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Abstract— This paper studies the reachability problem with
state constraints; that is, to reach a target without leaving a
polytope. First, we provide a conceptual framework for the
constrained reachability problem. Then we obtain necessary
and sufficient conditions for the problem for affine hypersurface
systems. In addition, we provide a geometric characterization
of the maximal set of initial states from which the objective
can be met. Finally, algorithms on constructing piecewise affine
feedback controls that accomplish the objective are presented.

I. I NTRODUCTION

Problems of reachability and invariance for dynamical sys-
tems have been extensively studied in the control literature
for a long time. These problems have attracted renewed inter-
est due to the emergence of a class of practically important
systems — hybrid systems. The problem of reachability with
state constraints arises in practice for the reason of meeting
safety or performance specifications when synthesizing con-
trollers. A typical example of the problem is motion planning
of multiple vehicles with collision avoidance.

More recently, a relevant problem called thecontrol-to-
facet problemwas introduced by Habets and van Schuppen
in [4] and later studied in [2], [3], [5], [8], [10]. In [2], [4],
[5], [10], necessary and sufficient conditions are derived for
facet reachability of simplices by affine state feedback, while
in [8], the facet reachability problem of simplices is extended
to be solved by any type of feedback control if affine state
feedback does not exist. In [3] a similar problem is studied
but for rectangular multi-affine systems. The generalization
of this problem to affine systems on polytopes is more
difficult and remains open.

This paper studies the problem on polytopes and the
starting point is reachability with state constraints (using
open-loop control). The purpose of the paper is to provide a
systematic view and methodology for the problem. Consider
an affine system and consider a polytope in the state space
and a target set on the boundary of the polytope. The first
problem is to determine whether all the states in the polytope
can be steered by an open-loop control to reach the target set
while the trajectories remain in the polytope before reaching
the target. The second problem is to find the maximal set (or
a well-approximation of it) of initial states in the polytope
from which it is possible to reach the target, assuming the
entire polytope cannot. Finally, find a state feedback control
(of any type) that accomplishes the reachability specification
when the reachability problem with state constraint can be
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solved by open-loop control. Here we particularly consider
affine hypersurface systems; that is, affine systems withn-
dimensional state andn− 1 independent control inputs. The
contribution of the paper is that we completely solve these
problems for affine hypersurface systems. Necessary and
sufficient conditions are derived for the reachability problem
(using open loop control) with state constraint in a polytope,
and then we show that if there is an open loop control for
the reachability problem, there is also a piecewise affine state
feedback that accomplishes this. Algorithms on constructing
such a piecewise affine state feedback are also provided.

Throughout the paper, we use the following notations:
rank(B) and Im(B) denote the rank and the image of a

matrix B. Let A,B be two sets.
o

A , conv(A), vert(A), and
aff(A) denote the interior ofA, the convex hull ofA, the
vertices ofA, and the smallest affine space containingA,
respectively. dist(x,A) expresses the distance from a point
x to A andA \ B expresses the set difference.

Several proofs are omitted in the paper due to space
limitations. More details can be found in [7].

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a control system whose dynamics are affine on
an n-dimensional polytopeP ,

Σ : ẋ = Ax + a + Bu =: f(x, u), x ∈ P , (1)

where A ∈ R
n×n, B ∈ R

n×m, a ∈ R
n, and the control

u ∈ R
m lives in the space of piecewise continuous functions.

We call the above control system anaffine system. If in
addition rank(B) = n − 1, then we callΣ an affine hy-
persurface system. Given any piecewise continuous function
u : t 7→ u(t) and any initial statex0 ∈ P , let φu

t (x0) denote
the solution ofΣ starting fromx0 with the controlu(t).

Let F be an(n−1)-dimensional polytope on the boundary
of P , which will be the target set in our reachability problem.
Notice it is not necessarily a facet ofP .

A. Reachability with State Constraints andP-Invariant Sets

In this section we establish two preliminary results which
provide a conceptual framework for the problems that will
be studied in the paper. First we show that any closed set
can be partitioned into states that can reach a target set and
states that cannot. Second, we defineP-invariant sets, which
will be a key conceptual tool in our development.

