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Abstract— This paper studies the reachability problem with  solved by open-loop control. Here we particularly consider
state constraints; that is, to reach a target without leavig a  affine hypersurface systems; that is, affine systems with
polytope. First, we provide a conceptual framework for the  ginensional state and— 1 independent control inputs. The

constrained reachability problem. Then we obtain necessgr tributi fth is that letel Ive th
and sufficient conditions for the problem for affine hypersurface contribution o the paper IS thal we completely solve these

systems. In addition, we provide a geometric characterizaon ~ Problems for affine hypersurface systems. Necessary and

of the maximal set of initial states from which the objective sufficient conditions are derived for the reachability peoi

can be met. Finally, algorithms on construpting piecewiseféine (using open loop control) with state constraint in a polgop

feedback controls that accomplish the objective are preséed. and then we show that if there is an open loop control for
|. INTRODUCTION the reachability problem, there is also a piecewise affiatest

Problems of reachability and invariance for dynamical sysf-eedb""ck that accomplishes this. Algorithms on conswgcti

tems have been extensively studied in the control liteeatu® uch a piecewise affine state feedback are al_s ° prowd.ed. .
for a long time. These problems have attracted renewed inter Throughout the paper, we use the foIIowm_g notations:
est due to the emergence of a class of practically importamnk(B) and ImB) denote theo rank and the image of a
systems — hybrid systems. The problem of reachability witfnatrix B. Let A, B be two sets.4 , con(A), vert(A), and
state constraints arises in practice for the reason of npetiaff(A) denote the interior of4, the convex hull of4, the
safety or performance specifications when synthesizing coMertices of A, and the smallest affine space containidg
trollers. A typical example of the problem is motion plangin respectively. distr, A) expresses the distance from a point
of multiple vehicles with collision avoidance. z to A and A\ B expresses the set difference.

More recently, a relevant problem called thentrol-to- Several proofs are omitted in the paper due to space
facet problemwas introduced by Habets and van Schuppelimitations. More details can be found in [7].
in [4] and later studied in [2], [3], [5], [8], [10]. In [2], [}
[5], [10], necessary and sufficient conditions are derivad f
facet reachability of simplices by affine state feedbackilevh  Consider a control system whose dynamics are affine on
in [8], the facet reachability problem of simplices is exded  an n-dimensional polytopéP,
to be solved by any type of feedback control if affine state i
feedback does not exist. In [3] a similar problem is studied ¥: @=Av+a+Bu=: flz,u), zeP, (1)
but for rectangular multi-affine systems. The generalimati where A ¢ R"*", B ¢ R"*™, ¢ € R", and the control

of this problem to affine systems on polytopes is morg, ¢ R™ lives in the space of piecewise continuous functions.

difficult and remains open. We call the above control system aiffine systemif in
This paper studies the problem on polytopes and thgjdition rankB) = n — 1, then we call> an affine hy-

starting point is reachability with state constraints igsi persurface systenGiven any piecewise continuous function

open-loop control). The purpose of the paper is to provide @. ; ., y(¢) and any initial stater, € P, let ¢¥(zo) denote

systematic view and methodology for the problem. Considghe solution ofy starting fromz, with the controlu(t).

an affine system and consider a polytope in the state spacq gt = pe an(n—1)-dimensional polytope on the boundary

and a target set on the boundary of the polytope. The firgg p which will be the target set in our reachability problem.
problem is to determine whether all the states in the pob/topotice it is not necessarily a facet &F.

can be steered by an open-loop control to reach the target set
while the trajectories remain in the polytope before relaghi A. Reachability with State Constraints a®dinvariant Sets
the target. The second problem is to find the maximal set (or In this section we establish two preliminary results which

a weII—apprO_X|_mat|on .Of it) of initial states in the polytep provide a conceptual framework for the problems that will
from which it is possible to reach the target, assuming thﬁe studied in the paper. First we show that any closed set

er}nre p:)lytoptﬁ ctannot. F'P arl1ly, ftlﬂd a stz;tebf_?tedback_gxb nttr can be partitioned into states that can reach a target set and
(of any type) that accomplishes the reachability specioa states that cannot. Second, we deffivnvariant sets, which

when the reachability problem with state constraint can t\?/ill be a key conceptual tool in our development

