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Abstract

This paper studies the problem for an affine hypersurface system (with n− 1 inputs) to reach a polytopic target set starting
from inside a polytope in the state space. We present a solution which begins with a characterization of solvability by open-
loop control and concludes with a procedure to synthesize a feedback control. Our emphasis is on methods of subdivision,
triangulation, and covers which explicitly account for the capabilities of the control system. In contrast with previous literature,
the partition methods are guaranteed to yield a correct feedback synthesis, assuming the problem is solvable by open-loop
control.
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1 Introduction

This paper studies the problem for an affine system to
reach a polytopic target set in finite time assuming the
state space is a polytope. Promising new ideas have ap-
peared in the last five years in this area [7–9,14,16]. The
analogous problem for simplices was first formulated in
[7] by Luc Habets and Jan van Schuppen. This paper
specifically focuses on affine hypersurface systems on
polytopes. The goal is to devise partition methods so
that dynamic programming methods as in [9] are guar-
anteed to terminate. The contribution of the paper is the
focus on subdivision (especially triangulation) methods
guaranteeing a control synthesis. Indeed, there is no pre-
vious work linking triangulation procedures and control
synthesis in the literature. Affine hypersurface systems
on simplices were studied in [15,10]. Our investigation of
polytopes and more general feedbacks was initiated in
[11]. The reader is referred to an archived paper [12] that
provides all missing proofs and examples supporting this
paper. Our main result is: if the problem is solvable by
open-loop controls, then it is solvable by piecewise affine
feedback.

We conclude our introduction by mentioning that the
problems studied here fit into a larger context concern-
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ing the use of piecewise affine feedback on polytopes for
other control specifications such as stabilization, optimal
control, and set invariance. The recent text [3] presents
an overview of methods for set invariance, which can be
viewed as dual to the problem of reachability. More gen-
erally, piecewise affine systems have been the subject of
a large number of papers. A small sampling of recent
papers includes [1,2,4,6,13]. Several interesting applica-
tions of piecewise affine modeling have recently been ex-
plored, for example [5].

2 Problem Formulation

Let P ⊂ Rn be an n-dimensional polytope and let F de-
note a target set which is an (n − 1)-dimensional poly-
tope in the boundary of P . Consider an affine control
system

ẋ = Ax+ a+Bu =: f(x, u), x ∈ P , (1)

where A ∈ Rn×n, B ∈ Rn×m, and a ∈ Rn. We assume
that rank(B) = n − 1, in which case (1) is called an
affine hypersurface system. We also assume that (A,B)
is a controllable. Given a piecewise continuous function
u : t 7→ u(t) and an initial state x0 ∈ P , let φu(t, x0)
denote the unique solution of (1) starting from x0.

Problem 1 (Reach Control Problem (RCP))
Consider system (1) defined on P. Find a feedback con-
trol u(x) such that for every x0 ∈ P there exist T ≥ 0 and
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ǫ > 0 satisfying: (i) φu(t, x0) ∈ P for all t ∈ [0, T ]; (ii)
φu(T, x0) ∈ F ; (iii) φu(t, x0) /∈ P for all t ∈ (T, T + ǫ).

Let U denote a control type, including affine feedback,
piecewise affine feedback, open-loop controls, and so
forth. We say a point x0 ∈ P can reach F with con-

straint in P with control type U, denoted by x0
P
−→ F ,

if there exists a control u of type U such that properties

(i)-(iii) of Problem 1 hold. We write P
P
−→ F by con-

trol type U if for every x0 ∈ P , x0
P
−→ F with control

of type U. If we do not state a control type, then it is
inferred that we mean open-loop controls.

Let B denote the (n− 1)-dimensional subspace spanned
by the column vectors of B (namely, B = Im(B), the
image ofB). DefineO := {x ∈ Rn : Ax+a ∈ B}. When
the pair (A,B) is controllable it can be shown that O is
an (n− 1)-dimensional affine space. Notice that f(x, u)
onO can vanish for an appropriate choice of u, soO is the
set of all possible equilibrium points of the system. We
make the following standing assumption until Section 6.

Assumption 2 If P ∩ O 6= ∅, then P ∩ O is a κ-
dimensional face of P, where 0 ≤ κ ≤ n− 1.

Problem 3 We are given system (1) such that Assump-
tion 2 holds. (a) Find necessary and sufficient conditions

such that P
P
−→ F by open-loop controls. (b) If P

P
−→ F ,

then synthesize a feedback u(x) such that P
P
−→ F using

u(x).