Definition 2.1: (a) A point x ∈ P can reach F with
constraint inP , denoted byx

P
−→ F , if there exist a

piecewise continuous controlu : t 7→ u(t) andT > 0
such that the solutionφu

t (x) satisfiesφu
t (x) ∈ P for all



t ∈ [0, T ] andφu
T (x) ∈ F . Otherwise, we sayx cannot

reachF with constraint inP , denoted byx 6
P
−→ F .

(b) A set P ′ ⊆ P can reach F with constraint inP ,
denoted byP ′ P

−→ F , if x
P
−→ F for everyx ∈ P ′.

(c) A setP ′ ⊆ P is said to bea failure set to reachF with
constraint inP , denoted byP ′ 6

P
−→ F , if x 6

P
−→ F for

all x ∈ P ′.
Proposition 2.1:Let P ′ be the maximal set inP such

thatP ′ P
−→ F and letP ′′ be the maximal set inP such that

P ′′ 6
P
−→ F . Then (a)P = P ′ ∪ P ′′ andP ′ ∩ P ′′ = ∅, (b)

P ′ P
′

−→ F andP ′′ 6
P
−→ P ′.

Definition 2.2: A set A ⊆ P is calledP-invariant if for
all x0 ∈ A and for all piecewise continuous functionsu : t 7→
u(t), each continuous trajectory segmentφu

t (x0) including
x0 that is inP is also inA.

Note that the time interval that a continuous trajectory
segmentφu

t (x0) including x0 is in P is either a closed
interval [0, T ] with T < ∞, or it is [0,∞); i.e., φu

t (x0) ∈ P
for all t ∈ [0, T ] or [0,∞). The definition means that the
trajectories cannot leaveA before leavingP .

Proposition 2.2:A setA ⊂ P is P-invariant if and only
if A 6

P
−→ P \ A.

We now present a fundamental result which characterizes
the set of states that can reachF with constraint inP in
terms ofP-invariant sets.

Proposition 2.3:P
P
−→ F if and only if no P-invariant

set is inP \ F .
From above, it is clear that if a setA ⊆ P \ F is P-

invariant, thenA is a failure set to reachF with constraint
in P . But the converse is not true: trajectories starting in a
failure setA do not reachF in finite time, but they need
not be inA for the same time that they are inP . However,
the following statement is true: The maximal failure set to
reachF with constraint inP is P-invariant. This follows
from Proposition 2.1 and Proposition 2.2.

B. Problem Formulation

This paper addresses the following problems for affine
hypersurface systems.

Problem 2.1:Find necessary and sufficient conditions
such thatP

P
−→ F (using open loop control).

Problem 2.2:Find P ′ ⊆ P , the maximal set of initial
states, such thatP ′ P

−→ F .
One difficulty that arises is that the maximal reachable

set may not be closed, and this results in two practical
problems. One is that the time to reach the target setF ,
while finite for each initial condition, may not be uniformly
upper bounded onP ′. Second, the control effort can tend to
infinity as the initial condition approaches the boundary of
P ′. To bypass these problems, we develop in Section III-
B a procedure to form an arbitrarily good, closed, full-
dimensional approximation ofP ′.

Problem 2.3:Find a state feedbacku = h(x) that accom-

plishesP
P
−→ F .

We first introduce a set that plays an important role in our
reachability problem (as well as in controllability problems

[6]). Define O = {x ∈ R
n : Ax + a ∈ Im(B)}. It is

fairly easy to prove thatO = ∅ when Im(A) ⊆ Im(B) and
a /∈ Im(B); O = R

n when Im(A) ⊆ Im(B) anda ∈ Im(B);
andO is a hyperplane, otherwise. Notice that the vector field
f(x, u) on O can vanish for an appropriate choice ofu, so
O is the set of all possible equilibrium points of the system.
WhenO is a hyperplane (calledthe dividing hyperplanein
[9]), it divides the state space into two disjoint regions inside
of which the normal component ofẋ to Im(B) points to the
opposite direction and does not vanish. WhenO is empty, the
normal component oḟx to Im(B) points to a same direction
and does not vanish on the entire state space.

