is i ∈ I such that β · (Avi
vk

+
a) > 0. Without loss of generality, say i = 1. Furthermore,
β ·(Avn+1 +a) = 0, so O is a hyperplane in R

n. Thus it can
be easily shown by convexity argument that β ·(Av1+a) > 0.
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Let ε > 0 be sufficiently small. We construct a new
simplex S ′ (see Fig. 6) by defining

v′1 = v1, v′i = (1 − ε)vi + εv1 for all i 6= 1.

Clearly, the new simplex S ′ has the same normal vectors
as the original one. By a convexity argument, it follows that
β ·(Av′n+1+a) > 0. Thus, for the linear affine system (1) on
the new simplex S ′, the condition (iii) of Theorem 1 holds
and therefore Problem 2 is solvable for all initial states in
S ′ since S ′ ⊂ S and F ′

n+1 ⊂ Fn+1.
Notice that S ′ → S as ε → 0. So for any initial state

x0 ∈ S − F1, we can always construct a simplex S ′ so that
x0 ∈ S ′, and therefore Problem 2 is solvable for all initial
states in S − F1.

Now consider an initial state x0 ∈ F1 − {vn+1}, which



can be written as a convex combination

x0 = µ2v2 + · · · + µn+1vn+1,

where µi ≥ 0, i = 2, . . . n + 1 but not all µ2, . . . , µn are 0.
Notice that λ is a negative solution to the equation Hλ = β,
so HT y � 0 and βT y = 0 has only one solution y = 0. In
other words, in order to make HT (Avn+1 + a + Bun+1) =
HT y = 0, un+1 is chosen so that Avn+1+a+Bun+1 = y =
0. Such a un+1 exists because β · (Avn+1 + a) = 0. Also,
recall that for each i ∈ I−{1}, there is ui ∈ R

n+1 such that
HT

i (Avi + a + Bui) ≺ 0. Set u = µ2u2 + · · ·+ µn+1un+1.
Combining the previous arguments, we obtain hT

1 (Ax0 +a+
Bu) < 0. Thus, it is easily shown that the trajectory x(t, x0)
will leave F1 and enter into S in a very small time. Then
by the previous argument, Problem 2 is again solvable.

Finally, from the above argument we know for whatever
un+1 ∈ R

n−1, HT (Avn+1 +a+Bun+1) � 0, implying that
the trajectory x(t, x0) with the initial state x0 = vn+1 either
exits the simplex S via vn+1 or remains stationary for ever.
So it fails to solve Problem 2 when x0 = vn+1.

(ii-c) If β · (Avn+1 + a) < 0 and there is an i ∈ I such
that β · (Avi

vk
+ a) > 0, then by convexity there is an oj

in the open line segment (vn+1, v
i
vk

). Next we are going to
show β · (Avi

os
+a) ≤ 0 for all i ∈ I , where s = argmin

j∈{1,...,l}
β ·

(oj − vn+1). Suppose by way of contradiction, there is an
i ∈ I such that β ·(Avi

os
+a) > 0. Again, by convexity, there

is another oj in the open line segment (vn+1, v
i
os

). Clearly,
β · (oj − vn+1) < β · (os − vn+1), a contradiction.

Since we have already showed β · (Avi
os

+ a) ≤ 0 for all
i ∈ I , by Lemma 1, the simplex S ′′ is a failure set to solve
Problem 2. Next we show S − S ′′ is a feasible set.

Indeed, S −S ′′ is a polytope of n +n points v1
os

, . . . , vn
os

(since oj lies in the open line segment of vn+1 and vi
vk

)
and v1, . . . , vn. Note that at least one point of v1

os
, . . . , vn

os

lies in O by construction. Without loss of generality, say
vn

os
(i.e., vn

os
= os). Let v̄n

os
= (1 − ε1)v

n
os

+ ε1vn and
let v̄i

os
= (1 − ε2)v

i
os

+ ε2vi for i = 1, . . . , n − 1, where
ε2 > ε1 > 0 are sufficiently small. Thus, we have a new
polytope P = co{v̄1

os
, . . . , v̄n

os
, v1, . . . , vn}, which tends to

S − S ′ as ε1, ε2 → 0 (See Fig. 7).
Now partition the polytope P into a sequence of simplices:

S1 = co{v̄1
os

, . . . , v̄n
os

, v1},
S2 = co{v̄2

os
, . . . , v̄n

os
, v1, v2},

...
Sn−1 = co{v̄n−1

os
, v̄n

os
, v1, . . . , vn−1},

Sn = co{v̄n
os

, v1, . . . , vn}. (see Fig. 7)

For the simplex Sn, it is clear that the hyperplane Bv̄n
os

is a supporting plane of this simplex containing only one
vertex v̄n

os
. In this case, we know λmax < 0. Furthermore,

since vn
os

= os is in O (that is, β · (Avn
os

+ a) = 0) and
β · (Avn+1 + a) < 0, it follows from a convexity argument
that β · (Av̄n

os
+ a) > 0 and β · (Avn + a) > 0. Thus, by

Theorem 1 there is an affine control steering all trajectories
originating from this simplex to the desired exit facet Fn+1.

For the simplex Sn−1, applying the same idea as the one in
proving Theorem 2, it follows that Bv̄n−1

os
is not a supporting

hyperplane and so λmax > 0. Hence by Theorem 1 there is
an affine control driving all the states in Sn−1 to the facet
that is adjacent to Sn.

For the simplex Si, i = 1, n− 2, by the same argument as
for Sn−1, it follows that there is an affine control driving all
the states in Si to the facet that is adjacent to Si+1.