In the special case when P is a simplex S, we have the
following solution of the problem.

Theorem 4 [10] If S
S

−→ F0 by open-loop controls, then

S
S

−→ F0 by piecewise affine feedback.

3 Open-Loop Reachability

In this section we study necessary and sufficient condi-
tions for solvability of RCP by open-loop control. For a

set A ⊂ Rn, notation
o

A , conv(A), and vert(A) denote
the interior of A, the convex hull of A, and the vertices
of A, respectively. Denote by Bx the hyperplane paral-
lel to B and going through a point x. Let β be the unit
normal vector to B satisfying βT (Ax + a) ≤ 0 for all
x ∈ P . Such β always exists by our Assumption 2 that
o

P ∩ O = ∅. Let v− be a point in argmin{βTx : x ∈ F}
and v+ a point in argmax{βTx : x ∈ F}. Define the sets
H− := {x ∈ P | βTx ≤ βT v−}, H+ := {x ∈ P | βTx ≥
βT v+}, and P+ := argmax{βTx | x ∈ P}. Also, for any
z ∈ R

n, define H−(z) := {x ∈ P | βTx ≤ βT z} and
H+(z) := {x ∈ P | βTx ≥ βT z}.
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Fig. 1. Illustration for Theorem 6

Because
o

P ∩O = ∅, we know that for each initial condi-
tion in P , all trajectories will only flow in one direction
relative to hyperplane B. In particular, the β-component
of any trajectory, β · φu(t, x0), is always non-increasing
by the convention that β ·(Ax+a) ≤ 0, ∀x ∈ P . Now the
points v− and v+ mark the points in F with minimum
and maximum β components. It is clear that if there is
any x0 ∈ P with a β component smaller than v−, then
no φu(t, x0) can reach F . This suggests that a first nec-

essary condition for P
P
−→ F is that H− \ F is empty.

This is not quite right. In particular, if x, y ∈ Bx ∩ O,

then x
l

−→ y where l is the line segment joining x and y.
This follows from the observation that points in O can
steer along B, and by assumption y − x ∈ B. Therefore
the first necessary condition for solvability via open-loop
controls is that the first failure set A− := H− \ (F ∪B−)
is the empty set, whereB− := Bv−∩O if Bv−∩O∩F 6= ∅,
and otherwise B− = ∅. Figure 1 shows a shaded region
corresponding to failure of this condition.

Another failure leading to a second necessary condition is
as follows. If x0 ∈ P ∩O, then the instantaneous motion
from this point is only along B. If P ∩ O ⊂ B and no
direction in B points into P , then the set P ∩O becomes
controlled invariant when the invariance conditions for
P are imposed. The only points where B does not point
into P are at the extreme values of βTx for x ∈ P .
In particular, it should not be allowed that P+ ⊂ B
within the region {x | βTx > βT v+}. See the right side
of Figure 1. Therefore, we can define the second failure
set A+ = P+, if P+ ⊂ O ∩ {x | βTx > βT v+}; and
otherwise A+ = ∅.

The argument to show that the necessary conditions are
also sufficient relies on two properties: the system is con-
trollable, so it has sufficient maneuverability on O, and
the following lemma which provides the required maneu-
verability off of O.

Lemma 5 Let y 6= z ∈ P and let l be the line segment
joining them.

(i) If z, y ∈ O and y ∈ Bz, then z
l

−→ y.
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(ii) If z, y 6∈ O and y ∈
o

H −(z), then z
l

−→ y.

Theorem 6 Suppose Assumption 2 holds and (A,B) is

controllable. Then P
P
−→ F if and only if (a) A− = ∅

and (b) A+ = ∅.

PROOF. We present only the sufficiency proof. Sup-
pose conditions (a) and (b) hold. For a point x ∈ F , one

can easily show that under (a) and (b), x
P
−→ F . In-

stead, let x ∈ P \ (F ∪O). By assumption (a) x /∈ H− or

equivalently v− ∈
o

H −(x). Consequently, there is a point

y ∈ N (v−) ∩F satisfying y ∈
o

H −(x), where N (v−) is a
sufficiently small neighborhood of v−. If F is not in O,
such a point y can be chosen not in O. Then these two
points x and y satisfy the assumption in Lemma 5(ii),

so x
l

−→ y, where l is the line segment joining x and y.