In the following, we consider two cases depending onO:

(A)
o

P ∩ O = ∅; (B)
o

P ∩ O 6= ∅.

III. R EACHABILITY ON POLYTOPES– CASE A

For notational convenience, denote byB the subspace
Im(B) and denote byBx the hyperplane parallel toB and
going through a pointx. For case A, letβ be the unit
normal vector toB satisfying βT (Ax + a) ≤ 0 for all
x ∈ P . For anyz ∈ R

n, define half spacesH+
z = {x ∈

R
n : βT x ≥ βT z} and H−

z = {x ∈ R
n : βT x ≤ βT z},

respectively. Also, letv− (v+) be a point inarg min{βT x :
x ∈ F} (argmax{βT x : x ∈ F}) and denote∂Pmax =
arg max{βT x : x ∈ P} and ∂Pmin = argmin{βT x : x ∈
P}.

A. Necessary and Sufficient Conditions

In this subsection we give the solution of Problem 2.1.

Theorem 3.1:Suppose
o

P ∩O = ∅. ThenP
P
−→ F if and

only if none of the following conditions holds:

(a) (H−
v−

∩ P) \ (F ∪ O) 6= ∅; (b) ∂Pmax ⊂ O∩
o

H +
v+

;
(c) B is parallel toO whenF ⊂ O.
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Fig. 1. Illustration for Theorem 3.1.

Fig. 1 illustrates the three failure cases of the theorem. In
the left figure,(H−

v−
∩P)\ (F ∪O) 6= ∅ (shaded region) and

∂Pmax ⊂ O∩
o

H +
v+

where∂Pmax is a point. In the right
figure,F ⊂ O andB is parallel toO.

We provide two lemmas to prove Theorem 3.1.

Lemma 3.1:Suppose
o

P ∩O = ∅. Let z be a point inP .

(a) The setsH−
z ∩ P and

o

H −
z ∩ P areP-invariant;

(b) If βT (Ax + a) = 0 for all x ∈ Bz ∩ P , thenBz ∩ P
andP \ Bz areP-invariant.

Lemma 3.2:Suppose
o

P ∩ O = ∅. Let y, z be distinct
points and letl be the line segment joining them.



(a) If z, y 6∈ O andy ∈
o

H −
z , thenz

l
−→ y.

(b) If z, y ∈ O andy ∈ Bz, thenz
l

−→ y.
Sketch Proof of Theorem 3.1(=⇒) Define

A− =







D1 if Thm. 3.1(a) holds andBv−
∩ F ∩O = ∅,

D2 if Thm. 3.1(a) holds andBv−
∩ F ∩O 6= ∅,

∅ otherwise,

whereD1 = (H−
v−

∩ P) \ F andD2 = D1 \ (Bv−
∩O).

A+ =

{

∂Pmax if Thm. 3.1(b) holds,
∅ otherwise.

(2)

Ao =

{

P \ O if Thm. 3.1(c) holds,
∅ otherwise.

Applying Lemma 3.1, one obtains that these sets areP-
invariant and also inP \ F . Thus, the conclusion follows
from Proposition 2.3.
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Fig. 2. Illustration for case I (left) and case II (right).

(⇐=) Let x be a point inP\(F∪O). (I): SupposeF is not
in O. Since the assumption (a) does not hold, it follows that
there is a pointy in F \O and in the small neighborhood of
v− satisfying the assumption in Lemma 3.2(a) (see Fig. 2), so
x

l
−→ y, wherel is the line segment joiningx andy. Hence,

x
P
−→ F . (II): SupposeF is in O. Then by assumption, we

know thatB is not parallel toO. Let y be the point selected
as in case (I). Then for a proper control withf(y, u) pointing
outside ofP , there is a pointz on the backward trajectory

of y satisfyingz ∈
o

H −
x (see Fig. 2). Thus, by Lemma 3.2(a)

we havex
l

−→ z and thereforex
P
−→ F .
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Fig. 3. Illustration for case III (left) and IV (right).

