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Abstract— The problem is studied of achieving a specified
formation among a group of mobile autonomous agents by
distributed control. If convergence to a point is feasible, then
more general formations are achievable too, so the focus is
on convergence to a point (the agreement problem). Three
formation strategies are studied and convergence is proved
under certain conditions. Also, motivated by the question of
whether collisions occur, formation evolution is studied.

I. INTRODUCTION

In 1987 Reynolds [16] introduced a model and wrote a
program called boids [17] that simulates a flock of birds
in flight; they fly as a flock, with a common average
heading, and they avoid colliding with each other. Each
bird has a local control strategy, yet a desirable overall
group behavior is achieved. The local strategy of each bird
has three components: separation, steer to avoid crowding;
alignment, steer towards the average heading of neighbors;
cohesion, steer towards the average position of neighbors.
Recently, Jadbabaie et al. [7] formulated a 2-dimensional
version of Reynolds’ setup and studied one of the steering
strategies. They proved that the alignment strategy leads,
under a certain assumption (the graph representing which
agents are neighbors of another always is connected, or
at least periodically connected), to the result that all the
agents’ headings converge to a common heading. Besides
being of interest in biology, Reynolds’ ideas have relevance
in the subject of multiple vehicle formations, e.g., [20],
[19], [15]. Generally, the objective is for a group of mobile
agents (robot rovers, unmanned air vehicles, or unmanned
underwater vehicles) either to achieve a formation, or to
move while maintaining a formation, or to reconfigure from
one formation to another.

Recently, several researchers have investigated issues in
distributed algorithms for multi-agent systems. In [19], a
group of simulated robots form approximations to circles
and simple polygons, using the scenario that each robot
orients itself to, e.g., the furthest and nearest robot. In
[3], a similar setup is presented, but collision avoidance
and group motion, e.g., a matrix formation performing
a right turn, are also considered. And in [1], [13], [14],
distributed algorithms are studied where a set of robots
represented as points in the plane should converge to a
point; this is termed an agreement problem [1]. Besides the
objective of rendezvousing at a common point, convergence
is important for another reason: If convergence to a point is

feasible, then more general formations are achievable too,
as we show. Other relevant recent references are [4], [5],
[9], [11], [15], [21], [22].

In this paper we study the suitability of three formation
strategies. The first is cyclic pursuit. Cyclic pursuit is
interesting because it is decentralized and requires the
minimum number of communication links (n links for n
agents) to achieve a formation. It is well known (e.g., [2])
that under this strategy the agents converge to a point.
Motivated by the question of whether collisions occur,
we also study formation evolution. We show that if the
agents initially are arranged in a counterclockwise star
formation or a clockwise star formation, then they are
always so arranged, and therefore there is no collision. We
also study a modified strategy, where an agent pursues the
virtual displacement of another. We study the achievable
formations in this case.

In the second and third formation strategies, each agent
can sense only some neighbor agents; first the undirected-
graph case where if agent i senses agent j, then j senses i
(the sensor graph is undirected); then the general directed-
graph case (the sensor graph is directed).

Our setup is extremely simple: An agent is a point in the
complex plane with no kinematic constraints of motion. In
future work the agents will be wheeled vehicles; [12] has
a study of unicycles under cyclic pursuit.

II. CYCLIC PURSUIT

Consider n ordered and numbered points, z1, . . . , zn, in
the complex plane. Each represents a freely mobile agent.
We consider the local strategy where each agent pursues
the next one in the order. Thus, the model is

żi = zi+1 − zi, i = 1, . . . , n− 1; żn = z1 − zn,

which can be assembled into vector form ż = Az. The
matrix A has one eigenvalue at the origin, all others having
negative real part. Consequently [2], for all initial locations
of the agents, the centroid of the points z1(t), . . . , zn(t) is
stationary and every zi(t), i = 1, 2, . . . , n converges to this
centroid.

Convergence to a common location is an instance of an
agreement problem. Besides being of interest in its own
right, if convergence to a point is achievable, then other
formations are achievable by a simple modification, where



each agent pursues a displacement of the next agent:

żi = (zi+1+ci)−zi, i = 1, . . . , n−1; żn = (z1+cn)−zn.

The vector form is ż = Az + c. If the centroid of the
points c1, . . . , cn is not at the origin, then the centroid of
the agents moves off to infinity. To avoid this, we must
assume that the centroid of the points c1, . . . , cn is at the
origin. Then c ∈ E , the eigenspace of A corresponding to
eigenvalues with negative real parts, and there is a unique
d ∈ E such that Ad+c = 0. The next result follows easily.