Clearly, l is in P as P is convex. Hence, x
P
−→ F . Oth-

erwise, suppose F ⊂ O. Because (A,B) is controllable,
B is not parallel to O. It means we can select a control
u so that f(y, u) points outside of P . Thus, there is a
sufficiently small ǫ > 0 such that φu(t, y), t ∈ (−ǫ, 0) is

in
o

P . Note that φu(t, y) is continuous and y ∈
o

H −(x),
so there is a point z ∈ φu(t, y), t ∈ (−ǫ, 0) satisfying

z ∈
o

H −(x) and therefore z ∈
o

P . Thus, βT (Az + a) < 0
by assumption. Applying Lemma 5(ii) for the two points

x and z leads to x
l

−→ z, where l is the line segment in

P joining x and z. Considering z
P
−→ y ∈ F , we then

have x
P
−→ F .

Finally, let x ∈ (P∩O)\F . Clearly, x is on the boundary
of P . If Bx∩P 6⊂ O, then select a point y ∈ (Bx∩P)\O
and let u be chosen such that f(x, u) = Ax+a+Bu = y−
x, which is possible because both (Ax+a) and (y−x) are
in Im(B). Note that f(x, u) points inside the polytope
P . This implies the trajectory instantaneously enters the
interior of P , which is not in O any more. Then by the
previous argument, it can be driven to reachF through a
line. Otherwise, if Bx∩P ⊂ O, then the whole set Bx∩P
is on the boundary ofP , andmoreover it comprises either
P+ or argmin{βTx : x ∈ F}.

From condition (b),P+ ⊂ H−(v+) and this impliesP+∩

F 6= ∅. From condition (a),
o

H − = ∅ so argmin{βTx :
x ∈ F} ⊂ H+(v−), which implies argmin{βTx : x ∈
F} ∩ F 6= ∅. For both cases, we get Bx ∩ F 6= ∅. Now
we select a point y ∈ Bx ∩ F . Then these two points
satisfy the assumption in Lemma 5(i). Thus, it follows

that x
l

−→ y, where l is the line segment joining from x

to y, and so x
P
−→ F .

In [11] (see also [12]) it was shown that one can “cut off”
the failure sets A+ and A− to obtain a smaller polytope

P ′ with the same exit facet F and such that P ′ P
′

−→ F .
We assume that this procedure has been applied, that

P ′ is renamed as P , and P
P
−→ F .

4 Control Synthesis on Polytopes

We now begin our investigation of state feedback synthe-

sis on polytopes. We want to show that if P
P
−→ F us-

ing open-loop control then there exists a piecewise affine
feedback solving the reachability problem. The idea is
to triangulate the polytope, transform the reachability
problemwithin a polytope into a set of reachability prob-
lems for simplices, and then devise appropriate piece-
wise affine controllers on each simplex using Theorem 4
of the previous section. The triangulation must be per-
formed properly otherwise the procedure may fail. First
we present a lemma that aids in finding a proper trian-
gulation. See Figure 2.

v5(v∗)

v3

v5

v2v2

v4v4 v1v1

v3(v∗)

FF

Fig. 2. Illustration for Lemma 7.

Lemma 7 If P
P
−→ F , then there exists a vertex v∗ of

P in P+ such that either v∗ /∈ O or v∗ ∈ F .

PROOF. Suppose by contradiction that for any vertex
v ∈ P+ we have v ∈ O and v /∈ F . Note that v /∈ F

for all vertices v ∈ P+ implies, by convexity, P+ ⊂
o

H +.
Moreover, since v ∈ O for all v ∈ P+, it follows from
the convexity of O that P+ ⊂ O. Hence, by Theorem 6,

this contradicts P
P
−→ F .

Basic Triangulation of P:

(1) Select v∗ as in Lemma 7.
(2) Triangulate each facet Fj of P . Denote {Si

Fj
: i =

1, . . . , kj} the triangulation for Fj.
(3) Let S = {S1, . . . ,Sq} := {conv(v∗,Si

Fj
) :

Fj is any facet of P not containing v∗}.

Lemma 8 The collection S is a triangulation of
vert(P) ∪ vert(F) such that every simplex in S contains
v∗ as a vertex.