Next, letx be a point in(P ∩O) \F . Clearly,x is on the

boundary ofP by assumptionO∩
o

P = ∅. (III): Suppose
Bx∩P 6⊂ O. Then for a proper control withf(x, u) pointing
inside of P , the trajectory starting fromx instantaneously
enters the interior ofP (see Fig. 3), which is not inO any
more. Then by the previous argument, it can be driven to

reachF through a line. (IV): SupposeBx ∩ P ⊂ O (see
Fig. 3). Then it follows from the assumptions thatBx ∩F 6=
∅. Now we select a pointy ∈ Bx∩F . Clearly,x andy satisfy
the assumption in Lemma 3.2(b). Thus,x

l
−→ y, wherel is

the line segment joining fromx to y, and sox
P
−→ F . �

B. Failure Sets and Partition of the Polytope

Theorem 3.1 gives necessary and sufficient conditions for
the reachability problemP

P
−→ F . This result, in turn,

can be tied to failure sets apropos Proposition 2.3. In this
subsection we classify all failure sets. First, if Theorem 3.1(c)
holds, then no point inAo can reachF . We call this a
total failure. If Theorem 3.1(b) holds, then the failure set
is A+ = ∂Pmax, which is always a face ofP . We call
this a face failure. If Theorem 3.1(a) holds, there are several
cases. If the failure setA− is a full-dimensional subpolytope
in P we call this aregion failure. There are also two extreme
situations. One is atotal failure when the closure ofA− is
P which occurs whenB is parallel toF . The other situation

is a face failurewhenA− is a face when
o

H −
v−

∩ P = ∅.
We arrive at the following corollary of Theorem 3.1.

Corollary 3.1: Suppose
o

P ∩ O = ∅. Let P ′ = P \ A

whereA = A− ∪A+ ∪ Ao. ThenP ′ P
′

−→ F andA 6
P
−→ F .

Remark 3.1:It can be easily checked that Theorem 3.1
(b) and (c) are mutually exclusive. This means only one of
the setsA+ andAo is not empty. If Theorem 3.1(c) holds,
we do not need to check (b) asA+ must be empty. Also we
do not need to check (a) asA− equals toAo or is empty.

We have identified the maximal setP ′ ⊆ P for Prob-
lem 2.2. This set, in general, is not closed. This leads to
difficulties with unbounded control effort and unbounded
time to reachF . Consequently, once failure sets have been
identified, it is desirable to remove them via a procedure
that both well-approximates the set of states that can reach
F and also yields a closed full-dimensional polytopeP ′′

such thatP ′′ P
′′

−→ F . The approach is to “cut off” failure
sets fromP by one of two procedures. One procedure is
for removing region and face failuresA− by cutting along a
hyperplane which is parallel to a slightly shifted version of
B. The second procedure is for removing face failuresA+

by cutting exactly along a hyperplane parallel toB. These
cuts are chosen arbitrarily close to the failure set and so that
the remaining polytope has no failure sets. Of course, if there
is a total failure, there is no need to partitionP .

The following procedure partitionsP into a disjoint union
of a closed full-dimensional polytope and at most two other
polytopes that over-approximate the failure setsA− andA+.

Algorithm 1: (Let ǫ > 0 be sufficiently small.)
1) If A− 6= ∅, select enough number of pointsz1, . . . , zk

in
o

P ∩
o

H +
v−

such thatG := aff{z1, . . . , zk,F ∩Bv−
}

is of dimensionn − 1 and max
x∈P∩G

dist(x,Bv−
) = ǫ.

Then divideP alongG.
2) If A+ 6= ∅, select a pointz ∈ P such that

max
x∈A+

dist(x,Bz) = ǫ. Then divideP alongBz.



Let Aǫ− , Aǫ+ , andPǫ be the collection of sets after the
application of the division rules in Algorithm 1, whereAǫ−

containsA−, Aǫ+ containsA+, andPǫ is the remainder.
Clearly, these three sets (if not empty) aren-polytopes and
F ⊂ Pǫ ⊆ P ′. Then we have the following corollary which
follows directly from Algorithm 1 and Theorem 3.1.

Corollary 3.2: Suppose
o

P ∩ O = ∅. ThenPǫ
Pǫ−→ F .