Il. PRELIMINARIES AND PROBLEM FORMULATION
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t € [0,T] and¢¥(x) € F. Otherwise, we say cannot [6]). Define O = {z € R” : Az +a € Im(B)}. Itis
reach.F with constraint inP, denoted byz /- F. fairly easy to prove thaO = §) when Im(4) C Im(B) and
(b) A set P’ C P canreach F with constraint inP, @ ¢ Im(B); O =R" when In(A4) C Im(B) anda € Im(B);
denoted byP’ P, T if z P, Ffor everyz € P. andO is a hyperplane_, otherwise. Noticg that the_ vector field
(c) AsetP’ C Pis said to bea failure set to reack with  /(#; ) on O can vanish for an appropriate choice @fso

P : O is the set of all possible equilibrium points of the system.
traint , denoted bypP’ ﬁ» , if ﬁ» f ) L .
gﬁnxs;a;; NP, denoted byP Fiitz - for When O is a hyperplane (callethe dividing hyperplanén

Proposition 2.1:Let 7' be the maximal set iP such [9]), it divides the state space into two disjoint regionsidte

that?' 2> 7 and letP” be the maximal set if® such that of which the normal component df to Im(B) points to the

" e 1 ; " opposite direction and does not vanish. Wideéis empty, the
P 7&) F. Then ()P =P UP" andP'nP" =0, (0) normal component af to Im(B) points to a same direction

,P/
P' — F andP” 7& P'. and does not vanish on the entire state space.

Definition 2.2: A set A C P is calledP-invariant if for In the following, we consider two cases depending@@n
all zp € A and for all piecewise continuous functions ¢ — A) 7g nO =0: (B) 7g nNO+£0.

u(t), each continuous trajectory segmeifit(zo) including
xo that is inP is also in A. [1l. REACHABILITY ON POLYTOPES— CASE A

Note that the time interval that a continuous trajectory ror npotational convenience, denote By the subspace
segmente} (zo) including x¢ is in P is either a closed Im(B) and denote by3, the hyperplane parallel t# and
interval [0, T] with T' < oo, or it is [0, 00); i.e., ¢ (z0) € P going through a pointz. For case A, let3 be the unit
for all ¢ € [0,77 or [0,00). The definition means that the ,ormal vector toB satisfying 87 (Az + a) < 0 for all

trajectories cannot leavd before leavingP. x € P. For anyz € R”, define half spaces(; = {z ¢
Proposition 2.2:A set A C P is P-invariant if and only  gn . g7, > ATz} and'H: = {z € R" : ﬁT; < ATz}
it A/~ P\ A respectively. Also, lev_ (vy) be a point inarg min{” z :

We now present a fundamental result which characterizgsc 7} (argmax{7z : z € F}) and denot@dP,,.. =
the set of states that can reaghwith constraint in? in  argmax{37z : = € P} anddP,,s, = argmin{f7z : z €

terms of P-invariant sets. P}.
Proposition 2.3: P L, Fif and only if no P-invariant o N
setis inP\ F. A. Necessary and Sufficient Conditions
From above, it is clear that if a sed C P\ F is P- In this subsection we give the solution of Problem 2.1.

invariant, thenA is a failure set to reactF with constraint Theorem 3.1:Suppose7g NO = (. ThenP -2 F if and
in P. But the converse is not true: trajectories starting in @nly if none of the following conditions holds:

failure set.A do not reachZ in finite time, but they need @) (H; NP)\ (FUO) £ 0 (0) OP,raw C ON 7"{ + -
not be inA for the same time that they are jd. However, ©) B igparallel to® whenF c O. s
the following statement is true: The maximal failure set to

reach F with constraint inP is P-invariant. This follows B o

from Proposition 2.1 and Proposition 2.2. 3 )

B. Problem Formulation OPmaz

This paper addresses the following problems for affine
hypersurface systems.
Problem 2.1:Find necessary and sufficient conditions o

such thatp 2 7 (using open loop control). v M,
Problem 2.2:Find P’ C P, the maximal set of initial
states, such tha®’ L F Fig. 1. lllustration for Theorem 3.1.