PROOF. By construction, it is clear that every simplex
Si ∈ S contains v∗ as a vertex, the vertices of Si are
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drawn from vert(P) ∪ vert(F), and Si ∩ Sj (i 6= j) is a
common (possibly empty) face of Si and Sj . Next, we
show that P is the union of S1, . . . ,Sq. Let x be a point
in the union of S1, . . . ,Sq. Then it must be in a simplex
Si. Thus, by convexity of P , x ∈ P . On the other hand,
let x be a point in P . Draw a line through v∗ and x. It
intersects at a point y with a facet (say Fj) of P that
does not contain v∗. It means there exists a simplex Si

Fj

containing y. So x ∈ conv(v∗,Si
Fj
), one of the simplices

in S. The conclusion follows.

Now suppose we have a triangulation S = {S1, . . . ,Sq}
as above, and denote S0 := F . We say Si and Sj are
adjacent (denoted by Si ∼ Sj) if Fij := Si ∩ Sj is a
facet. A sequence (Sik , . . . ,Si0) is called a path to reach

Si0 if Sij ∼ Sij−1
and Sij

Sij

−→ Sij−1
for each 1 ≤ j ≤ k.

The length of such a path is k. We propose a greedy
algorithm that orders simplices according to minimum
β component of exit vertices first. More precisely, at
every iteration a pair (Si,Sj) is selected that minimizes
the β-component of any vertex on the exit facet Fij .
If there is more than one pair achieving the minimum,
select a pair which has the maximum number of exit
vertices achieving the minimum. In the algorithm below
Rf and Ru denote the finished and unfinished set of
simplices, respectively, and let w′ ∈ argmin

{

βTx : x ∈
⋃

{Sk ∩ Sl : (Sk,Sl) ∈ Ru ×Rf satisfying Sk ∼ Sl}
}

.

Greedy algorithm for path generation in S:

(1) Initialization: Rf := {S0}, Ru := {S1, . . . ,Sq};
(2) While (Ru 6= ∅), choose (Si,Sj) ∈ Ru × Rf such

that Si ∼ Sj , it achieves min
x∈Fij

βTx = βTw′, and

Fij contains the maximum number of vertices in
Bw′ . Then move Si from Ru to Rf .

Once the greedy algorithm has generated paths, the syn-
thesis of a piecewise affine control is straightforward. See
also [9].

Theorem 9 Suppose that F is a facet of P. If P
P
−→ F

by open-loop controls, then P
P
−→ F by piecewise affine

feedback.

The idea of the proof is to show that the path generation
algorithm does not terminate until Ru = ∅ by showing
that for the next selected pair (Si,Sj) ∈ Ru × Rf , the

reachability problem Si
Si−→ Sj can be solved. This is

done by applying Theorem 6 and verifying conditions
(a) and (b) for the selected pair (Si,Sj) ∈ Ru×Rf . The
main effect of our selection of triangulation based on
vertex v∗ is that condition (b) holds trivially for any such
pair. The fact that condition (a) can be made to hold
is the main feature of the greedy strategy with respect

to β. This strategy guarantees that the vertex v0 ∈ Si

not contained in the exit facet has a strictly larger β-
component, and this means that failure set A− = ∅ for
Si. The proof now easily follows from these observations.

PROOF. If the path generation algorithm terminates
with Ru = ∅ then by straightforward dynamic pro-
gramming arguments there exists a piecewise affine feed-

back control that achieves P
P
−→ F . It is therefore

sufficient to show that if Ru 6= ∅, there exists a pair
(Si,Sj) ∈ Ru × Rf such that Si ∩ Sj =: Fij is a facet

and Si
Si−→ Sj .

Consider any pair (Si,Sj) ∈ Ru×Rf such that Si∩Sj =:
Fij is a facet. We must verify conditions (a) and (b)

of Theorem 6 to show Si
Si−→ Fij . Consider condition

(b). We have two observations about v∗. First, from
Lemma 8, v∗ ∈ Si, ∀i, and therefore v∗ ∈ Fij . Second,
v∗ ∈ P+ implies v∗ ∈ S+

i . Applying these two facts, con-

dition (b) for Si
Si−→ Sj says that S+

i 6⊂ O ∩ {x ∈ Si :
βTx > βT v∗}, and this is obviously true.

So far we have shown that for any pair (Si,Sj) ∈ Ru×Rf

as above, condition (b) of Theorem 6 holds for the prob-

lem Si
Si−→ Fij . Now we will show that for the selected

pair (Si,Sj), condition (a) holds. Let v0 be the vertex
of Si not in Fij . Let w ∈ Fij ∩ Bw′ . There are three
cases. First, suppose βTw < βT v0. Then condition (a)
holds. Second, suppose βTw > βT v0. Also, we know

βT v− ≤ βT v0 < βTw from the assumption P
P
−→ F .