We callPǫ the ǫ-approximation of maximal reachable set
of F . To generalize this terminology, we say that theǫ-
approximation of maximal reachable setPǫ = ∅ when P

is a total failure, andPǫ = P whenP
P
−→ F .

A simple example is presented to illustrate the possible
failure sets and how Algorithm 1 cuts them off. Consider
the system

ẋ1 = x2,
ẋ2 = u.

It can be easily verified that the system has a dividing
hyperplane; i.e.,O = {(x1, x2) : x2 = 0}, the x1 axis,
and thatB is just thex2 axis. Suppose that the polytopeP

v−v− v+ v+

x1

x2

FF
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A− A+ Aǫ− Aǫ+

B
β

P ′ Pǫ

Fig. 4. An example.

and the target setF are as shown in Fig. 4. The dividing
hyperplane touches the polytope but has empty intersection
with its interior. From (2), we get,Ao = ∅ sinceB is not
parallel toO; A− = (H−

v−
∩ P) \ F is the patterned region

in Fig. 4; andA+ is just a point. The set of initial states for
which it is possible to reachF with constraint inP is the set
P ′ not including the boundary ofA− andA+. This set is not
closed. Moreover, if an initial statex0 ∈ P ′ approaches the
boundary ofA−, the control inputu(x0) tends to infinity in
order to reachF . Also, if x0 ∈ P ′ approaches the boundary
of A+, the time to reachF tends to infinity. Applying
Algorithm 1, a good closedǫ-approximationPǫ of P ′ is
given on the right of Fig. 4.

Finally, we present a lemma for the reachability problem
with two target sets which will be used in the next section.
Let F1 andF2 be two(n−1)-dimensional polytopes on the
boundary ofP .

Lemma 3.3:Suppose
o

P ∩ O = ∅ and supposeB is not
parallel to O. If P

P
−→ F1 ∪ F2 but it does not satisfy

P
P
−→ F1, then P \ P1

ǫ ⊆ P2
ǫ , where P1

ǫ and P2
ǫ are

the ǫ-approximation (ǫ > 0 sufficiently small) of maximal
reachable set ofF1 andF2, respectively.

IV. CONTROL SYNTHESIS ONPOLYTOPES– CASE A

This section investigates feedback synthesis on polytopes

for case A, namely,
o

P ∩ O = ∅. We want to show that if

P
P
−→ F (using open-loop control) then there exists a piece-

wise affine feedback solving the reachability problem. The
idea is to triangulate the polytope, transform the reachability
problem within a polytope into a set of reachability prob-
lems for simplices, and then devise appropriate piecewise
affine controllers on each simplex. The triangulation must
be performed properly otherwise the procedure may fail.

First we present a result on the existence of a piecewise
affine feedback that solves the reachability problem on
simplices. The result can be obtained from [8] and more
details on how to construct such controllers can also be found
in [8]. Consider a simplexS and a facetE of S. We have
the following lemma.

Lemma 4.1:Suppose
o

S ∩O = ∅. If S
S

−→ E (using open
loop control) then there exists a piecewise affine feedback
u = Fσ(x)x + gσ(x) that accomplishesS

S
−→ E , whereσ :

S → {1, 2}.
Next we present a lemma that is useful to find a proper

triangulation.
Lemma 4.2:Suppose

o

P ∩O = ∅. If P
P
−→ F , then there

exists a vertexv∗ of P in ∂Pmax such that eitherv∗ /∈ O
or v∗ ∈ F .
Proof: Suppose by contradiction that for any vertexv ∈
∂Pmax we havev ∈ O andv /∈ F . Note thatv /∈ F for all
verticesv ∈ ∂Pmax implies, by convexity,∂Pmax ⊂

o

H +
v+

.
Moreover, sincev ∈ O for all v ∈ ∂Pmax, it follows
from the convexity ofO that ∂Pmax ⊂ O. Hence, by
Theorem 3.1, this contradictsP

P
−→ F . �

Now we present an algorithm for control synthesis. But
first, we introduce some concepts on triangulation; for more
details, see [1].