One difficulty that arises is that the maximal reachable
set may not be closed, and this results in two practical Fig. 1 illustrates the three failure cases of the theorem. In
problems. One is that the time to reach the target’Bgt the left figure,(H, NP)\(FUO) # 0 (shaded region) and
while finite for each initial condition, may not be uniformly oP

, maz C ON 70{ T wheredP,,., is a point. In the right
upper bounded of®’. Second, the control effort can tend to?gure,}' co and% is parallel t0O.

infinity as the initial condition approaches the boundary o We provide two lemmas to prove Theorem 3.1.

P’. To bypass these problems, we develop in Section llI- L 3.1:5 o oL b oL
B a procedure to form an arbitrarily good, closed, full- emma 3.1:Supposep NO = 0. Let z be a point inP.

dimensional approximation gp’. (a) The sets{; NP and?oi > NP areP-invariant;
Problem 2.3:Find a state feedbaak= h(z) that accom-  (b) If 37 (Az +a) =0 for all z € B, N P, thenB, NP
plishesP -2 F. andP \ B, areP-invariant.

We first introduce a set that plays an important role in our Lemma 3.2:Suppose']g NO = (. Let y, 2z be distinct
reachability problem (as well as in controllability prolile points and let be the line segment joining them.



(@) If z,y ¢ O andy 6’}(-){ >, thenz SN Y. reach F through a line. (IV): Suppos&, NP C O (see

(b) If 2,y € © andy € B,, thenz — 4. Fig. 3). Then it follows from the assumptions thag N F #
Sketch Proof of Theorem 3.1(=) Define (). Now we select a poing € B,NF. Clearl)g,x andy satisfy
Dy if Thm. 3.1(a) holds and, NFNO =0, the a_lssumptlon |n_ L_e_mma 3.2(b). Thus;— y,Pwherel is
A_={ D, if Thm. 3.1(a) holds an®, NFNO # the line segment joining from to y, and sox — F*. N
0 otherwise, B. Failure Sets and Partition of the Polytope
whereD; = (H, NP)\F andD; =D, \ (B,_ NO). Theorem 3.1 gives necessary and sufficient conditions for

the reachability problen P, F. This result, in turn,

Ay = { OPmaqif Thm. 3.1(b) holds, (2) can be tied to failure sets apropos Proposition 2.3. In this

0 otherwise. subsection we classify all failure sets. First, if Theored{(&
A - P\O if Thm. 3.1(c) holds, holds, then no point ind, can reachF. We call this a
10 otherwise. total failure. If Theorem 3.1(b) holds, then the failure set

is Ay = 9Pnaz, Which is always a face ofP. We call

this aface failure If Theorem 3.1(a) holds, there are several

cases. If the failure sed _ is a full-dimensional subpolytope

in P we call this aregion failure There are also two extreme
o situations. One is #otal failure when the closure ofd_ is

B B ‘P which occurs wherB is parallel toF. The other situation

is a face failurewhen A_ is a face whenyy .. NP =0.
We arrive at the following corollary of Theorem 3.1.

Corollary 3.1: Suppose]g NO =10.LetP =P\ A

whered = A_U A, UA,. Then?P’ P FandA 7& F.
Remark 3.1:It can be easily checked that Theorem 3.1
(b) and (c) are mutually exclusive. This means only one of
Fig. 2. lllustration for case | (left) and case Il (right). the sets4, and.A, is not empty. If Theorem 3.1(c) holds,
we do not need to check (b) a&. must be empty. Also we
(«<=) Letz be a point inP\ (FUO). (I): SupposeF is not  do not need to check (a) a$_ equals toA4, or is empty.
in ©. Since the assumption (a) does not hold, it follows that We have identified the maximal sé’ C P for Prob-
there is a poiny in F\ @ and in the small neighborhood of lem 2.2. This set, in general, is not closed. This leads to
v_ satisfying the assumption in Lemma 3.2(a) (see Fig. 2), g¥fficulties with unbounded control effort and unbounded
LN y, wherel is the line segment joining andy. Hence, Flme _tc_) rea_cr_l}‘. Copsequently, once failure ;ets have been
+ P F (I1): SupposeF is in ©. Then by assumption, we identified, it is deswa_ble to remove them via a procedure
know thatB is not parallel to0. Let y be the point selected that both well-approximates the set of states that can reach

as in case (I). Then for a proper control witky, «) pointing 7 and als?/ y;)eﬁlds a closed fuII-d|m_enS|(?‘naI poI”ytoi_?é‘
outside of P, there is a point: on the backward trajectory Such thatP” — F. The approach is to “cut off” failure

f tisfvi o Fig. 2). Thus, by L 3.2(5)S€ts fromP by one of two propedures. One_ procedure is
oty salls yll’llgz €M . (see Fig 7)> us, by Lemma (a)for removing region and face failure$_ by cutting along a
we havexr — z and thereforec — F.