By convexity, for every point y on the line segment join-
ing v− and v0, β

T y < βTw. However, v− ∈ S0 ∈ Rf and
v0 ∈ Si ∈ Ru, which means the line segment contains a
point y on the boundary of Si′ ∈ Ru and Sj′ ∈ Rf . This
contradicts the choice of the pair (Si,Sj) that achieves
min
x∈Fij

βTx = βTw′.

Finally, suppose βTw = βT v0. Let {v1, . . . , vk} be the
set of vertices of Fij that lie in Bw′ . If Bw′ ∩P ⊂ O then
condition (a) holds and we are done. If not, it follows

from the assumption P
P
−→ F that either Bw′ ∩ P ⊂ F

or βTw′ > βT v−. For both cases we claim that G :=
conv{v0, v1, . . . , vk} belongs to some Sk ∈ Rf . For the
former case, it is obvious since G ⊂ Bw′ ∩P ⊂ S0 ∈ Rf .
For the latter case, suppose not. Say a point x ∈ G does
not belong to some Sk ∈ Rf . Then since the union of
sets in Rf is a closed set, there exists a point y ∈ P near
x satisfying βT y < βTw′, and y also does not belong
to some Sk ∈ Rf . This contradicts the choice of the
pair (Si,Sj) that achieves min

x∈Fij

βTx = βTw′. Therefore

P∩O belongs to some Sk ∈ Rf which implies it belongs
to some facet Fi′j′ 6= Fij with Fi′j′ = Si′ ∩ Sj′ , where
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Fig. 3. F is not a facet of P but v∗ 6∈ F̄ .

Si′ ∈ Ru, Sj′ ∈ Rf , and Fi′j′ has one more vertex,
namely v0, in Bw′ . This contradicts the choice of Fij .

5 Triangulation with respect to F

In this section we study how the previous results can be
extended to solve the control synthesis problem if F is
not given as a facet of P . If the designer has flexibility in
modifying the given state constraints, then one can per-
form a deformation of P by “pulling out” F so that F is
a facet of a larger polytope P ′. However, this approach

has two caveats: (1) The problem P ′ P
′

−→ F ′ may not be

solvable even if P
P
−→ F is; (2) If P is part of a larger

subdivision of the state space, then possibly other poly-
topes in the subdivision must be modified. A more desir-
able procedure is to use a triangulation method that re-
fines the given subdivision of the state space by splitting
P so that F becomes a facet of one of the polytopes in
the refined subdivision. This approach also has pitfalls,
because if one does not refine the subdivision properly,

failure sets may emerge even if P
P
−→ F by open-loop

control. In this section we show one method (among sev-
eral) to obtain a proper triangulation.

Let F̄ denote the facet of P containing F . First we con-
sider a simple case when v∗ of Lemma 8 can be selected
so that v∗ 6∈ F̄ . See Figure 3.

Triangulation of P with respect to F :

(a) Select v∗ as in Lemma 7 and so that v∗ 6∈ F̄ .
(b) Make a triangulation of vert(F̄)∪vert(F) such that

the interior of each resulting simplex is either en-
tirely in F or not in F . For the remaining facets
Fj of P , make a triangulation of vert(Fj). Denote
{Si

Fj
: i = 1, . . . , kj} the triangulation for Fj.

(c) Let S = {S1, . . . ,Sq} := {conv(v∗,Si
Fj
) :

Fj is any facet of P not containing v∗}.

The first thing we notice is that nothing about the proof
of Lemma 8 is specific to F being a facet, so the lemma
still holds for the new triangulation. Also the proof of
Theorem 9 is unchanged since the essential property of

v6

v5

v2

v4v1(v
−)

v3(v∗) ∈ O

F

β

Fig. 4. F = conv{v1, v2, v3, v6} ⊂ F̄ and v∗ = v3 ∈ F .

v∗ (namely Lemma 8) is still true. Therefore, we have
the following direct extension of Theorem 9.

Corollary 10 Suppose that F is not a facet of P and

there exists v∗ as in Lemma 7 such that v∗ 6∈ F̄. If P
P
−→

F by open-loop controls, thenP
P
−→ F by piecewise affine

feedback.