SupposeV is a finite set of points such that conv(V) is
n-dimensional. Asubdivisionof V is a finite collectionP =
{P1, . . . ,Pm} of n-polytopes such that the vertices of each
Pi are drawn fromV ; conv(V) is the union ofP1, . . . ,Pm;
andPi∩Pj (i 6= j) is a common (possibly empty) face ofPi

andPj . A triangulationof V is a subdivision in which each
Pi is a simplex. Consider a triangulationS = {S1, . . . ,Sq}.
We saySi and Sj are adjacent(denoted bySi ∼ Sj) if
Si ∩Sj is a facet. A sequence(Sik

, . . . ,Si0 ) is called apath

to reachSi0 if Sij
∼ Sij−1

and Sij

Sij

−→ Sij−1
for each

1 ≤ j ≤ k. The lengthof such a path isk.
In what follows we denoteF by S0 for notation simplicity.

Algorithm 2:
1) Triangulation:

(a) If F is a facet of P then selectv∗ as in
Lemma 4.2. IfF is not a facet ofP then selectv∗
as in Lemma 4.2 and in addition satisfying that
v∗ is not in the facet containingF , if it exists.

(b) For the facetFj of P that containsF , make a
triangulation of vert(Fj) ∪ vert(F) such that the
interior of each resulting simplex is entirely either
in F or not in F ; for the remaining facetFj

of P , make a triangulation of vert(Fj). Denote
{Si

Fj
: i = 1, . . . , kj} the triangulation forFj.



(c) Let S = {S1, . . . ,Sq} := {conv(v∗,Si
Fj

) :
Fj is any facet ofP not containingv∗}.

2) Path Generation:

(a) Initialization:Rf := {S0}, Ru := {S1, . . . ,Sq};
(b) While (Ru 6= ∅), do

if ∃(Si,Sj) ∈ Ru × Rf such thatSi ∼ Sj and

Si
Si−→ Sj , then moveSi from Ru to Rf .

3) Controller Synthesis:
(a) Let{. . . , (. . . ,Si,Sj , . . . ,S0), . . . } be the collec-

tion of paths to reachS0 generated from step 2);
(b) Find ui(x) := Fσi(x)x + gσi(x), i = 1, . . . , q,

that solvesSi
Si−→ Fij , whereFij is the common

facet ofSi and the followed simplex in the path;
(c) For any simplexSi ∈ S, let u(x) = ui(x) for

all x ∈ Si. If x ∈ P belongs to more than one
simplex, setu(x) = uj(x) wherej is the index
of a simplex that has the minimum length path
to reachS0.

Lemma 4.3:The collectionS obtained in Algorithm 2 is
a triangulation of vert(P)∪ vert(F) such that every simplex
in S containsv∗ as a vertex.

Theorem 4.1:Suppose
o

P ∩ O = ∅. There exists a
piecewise affine feedback that accomplishesP

P
−→ F if and

only if P
P
−→ F (using open-loop control).

Sketch of proof: (=⇒) Obvious. (⇐=) Denote byF̄ the
facet ofP containingF . There are three cases.

v5(v∗) v5(v∗)

v3v3
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v2v2v2
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v3(v∗)

F
FF β

Fig. 5. Illustration for case (I).

(I): SupposeF is a facet ofP or whenF is not a facet
of P , there exists av∗ satisfying the property in Lemma 4.2
and in addition,v∗ 6∈ F̄ (see Fig. 5). For this case, it suffices
to show that at every step of the algorithm such thatRu 6=
∅, there exists a pair(Si,Sj) ∈ Ru × Rf such thatSi ∩

Sj =: Fij is a facet andSi
Si−→ Sj . This can be verified by

checking conditions (a)-(c) of Theorem 3.1 when the pair
(Si,Sj) ∈ Ru × Rf is chosen such thatFij has a vertex
v with minimum β-coordinate (namely,βT v ≤ βT w for all
w ∈ Si ∈ Ru).

v5

v2

v4v1

v3(v∗)
F

E β

Fig. 6. Illustration for case (II).