Theorem 1: Assume the centroid of the points
c1, . . . , cn is at the origin. Then for any initial positions
of the agents, the centroid of the points z1(t), . . . , zn(t)
is stationary and every zi(t) converges to this centroid
displaced by di.

A simulation to achieve an equilateral triangle formation
is shown in Fig. 1. The initial locations of the six agents
are randomly produced and the displacement vector is

c = (−5+j5
√
3,−5+j5

√
3, 10, 10,−5−j5

√
3,−5−j5

√
3).

Now we turn to formation evolution, motivated by the
issue of collision avoidance. Consider n distinct points
z1, . . . , zn, not all collinear; see Fig. 2. Let z0 be their
centroid and ri be the distance between zi and the centroid.
Let αi denote the counterclockwise angle from line

−→
z0zi

to line
−→
z0zi+1 for i = 1, . . . , n − 1 and αn denote the

counterclockwise angle from line
−→
z0zn to line

−→
z0z1.

Definition 1: The n points are said to be arranged in a
counterclockwise star formation if ri > 0 and αi > 0 for
all i = 1, . . . , n and

∑n

i=1 αi = 2π. They are said to be
arranged in a clockwise star formation if ri > 0 and αi < 0
for all i = 1, . . . , n and

∑n
i=1 αi = −2π.

In what follows, we consider only counterclockwise
star formations, since clockwise star formations require an
analogous treatment. Also, the case n = 2 is trivial (the
agents move in a straight line toward each other), so is
omitted. Our main result is as follows.

Theorem 2: Suppose n > 2 distinct points initially are
arranged in a counterclockwise star formation. Under cyclic
pursuit they remain in a counterclockwise star formation.
(In particular, they never collide).

The proof requires some preliminary lemmas, whose
proofs can be found in [10]. The first lemma is a tool
for studying angles.
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Fig. 1. Achieving an equilateral triangle formation.
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Fig. 2. A counterclockwise star formation.

Lemma 1: Let z1, z2, z3 be three points in the complex
plane, as shown in Fig. 3. Let α denote the counterclock-
wise angle from line

−→
z2z1 to line

−→
z2z3, r1 = |z1 − z2| and

r3 = |z3 − z2|. Define F = ={(z1 − z2)(z3 − z2)}. Then

(a) 0 < α < π, r1 > 0, and r3 > 0 iff F > 0,
(b) π < α < 2π, r1 > 0, and r3 > 0 iff F < 0,
(c) the points are collinear iff F = 0.

Lemma 2: If n points z1, . . . , zn under cyclic pursuit are
all collinear at some time t1, then they are collinear for all
t < t1 and t > t1.
Proof of Theorem 2 Consider the functions

Fi(t) = ={(zi(t)− z0)(zi+1(t)− z0)}, i = 1, . . . , n− 1,
Fn(t) = ={(zn(t)− z0)(z1(t)− z0)}.

By the definition of a counterclockwise star formation,
ri(0) > 0 and 0 < αi(0) < π, where αi, i = 1, 2, . . . , n
are as in Fig. 2. Hence, by Lemma 1, Fi(0) > 0, ∀i. We
want to show that Fi(t) > 0 for all t, implying ri(t) > 0
and 0 < αi(t) < π for all t, by Lemma 1. This means the
points remain in a counterclockwise star formation.

Suppose by way of contradiction that some Fi, namely
Fm, becomes zero at the first time t1. We can select m such
that Fm+1(t1) > 0, for if all Fi’s are zero at t1, the points
are all collinear, by Lemma 1, which is a contradiction,
by Lemma 2. Furthermore, for simplicity we renumber
the indices if necessary so that m + 2 ≤ n. We have
Fm(t1) = 0; Fm+1(t1) > 0; and Fi(t) > 0, ∀t ∈ [0, t1),
i = 1, 2, . . . , n. Taking the derivative along trajectories of
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the system ż = Az and noting that ż0 = 0, we have

Ḟm = ={żm(zm+1 − z0)}+ ={(zm − z0)żm+1}
= −2Fm +Gm,

where Gm = ={(zm − z0)(zm+2 − z0)}. Observe that
Gm = rmrm+2 sin (αm + αm+1).