When there does not exist v∗ 6∈ F̄ , the problem is more
complex because Lemma 8 breaks down. Nevertheless,
we would like to build upon our previous triangulation
and control methods by appropriately subdividing P . A
natural idea would be to form P1 := conv(F , v | v ∈
vert(P)\F̄), a polytope for which F is a facet. There are
two problems to be addressed. First, can P1 have failure

sets for the problem P1
P1−→ F even if P

P
−→ F? The-

orem 6 tell us that H− \ (F ∩ B−) = ∅ and we observe
that this condition is identical for any polytope with
the same exit facet F . Therefore, condition (a) holds for

P1
P1−→ F . Instead, it is condition (b) which is problem-

atic because generally P+
1 6= P+ and equilibria can ap-

pear on P+
1 when we try to solveP1

P1−→ F . A more care-
ful approach is needed, and inspiration is provided by
the proof of Theorem 9: for any n-dimensional polytope
P1 ⊂ P with exit facet F , if P+

1 ∩F 6= ∅, then condition
(b) automatically holds. For example, in Figure 4 a poly-
tope with this property is P1 = conv{v1, v2, v3, v6, v5}.
Thus, we have the following.

Proposition 11 Suppose there exists v∗ a vertex of F
such that v∗ ∈ F ∩P+. Let P1 ⊂ P be an n-dimensional

polytope such that F is a facet of P1. Then P
P
−→ F

implies P1
P1−→ F .

PROOF. Consider condition (b) of Theorem 6 for

P1
P1−→ F . We have to show that P+

1 6⊂ O ∩ {x ∈
P1 | βTx > βT v+}. But v∗ ∈ F ∩ P+ implies
P+
1 = {x ∈ P1 | βTx = βT v+}, so condition (b) is

obviously true.

For condition (a), Theorem 6 tells us that H− \ (B− ∪
F) = ∅ and since H−

1 = H− and B−

1 = B−, condition
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(a) obviously holds for P1
P1−→ F .

Proposition 11 gives some indication of how the poly-
tope P1 which has F as a facet could be constructed.
Now we face the second problem. The set P \ P1 is of
course not a polytope. For example, in Figure 4 with
P1 = conv{v1, v2, v3, v6, v5}, the remainder P \ P1 is
not convex. How shall this remainder be subdivided and
what reachability problems need to be assigned to avoid
new failure sets from appearing? The problem is diffi-
cult due to the generality of the description of F . In-
stead, we will search for other polytopes which do not
use F as their exit facet but which effectively channel
trajectories toward P1. Considering again Figure 4, let
P1 = conv{v1, v2, v3, v6, v5}, P3 := conv{v1, v3, v4, v5},
and suppose P3’s exit facet is F3 := conv{v1, v3, v5}. If
trajectories can be made to exit P3 through F3, then
they arrive in P1, for which a control strategy is already
known. Why can this be achieved for P3? It is explained
in the next result which gives a procedure for identify-
ing certain polytopes which do not use F as the exit
facet, but which guarantee that trajectories arrive in P1,
nonetheless.

Proposition 12 Suppose there exists v∗, a vertex of F ,
such that v∗ ∈ F ∩P+. Let P3 ⊂ P be an n-dimensional
polytope and let F3 be an (n − 1)-dimensional polytope
which is a facet of P3. Suppose that v−, v∗ ∈ F3 and

Bv− ∩F ⊂ Bv− ∩F3. Then P
P
−→ F implies P3

P3−→ F3.

PROOF. By the same argument as in Proposition 11,

condition (b) for P3
P3−→ F3 obviously holds. Consider

condition (a) for P
P
−→ F . It says that {x ∈ P | βTx ≤

βT v−} \ (F ∪ B−) = ∅. Equivalently, {x ∈ P | βTx <
βT v−} = ∅ and if x ∈ Bv− then either x ∈ F or x ∈
¬F ∩O and there exists y ∈ Bv− ∩O∪F . Now consider
P3. Since P3 ⊂ P , {x ∈ P3 | βTx < βT v−} = ∅. Also if
x ∈ Bv− , then either x ∈ F , which implies by assumption
that x ∈ F3; otherwise x ∈ ¬F3 ∩ ¬F ∩ O, and there
exists y ∈ Bv− ∩O∩F ⊂ Bv− ∩O∩F3. Thus condition

(a) for P3
P3−→ F3 holds. The conclusion follows.