hyperplane which is parallel to a slightly shifted versidn o
0 B. The second procedure is for removing face failurkes
B % B 0 .

' 3 by cutting exactly along a hyperplane parallelfo These
cuts are chosen arbitrarily close to the failure set and ab th
the remaining polytope has no failure sets. Of course, ifethe
is a total failure, there is no need to partitigh

The following procedure partitior® into a disjoint union
of a closed full-dimensional polytope and at most two other
polytopes that over-approximate the failure sdtsand.A, .

Applying Lemma 3.1, one obtains that these sets Bre
invariant and also inP \ F. Thus, the conclusion follows
from Proposition 2.3.

Fig. 3. lllustration for case Il (left) and IV (right). - —
Algorithm 1: (Let e > 0 be sufficiently small.)

L _ 1) If A_ # (), select enough number of points, .. ., 2

Next, letz be a point |n(7_3r1(9) \O]-". Clearly,z is on the in 7(; n 7@{ + such thalg = aff{z, . ... 2, F N By }
boundary of P by assumptior®n P = . (lll): Suppose is of dimensionn — 1 and max dist(z, B, ) = e.

B.NP ¢ O. Then for a proper control witlf(x, ) pointing - zEPNG N

inside of P, the trajectory starting fromx: instantaneously 5 -Il;hirc d|V|de7®3 anngt. int P h that
enters the interior o (see Fig. 3), which is not ii© any ) + # 0, select a pointz € suc a

more. Then by the previous argument, it can be driven to  sex. dist(z, B;) = €. Then divide> along B..



P F (using open-loop control) then there exists a piece-
Let A._, A, andP. be the collection of sets after the wise affine feedback solving the reachability problem. The
application of the division rules in Algorithm 1, wheré._  idea is to triangulate the polytope, transform the readiabi
containsA_, A, contains A, andP. is the remainder. problem within a polytope into a set of reachability prob-
Clearly, these three sets (if not empty) argolytopes and lems for simplices, and then devise appropriate piecewise
F C P. € P’. Then we have the following corollary which affine controllers on each simplex. The triangulation must

follows directly from Algorithm 1 and Theorem 3.1. be performed properly otherwise the procedure may fail.
Corollary 3.2: Suppose}g NO = 0. ThenP, 2 F. First we present a result on the existence of a piecewise

We call P, the e-approximation of maximal reachable set@ffine feedback that solves the reachability problem on

of F. To generalize this terminology, we say that the simplices. The result can be obtained from [8] and more
approximation of maximal reachable sBt = § when P details on how to construct such controllers can also bedoun

is a total failure. and®. — P whenP 2 F in [8]. Consider a simplexS and a facet of S. We have

A simple example is presented to illustrate the possiblté1e following lemma. o S )
failure sets and how Algorithm 1 cuts them off. Consider Lemma 4.1:Supposes NO = 0. If S — & (using open
loop control) then there exists a piecewise affine feedback

the system S
T1 = o, u = Fy(;)T + go(») that accomplishes — &, whereo :
By = u. S — {1,2}.
Next we present a lemma that is useful to find a proper

It can be easily verified that the system has a dividingri
hyperplane; i.e.O = {(z1,22) : 2 = 0}, the x; axis,
and that’5 is just thex, axis. Suppose that the polytofe

angulation.