By Lemma 1, Fm(t1) = 0 implies that at t1 either
rm = 0; rm+1 = 0; αm = 0 and rm, rm+1 > 0; or
αm = π and rm, rm+1 > 0. We cannot have rm+1 = 0
since Fm+1(t1) > 0. Condition αm = π and rm, rm+1 > 0
is also impossible, since αi(t1) ≥ 0, ∀i, so all the points are
either on the line formed by zm+1 and zm, a contradiction,
or they are on or to one side of it, implying the centroid is
not on the line formed by zm+1 and zm, also a contradic-
tion. So consider the case that αm = 0 and rm, rm+1 >
0 at t1. Then Gm(t1) = (rm/rm+1)Fm+1(t1). Hence
Gm(t1) > 0. By continuity of Gm, there exists 0 ≤
t0 < t1 such that Gm(t) > 0 for all t ∈ [t0, t1].
Also, by assumption, Fm(t) > 0 for t ∈ [0, t1). Hence,
Ḟm = −2Fm + Gm > −2Fm, t ∈ [t0, t1). Therefore
Fm(t) > exp (−2(t− t0))Fm(t0) > 0, t ∈ [t0, t1). By
continuity of Fm, Fm(t1) > 0, a contradiction.

Finally, consider the case that rm = 0 at t = t1. Suppose
that by a rotation of the coordinate system, if necessary,
zm+1(t1) = −r, where r = rm+1(t1) > 0. Also, to
keep the notation simple, we renumber the points so that
m = n− 1. We have żm(t1) = zm+1(t1)− zm(t1) = −r.
Let k < m be such that rk(t1) 6= 0 and rj(t1) = 0
for j = k + 1, . . . ,m. Such a k exists, for if rj(t1) =
0 for all j 6= m + 1, then 0 is not the centroid, a
contradiction. Now if n = 3, we must have ={zk(t1)} = 0;
otherwise 0 is not the centroid. Then, the points are all
collinear, a contradiction by Lemma 2. If n > 3, since
αi(t1) ≥ 0, ∀i, we must have that ={zk(t1)} > 0, for
if ={zk(t1)} = 0 then ={zi(t1)} ≤ 0, ∀i, implying
the points are all collinear or the centroid is not 0, both
contradictions. The geometry of the situation is depicted
in Fig. 4. Let θk(t1) = δ > 0. By continuity of θk, there
exists t0 < t1 such that for t ∈ [t0, t1], θk(t) > δ/2. Since
the points are in a counterclockwise star formation until t1
we have that θm(t) > θk(t) for t ∈ [t0, t1). By definition
zm(t1) − zm(t1 − h) = hżm(t1) + O(h). We obtain
<{zm(t1−h)} = rh+O(h) and ={zm(t1−h)} = O(h).
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Fig. 4. Illustration for points at t1.

Thus, for h > 0 sufficiently small <{zm(t1−h)} > 0 and
we know ={zm(t1 − h)} > <{zm(t1 − h)} tan δ/2, with
0 < δ/2 < π/2. Combining these facts we obtain O(h) >
(rh + O(h)) tan δ/2. Dividing by h and taking the limit
as h → 0 we obtain limh→0 |O(h)/h| > r tan δ/2 > 0, a
contradiction. ¥

The reader is referred to [18] for further interesting
results on formation evolution under cyclic pursuit.

III. SENSORS WITH A LIMITED FIELD OF VIEW:
UNDIRECTED-GRAPH CASE

In this section, adapting the setup in [7] we study a
different control strategy that is motivated by Reynolds’
cohesion steering strategy. Suppose as before that there are
n autonomous agents represented by points in the complex
plane and numbered 1 through n; the agents don’t need to
know the labels. Each agent has a sensor with a limited
field of view, in that it can see and know the relative
positions of only those agents that are within some distance
of itself, called neighbor agents. Let Ni(t) denote the set
of labels of agent i’s neighbor agents at time t. Reynolds’
cohesion strategy is for agent i to steer towards the average
of the neighbor agents’ directions. For a technical reason
(namely, to get a common Lyapunov function), we consider
where agent i steers towards the sum of the neighbor
agents’ directions. Thus the kinematic equation is

żi(t) =
∑

j∈Ni(t)

[zj(t)− zi(t)], i = 1, . . . , n. (1)

We use an undirected graph G with vertex set
{z1, z2, . . . , zn} to describe the sensor relationship among
agents: (zi, zj) is an edge iff agents zi and zj are within
sensor range of each other (all the sensors are assumed
to have the same range). We call this the sensor graph.
The sensor relationship changes over time, so the sensor
graph changes too. Let {Gp : p ∈ P} denote the class of
all possible undirected graphs defined on n vertices. Corre-
sponding to each graph Gp, let Jp denote the (symmetric)
adjacency matrix, let Dp denote the diagonal matrix whose
ith diagonal element is the valence of vertex i, and define
Ap = Jp −Dp (the negative of the Laplacian).