We can now put together the ideas of Propositions 11
and 12 to solve the synthesis problem when F is not
a facet of P and there exists a vertex of F satisfying
v∗ ∈ F ∩ P+. Proposition 11 tells us how to obtain a
polytope P1 for which F is its exit facet. Proposition 12
is a tool to obtain other polytopes, say P2 and P3 which
drive trajectories into P1. Naturally this requires that
P2 and P3 have a non-zero intersection with P1. To ac-
commodate this in the simplest possible manner with-
out involving the details of F , we introduce an impor-
tant new construct for synthesis of piecewise affine con-
trollers. Rather than using a subdivision of P we begin

the design with a cover of P , which later will be refined
to a subdivision for control synthesis. A cover of V is a
finite collection P = {P1, . . . ,Pk} of n-dimensional poly-
topes such that the vertices of each Pi are drawn from
V and conv(V) is the union of P1, . . . ,Pk. Informally, a
cover is a subdivision except that the sub-polytopes can
intersect on their interiors.

Cover of P with respect to F :

(1) Select v∗ a vertex of F such that v∗ ∈ F ∩ P+.
(2) Construct any hyperplane that goes through points

v− and v∗, and partitions P into two n-dimensional
sub-polytopes P2 and P3.

(3) Define P1 = conv(F ,P2 ∩ P3).
(4) Define the cover P := {P1,P2,P3}.

For the example in Figure 4, the algorithm gives P1 =
conv{v1, v2, v3, v6, v5}, P2 := conv{v1, v2, v3, v5}, and
P3 := conv{v1, v3, v4, v5}.

Theorem 13 Suppose that F is not a facet of P and
there exists v∗, a vertex of F , such that v∗ ∈ F ∩ P+.

If P
P
−→ F by open-loop controls, then P

P
−→ F by

piecewise affine feedback.

PROOF. P1 is an n-dimensional polytope in P for
which F is a facet. Also, v∗ ∈ F ∩ P+, so by Propo-

sition 11, P1
P1−→ F . Next, let F23 = P2 ∩ P3 and no-

tice that v−23 = v− and v+23 = v∗. By a minor adapta-

tion of the argument for Proposition 12, P2
P2−→ F23 and

P3
P3−→ F23, except at those points in Bv− ∩F which are

not in F23.

Theorem 9 gives a piecewise affine control u(x) =

Fσ1(x)x + gσ1(x), x ∈ P1, that achieves P1
P1−→ F .

Also, it gives u(x) = Fσ2(x)x + gσ2(x), x ∈ P2 and

u(x) = Fσ3(x)x+gσ3(x), x ∈ P3, that achieveP2
P2−→ F23

and P3
P3−→ F23, respectively (except at points in

Bv− ∩F which are not in F23). Since F23 ⊂ P1, it means
that the controllers can drive all the states not in P1 to
P1. Thus, the following controller

u(x) =















Fσ1(x)x+ gσ1(x) x ∈ P1

Fσ2(x)x+ gσ2(x) x ∈ P2 \ P1

Fσ3(x)x+ gσ3(x) x ∈ P3 \ P1

achieves P
P
−→ F .

Finally, we are left with the case when F is not a facet of
P , all vertices of P satisfying Lemma 7 are in F̄ but none
of them is in F , and moreover there are no vertices of F
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Fig. 5. F ⊂ F̄ = conv{v1, v2, v3, v4} and all v∗ are in F̄ but
none of them is in F .

in P+. See Figure 5. Fortunately, this case can be easily
handled by our previous results, by observing thatF and
P+ are strongly separated so we can split P into a sub-
polytope which containsF and satisfies Theorem 13 and
another sub-polytope that does not contain F but must
be able to reach it.We have the following straightforward
extension of Theorem 13 and main result of this section.

Theorem 14 If P
P
−→ F by open-loop controls, then

P
P
−→ F by piecewise affine feedback.

PROOF. We only consider the case excluded by Corol-
lary 10 and Theorem 13 as described above. Consider the
hyperplaneBv+ that partitionsP into two sub-polytopes
P1 and P2, such that F ⊂ P1 and v+ is a vertex of F
satisfying v+ ∈ F ∩ P+

1 (see Figure 5 for an example).

From Theorem 13, we have that P1
P1−→ F and from the

assumption P
P
−→ F and Theorem 6 it can be verified

that P2
P2−→ Bv+ ∩ P .