Lemma 4.2:Suppose73 NO=0.1fP 2 F, then there
exists a vertexw, of P in 9P,,.. such that eithew, ¢ O

. / orv, € F.
Vz A{ P\ AY } AE*\J‘ pf\ ‘J/‘lf*o Proof: Suppose by contradiction that for any vertexc
‘ T -0 ‘ - a OPmaz We havev € O andv ¢ F. Note thatv ¢ F foor all
5 verticesv € 0Pinqa. iMplies, by convexitydP,a. CH L.
B _ . | Moreover, sincev € O for all v € 0P,4z, it follows
V- F U -F v from the convexity of O that 9P,... C O. Hence, by
Fig. 4. An example. Theorem 3.1, this contradic® Ny [ |

Now we present an algorithm for control synthesis. But

o ~ first, we introduce some concepts on triangulation; for more
and the target sef are as shown in Fig. 4. The dividing getails. see [1].

hype_rple}ne t_ouches the polytope but has empty iptersectionSupposeV is a finite set of points such that ca¥) is
with its interior. From (2), we getA, = 0 sinceB is not ,_gimensional. Asubdivisionof V is a finite collectionP —
parallel toO; A_ = (H,_ N'P) \ F is the patterned region (p, . p, 1 of n-polytopes such that the vertices of each
in Fig. 4; andA, is just a point. The set of initial states for p. are drawn fromy: cony(V) is the union ofPy, ..., Py
which it is possible to reaclt with constraint inP is the set andP; NP, (i # j) is a common (possibly empty) face B

P’ notincluding the boundary ol and.A. This setis not angp;. A triangulationof V is a subdivision in which each
closed. Moreover, if an initial state, € P’ approaches the p, s 5 simplex. Consider a triangulatién= {S; ..., S,}.
boundary ofA_, the control inputu(zo) tends to infinity in - \we say s, and S, are adjacent(denoted byS; ~ ;) if

order to reach. Also, if zo € P’ approaches the boundary g, NS, is a facet. A sequendss;, ,. .., S;,) is called apath
of A4, the time to reachF tends to infinity. Applying

Algorithm 1, a good closed-approximationP. of P’ is
given on the right of Fig. 4.

Finally, we present a lemma for the reachability problem
with two target sets which will be used in the next sectiorn:
Let 71 andF; be two(n — 1)-dimensional polytopes on the
boundary ofP.

Lemma 3.3:Suppose7g N O = ( and supposd is not

Si.
to reachS;, if S;; ~ S;,_, andS;, — S;,_, for each
1 < j < k. Thelengthof such a path ig.
In what follows we denoté by S, for notation simplicity.

Algorithm 2:
1) Triangulation:
(&) If F is a facet of P then selectv, as in
Lemma 4.2. IfF is not a facet of? then select.

P . .
para7IDIeI t0O. If P — F1 U, but it does not satisfy as in Lemma 4.2 and in addition satisfying that
P — Fi, thenP \ P; C PZ, whereP; and P? are v, is not in the facet containing, if it exists.
the e-approximation ¢ > 0 sufficiently small) of maximal (b) For the facetF; of P that containsF, make a
reachable set of; and 75, respectively. triangulation of vertF;) U vertF) such that the

interior of each resulting simplex is entirely either
in F or not in F; for the remaining facetF;
This section investigates feedback synthesis on polytopes of P, make a triangulation of vetf;). Denote

for case A, namelyP N O = 0. We want to show that if {S%, :i=1,...,k;} the triangulation forF;.

IV. CONTROL SYNTHESIS ONPOLYTOPES— CASE A



(c) Let S = {&,...,8} = {con\(v*,S}j) : v, satisfying the property of Lemma 4.2 are f but none

F; is any facet ofP not containing. }. of them is inF. So by Lemma 4.2, ¢ O. Then, there is a
2) Path Generation: hyperplaneg partitioning P into two subpolytope$; and
(a) Initialization: Ry := {So}, Ry = {S1,....S,}; 72 such that (1. € P>\ G andF CTP1\Q, (2)&:=gnP
(b) While (R, # 0), do satisfies€ N O = 0, (3) argmax{ﬂ x:x €&} ¢ Fand
if 3(S.,S;) € Ry x Ry such thatS; ~ S; and argmin{f7z : x € g} C F. Thus, from7;l'heorem 3.1 and
S S S;, then moves; from R., to R;. the assumption®? — F, we knowP, — £ C P; and

P, 24 F. Furthermore, a point’. € argmax{%z : = €

£} satisfies the property in Lemma 4.2 for the polytdpe
and also it is not inF. Thus, applying Algorithm 2, it gives
a piecewise affine controller that achieves P, Faswe
just showed. For the polytopk,, clearly the target sef is

a facet ofP,. So again by Algorithm 2, we have a piecewise

. . P.
affine controller achievingP, —= £ C P;.