At time t, let the sensor graph be Gp(t) and let the
corresponding matrix be Ap(t). The overall system is then

ż(t) = Ap(t)z(t), (2)

where z(t) is the position vector. The signal p(t) switches
among a finite number of values as t progresses. It is
assumed that chattering doesn’t occur, that is, that p(t)
switches a finite number of times in every finite time
interval. Then (2) has a well-defined solution.

Our goal is to show that, for a class of switching signals
p(t) and a class of initial configurations of the agents, all
agents converge to the same point (i.e., the centroid). We
need an assumption to prove this (the same assumption as
in [7]), namely, that the sensor graph is always connected.



Theorem 3: With regard to system (2), assume Gp(t) is
connected for every t ≥ 0. Then the centroid of the points
z1(t), . . . , zn(t) is stationary and every zi(t) converges to
this centroid.
Proof If Gp is connected, Ap has the properties that
every row sum is equal to 0, the diagonal elements are
less than 0, and the other elements are non-negative. Thus,
letting aij denote the ijth element of Ap, we have −aii =∑

j 6=i aij > 0, ∀i. Hence, from Gerschgorin’s theorem, the
eigenvalues of Ap are in the set {λ : Re λ < 0 orλ = 0}.
In particular, the nonzero eigenvalues have negative real
parts.

Next we observe, again when Gp is connected, that Ap

has a unique zero eigenvalue, i.e., rank Ap = n−1. To see
this, note that Dp is nonsingular and define a new matrix

Ãp = D−1
p Ap = Bp − I, Bp := D−1

p Jp.

The associated graph G(Jp) is connected, and so is the
associated graph G(Bp). Therefore, Bp is irreducible. By
the Perron-Frobenius theorem, Bp has a unique largest
real eigenvalue λ1, and the other eigenvalues λi, i =
2, . . . , n, satisfy Re λi < λ1. So Ãp, with eigenvalues
{λ1− 1, . . . , λn− 1}, has a unique largest real one. Using
Gerschgorin’s theorem again, we know that the eigenvalues
of Ãp are in the set {λ : Re λ < 0 orλ = 0} and also we
know that Ãp has a zero eigenvalue. Consequently, Ãp has
a unique largest eigenvalue λmax = 0, i.e., rank Ap =
rank Ãp = n− 1.

For every t, Ap(t) has λ = 0 as an eigenvalue of
multiplicity 1 and the vector v of 1’s is a common
eigenvector. Thus E0 = span {v} is a common eigenspace
and its orthogonal complement, E1, is the sum of all
the other eigenspaces, for all t. The trajectory looks like
z(t) = av + w(t), w(t) ∈ E1 and it remains to show that
w(t)→ 0.

Since w(t) = z(t) − av and Ap(t)v = 0, we have
ẇ(t) = ż(t) = Ap(t)z(t) = Ap(t)w(t). We know that
for any w(0) ∈ E1, the solution w(t) ∈ E1, ∀t ≥ 0. In
other words, E1 is a positively invariant set for the system
ẇ(t) = Ap(t)w(t). Choose the Lyapunov function V (w) =
(1/2)wTw. Take the derivative of V (w(t)) along the
solution of ẇ(t) = Ap(t)w(t): V̇ (w(t)) = wT (t)Ap(t)w(t).
Then, V̇ (w(t)) = wT (t)Ap(t)w(t) ≤ −W (w(t)), where
W (w) := −(max

p
λp1)w

Tw, λp1 is the largest nonzero

eigenvalue of Ap, and the max is over all p for which the
sensor graph is connected. Thus W (w) > 0, ∀w ∈ E1−{0}
and W (0) = 0. Therefore, by the Lyapunov stability
theorem for non-autonomous systems [8], the trajectory
starting in E1 converges to 0. ¥

We simulated twenty mobile autonomous agents. In Fig.
5, the sensor range was adequate; in Fig. 6 it was not.

IV. SENSORS WITH A LIMITED FIELD OF VIEW:
DIRECTED-GRAPH CASE

In the previous section, we considered where each au-
tonomous agent can sense only those agents within a disk
of pre-specified radius centered about itself. What if the
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Fig. 5. Sensor range is 30.
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Fig. 6. Sensor range is 25.

camera doesn’t have disk-like visibility but a cone-like field
of view? In this section, we will present a general result
about convergence of a group of agents. Again, we borrow
a technique from [7], namely, use of Wolfowitz’s theorem.