(II): Consider the case whenF is not a facet ofP and all

v∗ satisfying the property of Lemma 4.2 are in̄F but none
of them is inF . So by Lemma 4.2v∗ /∈ O. Then, there is a
hyperplaneG partitioningP into two subpolytopesP1 and
P2 such that (1)v∗ ∈ P2\G andF ⊂ P1\G, (2) E := G∩P
satisfiesE ∩ O = ∅, (3) argmax{βT x : x ∈ E} 6⊂ F̄ and
arg min{βT x : x ∈ E} ⊂ F̄ . Thus, from Theorem 3.1 and

the assumptionP
P
−→ F , we knowP2

P2−→ E ⊂ P1 and
P1

P1−→ F . Furthermore, a pointv′∗ ∈ arg max{βT x : x ∈
E} satisfies the property in Lemma 4.2 for the polytopeP1

and also it is not inF̄ . Thus, applying Algorithm 2, it gives
a piecewise affine controller that achievesP1

P1−→ F as we
just showed. For the polytopeP2, clearly the target setE is
a facet ofP2. So again by Algorithm 2, we have a piecewise
affine controller achievingP2

P2−→ E ⊂ P1.

v6

v5

v2

v4v1(v−)

v3(v∗) ∈ O

F
β

Fig. 7. Illustration for case (III).

(III): Consider the case whenF is not a facet ofP and
all v∗ satisfying the property of Lemma 4.2 are inF . Then
we haveβT v∗ ≥ βT x ≥ βT v− for all x ∈ P . Construct any
hyperplane such that it goes through the pointsv− and v∗,
and partitionsP into two full-dimensional subpolytopesP1

andP2. LetF12 := P1∩P2 and letP3 be the convex hull of
F andF12. Thus,P3 is a full-dimensional polytope inP and
F12 is in P3. By Theorem 3.1 and the assumptionP

P
−→ F ,

it can be easily verified thatP3
P3−→ F . Furthermore,F is a

facet ofP3, so by what we just showed, Algorithm 2 gives
a piecewise affine control, sayu(x) = Fσ3(x)x + gσ3(x),

x ∈ P3, that achievesP3
P3−→ F . For the polytopesP1

andP2, again by Theorem 3.1 we knowP1
P1−→ F12 and

P2
P2−→ F12. Moreover,F12 is a facet of bothP1 andP2.

So there are piecewise affine controllers,u(x) = Fσ1(x)x +
gσ1(x), x ∈ P1 and u(x) = Fσ2(x)x + gσ2(x), x ∈ P2, that

achieveP1
P1−→ F12 and P2

P2−→ F12, respectively. Since
F12 is in P3, it means that the controllers can drive all the
states not inP3 to P3. Thus, the following controller

u(x) =







Fσ3(x)x + gσ3(x) x ∈ P3

Fσ1(x)x + gσ1(x) x ∈ P1 \ P3

Fσ2(x)x + gσ2(x) x ∈ P2 \ P3

achievesP
P
−→ F . �

V. REACHABILITY AND CONTROL SYNTHESIS ON

POLYTOPE – CASE B

Now we come to the case B, (namely,
o

P ∩O 6= ∅). Recall
that this case means eitherO is a hyperplane that partitions
P into two full-dimensional polytopes, orO is the entire
state space. We only deal with the first one due to space



limitations. For this case, we divideP alongO that results
in two polytopes, denoted byP1 and P2. The following
algorithm and theorem present solutions to the reachability
problem and control synthesis problem.

Algorithm 3:

1) Initialization: k := 1, Rf := {Q1 = ∅,Q2 = ∅},
Ru := {P1,P2}, Fbd := {Fi0 = Pi ∩ F : i = 1, 2;
Fi0 is of (n−1)-dimension andPi is not a total failure
to reachFi0}.

2) while (Fbd 6= ∅), do

a) for every Fij ∈ Fbd, find Qk
i ⊆ Pi, the ǫ-

approximation of maximal reachable set ofFij

and updateQi := Qi ∪Qk
i ;

b) for everyQi ∈ Rf , if Qi = Pi, then removePi

from Ru;
c) updateFbd := {Fij = Pi ∩Qj : j 6= i;Pi ∈ Ru;

Qj ∈ Rf ; Fij∩(Pi\Qi) is of (n−1)-dimension
andPi is not a total failure to reachFij};

d) k := k + 1.