3) Controller Synthesis:
(@ Let{...,(...,8:,Sj,...,S0), ...} bethe collec-
tion of paths to reacks, generated from step 2);
(b) Find ui(x) := o (@) T+ o)y = 1,054,
that solvesS; LN Fij,» whereF;; is the common
facet of S; and the followed simplex in the path;
(c) For any simplexS; € S, let u(z) = u’(z) for
all x € S;. If x € P belongs to more than one vs
simplex, setu(x) = u’/(z) wherej is the index '
of a simplex that has the minimum length path v1 (v vy
to reachsS;. g —0

Lemma 4.3:The collectionS obtained in Algorithm 2 is

a triangulation of vertP) Uvert(F) such that every simplex 2 vs(v.) € O
in S containsv, as a vertex. Fig. 7. lllustration for case (ll).

Theorem 4.1:Suppose7g N O = (. There exists a
piecewise affine feedback that accomplistfes™ 7 if and (ll): Consider the case whef is not a facet ofP and
only if 7 2 F (using open-loop control). B all v, satisfying the property of Lemma 4.2 are fa Then
Sketch of proof: (=) Obvious. (=) Denote byF the we haves?v, > 72 > Tv_ for all z € P. Construct any
facet of P containingF. There are three cases. hyperplane such that it goes through the pointsandv,,

vs (04 and partitionsP into two full-dimensional subpolytopeB;
v5(vs) andPs. Let Fi5 := P, NP, and letP; be the convex hull of
F andFi2. Thus,Ps is a full-dimensional polytope if® and

U4
W Fio is in P3. By Theorem 3.1 and the assumpt'rl?ni F,

V3 (Vs ) V2 U3 Vo U3 it can be easily verified tha®; s, FurthermoreF is a
facet of P3, so by what we just showed, Algorithm 2 gives
a piecewise affine control, say(z) = Fy,,2)% + goy(),

x € Ps, that achievesPs Ps, F. For the polytopesP;
and P,, again by Theorem 3.1 we knof; it N Fi2 and
P2 Pe, Fi2. Moreover, i, is a facet of both?; and P-.
So there are piecewise affine controlleisy) = F,, )z +
9oy ()T € Py andu(z) = FUQ(I)CL' + Goy(z), * € P, that
achieveP; P, Fiz2 and Po N Fi2, respectively. Since
'r?:u is in Ps, it means that the controllers can drive all the
states not irnPs to Ps. Thus, the following controller

Fig. 5. lllustration for case (I).

(I): SupposeF is a facet ofP or whenF is not a facet
of P, there exists a, satisfying the property in Lemma 4.2
and in additionyp. ¢ F (see Fig. 5). For this case, it suffices
to show that at every step of the algorithm such tRat -~
0, there exists a paifS;,S;) € R, x Ry such thatS; N
S; =: F;; is a facet ands; N S;. This can be verified by
checking conditions (a)-(c) of Theorem 3.1 when the pa
(Si,S;) € Ry x Ry is chosen such thak;; has a vertex

v with minimum g-coordinate (namely3”v < 37w for all Foy()®+ gose) T EPs
wE S; € Ry). u(x) = Fgl(m)x +951(2) TE P4 \Pg
Us Faz(m)x + 9or(z) T € P2 \ Ps3
achievesP = F. |
U1 U4 3

V. REACHABILITY AND CONTROL SYNTHESIS ON

PoLyToPE— CASEB
U3 v3 (V)

Now we come to the case B, (nameﬁy,ﬂ(’) # (). Recall
that this case means eith@ris a hyperplane that partitions
P into two full-dimensional polytopes, o is the entire
(I): Consider the case whefi is not a facet ofP and all state space. We only deal with the first one due to space

Fig. 6. lllustration for case ().



limitations. For this case, we dividB@ along O that results
in two polytopes, denoted b¥; and P,. The following
algorithm and theorem present solutions to the reachgabili
problem and control synthesis problem.