In total, this shows that there is a piecewise (state-
dependent) affine control such that for every initial state in
the polytope P the trajectory of the closed-loop system is
driven out of the simplex S through Fn+1. �

Theorem 3 can also be interpreted as follows: If we
can find a most distant hyperplane parallel to B through
somewhere between vk and vn+1 such that the feasible flow
directions at every intersection points are all pointing to
the vertex vn+1, then the part consisting of vn+1 and this
hyperplane is the failure set and the remaining part is the
feasible set; Otherwise, there is no failure set, which means
there still exists a controller to solve Problem 1 though there
is no continuous linear affine controller solving it. Indeed,
as we can see in our analysis, this controller is a piecewise
linear affine controller. This analysis leads to a necessary and
sufficient condition for the existence of any control solving
Problem 1 which improves the results of [14].

Corollary 4: Problem 1 is solvable if and only if condition
(i) of Theorem 1, or condition (ii) of Theorem 1, or condition
(ii-a) of Theorem 3 holds.

IV. EXAMPLE

We illustrate our results for a circuit with a piecewise
linear resistor, shown in Fig. 8, which appeared in [10].
With time expressed in 10−8 seconds, the inductor current in
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Fig. 8. Circuit with nonlinear (piecewise linear) resistor.

miliAmps and the capacitor voltage in Volts, the dynamics
are written as
[

ẋ1

ẋ2

]

=

[

0 5
−2 −3

][

x1

x2

]

−

[

5g(x1)
0

]

+

[

0
2

]

u.

The control specification is to make the nonlinear resistor
work in the linear range 1 ≤ x1 ≤ 2 by applying a voltage
input u. In addition, there is a safety requirement on the
inductor current that 0 ≤ x2 ≤ 2. Suppose the initial state of
the inductor and the capacitor is in the region of 0 ≤ x10 ≤ 3
and 0 ≤ x20 ≤ 2 as shown in Fig. 9. Now the control
problem becomes to find a control u such that the trajectories
of the closed-loop system enter into the region of 1 ≤ x1 ≤ 2
without crossing the constraints x2 = 0 and x2 = 2. Consider



a triangulation of the state space (see Fig. 9). Then we would
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Fig. 9. Triangulation of state space.

like to control the state from the simplex S2 to the facet,
which is adjacent to S1, with the other two facets restricted.
Next control the state from the simplex S1 to the facet, which
is adjacent to the target region, with the other two facets
restricted. The same idea applies to the simplices S3 and S4.
First we will apply our results to check whether it is possible
to do so, and if not, what is the failure set.

For the simplex S1, let v1 = (1, 0), v2 = (1, 2), and
v3 = (0, 0). Thus, h1 = (− 2√

5
, 1√

5
), h2 = (0,−1), and

h3 = (1, 0). On the simplex S1, the dynamics are given by
[

ẋ1

ẋ2

]

=

[

−5 5
−2 −3

][

x1

x2

]

+

[

0
2

]

u. (3)

The range of B is the x2-axis and β = (1, 0). From the
geometry, we can see that Bv3

is a supporting plane of S1

containing only one vertex and so λmax < 0. Furthermore, it
can be easily checked that β · (Av3 +a) = 0, where A is the
system matrix in (3) and a is the zero vector. It violates the
condition (iii) of Theorem 1, so there is no continuous linear
affine feedback driving all the states to the desired facet. Now
we apply Theorem 3. Compute k = argmin

i=1,2
β · (vi − v3) and

obtain that k can be 1 or 2. Arbitrarily choose k = 1. Thus,
v1

v1
= v1 and v2

v1
= v2. We can check that β · (Av1

v1
+ a) =

−5 < 0 and β · (Av2
v1

+ a) = 5 > 0. Hence, it satisfies
condition (ii-b) in Theorem 3 and so the largest feasible set
is S1 − {v3}.

Consider the simplex S2 with vertices v1 = (0, 0), v2 =
(1, 2), and v3 = (0, 3). The dynamics on S2 is the same
one in (3). Again, β = (1, 0). Notice that the hyperplane
Bv3

is a supporting plane of S2 and contains two vertices
v3 and v1. Thus, J = {1}. We can check that condition
(ii) of Theorem 1 holds since β · (Av1 + a) = 0 ≥ 0 and
β · (Av3 + a) = 10 ≥ 0. So there is a linear affine control
driving all the states to the facet F3 and into the simplex S1.

Now consider the simplex S3 with vertices v1 = (2, 0),
v2 = (2, 2), v3 = (3, 0), and normal vectors h1 = ( 2√

5
, 1√

5
),

h2 = (0,−1), h3 = (−1, 0). The dynamics on the simplex
S3 are given by
[

ẋ1

ẋ2

]

=

[

−5 5
−2 −3

][

x1

x2

]

+

[

7.5
0

]

+

[

0
2

]

u. (4)

Then we can solve β = (−1, 0). By the same argument,
we know λmax < 0. Since β · (Av3 + a) = −7.5 < 0, it
violates the condition of Theorem 1. Compute k in Theorem
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Fig. 10. The failure set in S3.

3 and get k equalling 1 and 2. We arbitrarily choose k = 1.
It can be verified that β · (Av2

v1
+ a) = 7.5 > 0. Hence,

condition (ii-c) in Theorem 3 holds and so the largest feasible
set X = S3−S ′′, where S ′′ = co{v1

os
, v2

os
, v3} is the shaded

triangle in Fig. 10 with v1
os

= (2.5, 0) and v2
os

= (2.5, 1).
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