Theorem 5.1:Suppose
o

P ∩O 6= ∅ andO is a hyperplane.
The following are equivalent:

(a) P
P
−→ F (using open-loop control);

(b) There exits aǫ > 0 such that Algorithm 3 halts with
Ru = ∅;

(c) There exists a piecewise affine control that accom-
plishesP

P
−→ F .

Proof: (a) =⇒ (b) If B is parallel toO, thenP
P
−→ F

implies P1
P1−→ F10 andP2

P2−→ F20 where bothF10 and
F20 are of (n − 1)-dimension. Thus, Algorithm 3 succeeds
with Ru = ∅.

If B is not parallel toO, we consider two cases.
First, suppose there exists aPi ∈ {P1,P2} satisfying

Pi
Pi−→ Fi0 where Fi0 is of (n − 1)-dimension. Then

Q1
i = Pi. Let Pj be the other polytope in{P1,P2}. If

furthermore,Pj

Pj

−→ Fj0 whereFj0 is also of (n − 1)-
dimension. ThenQ1

j = Pj . Thus, Algorithm 3 succeeds with
Ru = ∅. Otherwise, findQ1

j ⊂ Pj, the ǫ-approximation (ǫ
sufficiently small) of maximal reachable set ofFj0, that may

be empty. Note thatP
P
−→ F , so by Lemma 3.3Pj \ Q1

j

is contained inQ2
j ⊆ Pj , the ǫ-approximation of maximal

reachable set ofFji := Pj ∩ Q1
i = Pj ∩ Pi. Furthermore,

Fji∩(Pj \Q1
j) is of (n−1)-dimension since otherwiseFji is

in Q1
j meaning thatFji

Pj

−→ Fj0 and thereforePj

Pj

−→ Fj0,
a contradiction. Hence, Algorithm 3 succeeds withRu = ∅.

Second, suppose noPi ∈ {P1,P2} satisfiesPi
Pi−→ Fi0.

Without loss of generality, supposeF10 is of (n − 1)-
dimension andP is not a total failure to reachF10. Find
Q1

1 ⊂ P1, the ǫ-approximation (ǫ sufficiently small) of
maximal reachable set ofF10, which is not empty by
assumption, and findQ1

2 ⊂ P2, the ǫ-approximation (ǫ
sufficiently small) of maximal reachable set ofF20, which
may be empty. Note thatP

P
−→ F and ǫ can be arbitrarily

small, soF21 := P2 ∩ Q1
1 must not be empty and the

states inP2 that cannot reachF20 must be able to reach
F21. Then by Lemma 3.3P2 \ Q1

2 is contained inQ2
2 ⊆

P2, the ǫ-approximation of maximal reachable set ofF21.
Furthermore,F21 ∩ (P2 \Q1

2) is of (n− 1)-dimension since

otherwiseF21 is in Q1
2 meaning thatF21

P2−→ F20 and

thereforeP2
P2−→ F20, a contradiction. NowQ1

2 ∪Q2
2 = P2,

implyingP2 /∈ Ru. Repeat the argument forP1. Algorithm 3
will succeed withRu = ∅.

(b) =⇒ (c) Suppose there is aǫ > 0 such that Algorithm 3
halts withRu = ∅. Then the algorithm may produce one (or
two) of the following pathes:

Qk
1 −→ Qk−1

2 −→ · · · −→ F ,

Qk
2 −→ Qk−1

1 −→ · · · −→ F ,

where∪m=1,...,kQ
m
i = Pi, i = 1, 2. For anym = 1, . . . , k,

since everyQm
i is a closed full-dimensional polytope and

o

Q m
i ∩O = ∅ from the algorithm, applying Theorem 4.1, we

have a piecewise affine control that achievesQm
i

Q
m
i−→ Qm−1

j

orQm
i

Q
m
i−→ F . Note thatQk

i , . . . ,Q1
i may overlap each other.

So for anyx ∈ Pi belonging to more than one polytopes, set
the controller atx to be the one defined forQm∗

i wherem∗

is the minimum of the indices ofQm
i containingx. Thus,

the piecewise affine control accomplishesP
P
−→ F .

(c) =⇒ (a) Obvious. �
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