Algorithm 3:

1) Initialization: k¥ := 1, Ry := {Q1 = 0,9, = 0},
Ry = {Pl,Pg}, Fpq := {.7:1'0 =P,NF :i=1,2;
Fio is of (n—1)-dimension andP; is not a total failure
to reachZ;o}.

2) while ([Fyq # 0), do

a) for every F;; € Fuq, find QF C P, the e-
approximation of maximal reachable set 5f;
and update; := Q; U QF;

b) for everyQ, € Ry, if Q; = P;, then removeP;
from R;

C) updatded = {.7:” = PiﬂQj 17 # 1;Pi € Ruy;
Q; € Ry; FijN(P;\ Q;) is of (n—1)-dimension
andP; is not a total failure to reactf;; };

d k:=k+1.

Theorem 5.1:Supposeyg NO # ) andO is a hyperplane.
The following are equivalent:

(@ P 2F (using open-loop control);
(b) There exits & > 0 such that Algorithm 3 halts with
Ry = 0;

small, so Fp; := P, N Q} must not be empty and the
states inP, that cannot reacl¥,; must be able to reach
tF21. Then by Lemma 3.3%; \ Q1 is contained inQ3 C
Ps, the e-approximation of maximal reachable set 6%;.
Furthermore,F2; N (Ps \ Q1) is of (n — 1)-dimension since
otherwise F; is in Q} meaning thatFy; P, Fap and
thereforeP, 2 Fao, a contradiction. NowQi U Q2% = P,
implying P» ¢ R.,. Repeat the argument f@t;,. Algorithm 3
will succeed withR,, = 0.

(b) = (c) Suppose there isea> 0 such that Algorithm 3
halts withR,, = 0. Then the algorithm may produce one (or
two) of the following pathes:

o — Qe

k—1
Q% — it — . F,

whereUp,=1,. Q" =P;, i =1,2. Foranym =1,...k,
since everyQ!" is a closed full-dimensional polytope and

é ™NO = from the algorithm, applying Theorem 4.1, we
have a piecewise affine control that achie@$% & Q}”_l

or Q™ 2%, F. Note thatQ¥, ..., Q! may overlap each other.
So for anyz € P; belonging to more than one polytopes, set
the controller at: to be the one defined faR;"* wherem.,

is the minimum of the indices 0" containingz. Thus,
the piecewise affine control accomplish’ésl F.

(c) = (a) Obvious. |

(c) There exists a piecewise affine control that accom-

plishesP Ny
Proof: (a) = (b) If B is parallel toO, thenP PF
implies P, P, Fio and Ps P, Foo Where bothF;y and
Foo are of (n — 1)-dimension. Thus, Algorithm 3 succeeds
with R, = 0.

If B is not parallel toO, we consider two cases.

First, suppose there exists® € {P;,P.} satisfying
P; iR Fio where F,y is of (n — 1)-dimension. Then
Q! = P,. Let P; be the other polytope i{P:,P2}. If
furthermore, P; LER Fjo where Fj, is also of (n — 1)-
dimension. TherQ} = P;. Thus, Algorithm 3 succeeds with
R, = 0. Otherwise, findQ} C P;, the e-approximation ¢
sufficiently small) of maximal reachable set®f,, that may
be empty. Note thaP - F, so by Lemma 3.5\ Q]
is contained inQ? C P,, the e-approximation of maximal
reachable set of;; := P; N Q; = P; N P;. Furthermore,
FjiN(P;\ Q;) is of (n—1)-dimension since otherwisg;; is
in Qi meaning thatF; LN Fjo and thereforep; LN Fijo.
a contradiction. Hence, Algorithm 3 succeeds with = (.

Second, suppose B, € {P;,P,} satisfiesP; N Fio-
Without loss of generality, suppos&i, is of (n — 1)-
dimension andP is not a total failure to reaclf;y. Find
Q} C Py, the e-approximation ¢ sufficiently small) of
maximal reachable set afy, which is not empty by
assumption, and findQ3 C 7P», the e-approximation ¢
sufficiently small) of maximal reachable set &%, which
may be empty. Note thaP P, F ande can be arbitrarily
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