6 Triangulation with respect to O

So far we have studied reachability problems and control

synthesis under the assumption
o

P ∩O = ∅. In order to

solve the general problem when
o

P ∩ O 6= ∅ we want to
partitionP alongO and apply the results of the previous
sections. A complication is that when we split P alongO
to form two polytopes, P1 and P2, one of the two target
sets Pi ∩ F may no longer be an (n − 1)-dimensional
polytope. We assume in the following that when we say

P
P
−→ F , there does not exist a full-dimensional set of

states in P that must reach a lower-dimensional (less

than n− 1) subset in F in order to achieve P
P
−→ F .

Now we would like to propose a partition method which
splits P along O into two polytopes P1 and P2. Each
subpolytope Pi will then have two possible target sets:
F ∩ Pi and O ∩ P . This second target allows some tra-
jectories to cross over from one side of O to the other

before reaching F . One could try to make a subdivision
according to which target the points in Pi can reach.
However, this approach will generally require new tech-
niques not already developed in the paper. We illustrate
with an example.

Example 15 Consider the 2D example as in Fig. 6.
Suppose there are two target sets F1 and F2 where F2 ⊂

F1

β

F2 O

B P

Fig. 6.

O. It can be checked that P → F1 ∪ F2, but neither
P → F1 or P → F2 holds. If we were to apply Algorithm
1 of [11] to cut off the failure set for reachingF1, we would
obtain the region on the left-side of the (red) dotted line
(parallel to B). However, the approximate failure set to
reach F1 cannot reach F2, no matter how small is ǫ, with-
out crossing into the region that can reach F1. Thus, if
one insists on a true subdivision, the reachability problem
would not be solvable using our feedback methods. On the
other hand, Reachǫ(P ,F1) and Reachǫ(P ,F2) is a cover
for P, where Reachǫ(P ,F1) is the right-side of the red
line and Reachǫ(P ,F2) is the left-side of the green line.

To overcome the issue in the above example, we subdi-
vide P alongO and then use a cover in each subpolytope
according to two possible target sets. Let Reachǫ(P ,F)
denote a closed polyhedral ǫ-approximation of the set of
states which can reach F from P , as obtained, for exam-
ple, by Algorithm 1 of [11]. (Note that these computa-
tions are explicit due to the simplicity of the reachable
sets for hypersurface systems).

Cover of P with respect to O: (Let ǫ > 0 be suffi-
ciently small.)

(a) Divide P along O to obtain P1 and P2.
(b) If dim(Pi ∩ F) = n − 1, compute Qi1 :=

Reachǫ(Pi,Pi ∩ F), i = 1, 2. Otherwise Qi1 = ∅.
(c) If dim(Pi ∩ Qj1) = n − 1, compute Qi2 :=

Reachǫ(Pi,Pi ∩ Qj1), i = 1, 2, j 6= i. Otherwise
Qi2 = ∅.

(d) Define the cover P := {Q11,Q12,Q21,Q22}.

Theorem 16 P
P
−→ F by open-loop controls if and only

if P
P
−→ F by piecewise affine feedback.

The main idea of the result is that when P is partitioned
along O, there are only two types of points in each sub-
polytope: those that reachF while remaining in the sub-
polytope, or those that cross over to the other polytope
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to then reachF . The essential idea rests on the following
technical lemma. It’s proof as well as that of Theorem 16
may be found in [12].

Lemma 17 Let F1 and F2 be two (n − 1)-dimensional
polytopes on the boundary of P but not on a common

hyperplane and assume
o

P ∩ O = ∅. If P
P
−→ F1 ∪

F2, then there exists ǫ > 0 sufficiently small such that
Reachǫ(P ,F1) ∪ Reachǫ(P ,F2) = P.

7 Conclusion

We have presented methods of triangulation, subdivi-
sion, and covers for a control problem for affine hyper-
surface systems. Some unique features of this work are:
(1) We do not impose what class of controls should be
used to implement the reachability specifications. Be-
cause of the structure of hypersurface systems, we then
derive that piecewise affine feedbacks are a sufficiently
rich class. (2) We place emphasis on triangulation and
subdivision, guided by the the principle that these can-
not be performed independently of control synthesis. In
particular, by proper triangulation we establish greedy
dynamic programming algorithms that are guaranteed
to outperform dynamic programming algorithms based
on random triangulations: our algorithm always finds
a solution when one exists via open-loop control. (3)
We introduce a technique of covers which overcomes
the technical problems with taking subdivisions. Fortu-
nately, it naturally leads to synthesis of piecewise affine
feedbacks.
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