We consider the local control strategy where each agent
pursues the centroid of the subgroup of sensed agents
at time t. Let ni(t) denote the cardinality of Ni(t) (the
number of agents sensed by agent i at time t). Then the
i-th agent’s kinematic equation is

żi(t) =

{ 1
ni(t)

∑
j∈Ni(t)

{zj(t)− zi(t)}, ni(t) 6= 0,

0, ni(t) = 0.
(3)

The sensor graph is now directed. Let {Gp : p ∈ P}
denote all possible directed graphs Gp defined on n vertices.
Corresponding to each directed graph Gp, let Jp denote the
adjacency matrix, let Dp denote the diagonal matrix whose
ith diagonal element is the number of directed edges from
vertex i to others, and let Up denote the diagonal matrix
whose ith diagonal element is the reciprocal of the ith
diagonal element of matrix Dp if it is not zero, and 0 if it
is zero. Define Ap = Up(Jp−Dp). Then the model is (2).

Assuming connectedness of the graph for all t is too
strong. Rather let Gp(t) be disconnected some times and
connected other times. We denote by {Gp : p ∈ Q} all
strongly connected graphs.

Theorem 4: Assume the switching signal p(t) is piece-
wise constant and there exists a positive T so that p(t) ∈ Q
at least once in each time interval of length T . Then each
zi(t) converges to the same point a, where a depends only
on z(0) and p(t).

Some preliminaries are required for the proof. A non-
negative matrix has all entries nonnegative; a square real
matrix is row stochastic if it is nonnegative and its row
sums all equal 1.

Theorem 5: [23] Let {P1, P2, . . . } be a finite or infinite
set of row stochastic matrices satisfying 0 ≤ λ(Pi) ≤
β < 1. Then for each infinite sequence, Pk1

, Pk2
, . . . , there

exists a row vector c such that lim
j→∞

Pkj
Pkj−1

· · ·Pk1
= 1c,

where 1 := [ 1 1 · · · 1 ]T .
This version of Theorem 5 is somewhat stronger than

Wolfowitz’s original version, in that an infinite number of



matrices are allowed. The proof of the modified one is
given in [10].
Proof of Theorem 4 Suppose p changes its value at time
instants t0 = 0 < t1 < t2 < · · · . If there are actually only
finitely many switches, the final at tm, artificially define
tm+j = tm + jb, j = 1, 2, . . . , where b > 0. So the time
R

+ can be divided into an infinite number of time intervals
[t0, t1), [t1, t2), . . . . Since p(t) is piecewise constant, there
exist tmax, tmin > 0 such that tmin ≤ ti+1 − ti ≤ tmax.
Also, Ap(t) = Ap(ti), ∀t ∈ [ti, ti+1). From (2)

z(t) = eAp(ti)
(t−ti)eAp(ti−1)(ti−ti−1) · · · eAp(t0)(t1−t0)z(0).

Define Φ(t, ti) = eAp(ti)
(t−ti), t ∈ [ti, ti+1], so

z(t) = Φ(t, ti)Φ(ti, ti−1) · · ·Φ(t1, t0)z(0), t ∈ [ti, ti+1].

For the given T , generate a subsequence {tmj
} of {ti} as

follows: (1) Set tm0
= t0 = 0. (2) If T ∈ (ti−1, ti], set

tm1
= ti. (3) If tm1

+ T ∈ (ti−1, ti], set tm2
= ti. And so

on. Then taking Tj = tmj
, we have

z(T1) = Φ(tm1
, tm1−1)Φ(tm1−1, tm1−2) · · ·Φ(t1, t0)z(0)

=: Ψ1z(0),

z(T2) = Φ(tm2
, tm2−1) · · ·Φ(tm1+1, tm1

)z(T1)
=: Ψ2z(T1) = Ψ2Ψ1z(0),

and so on so that z(Tj) = ΨjΨj−1 · · ·Ψ1z(0).
We now show that lim

j→∞
z(Tj) = a1, for which suffices

to show that lim
j→∞

Ψj · · ·Ψ1 = 1c, where c is a row vector.

(Then a = cz(0).) The matrix Ap, p ∈ P , satisfies (a)
Apii

≤ 0, ∀i; (b) Apij
≥ 0, ∀i 6= j; (c)

∑
j

Apij
= 0,

∀i. Hence by Theorem 29, p. 151, of [6], we know that
Φ(ti+1, ti) = eAp(ti)

(ti+1−ti) is row stochastic and the
diagonal elements are lower-bounded by a positive value
ε1 since P is a finite set and ti+1 − ti is in the closed
interval [tmin, tmax]. Furthermore, for p ∈ Q (i.e., Gp is
strongly connected), Ap = Up(Jp −Dp) = UpJp − I , and
the matrix Vp := UpJp is irreducible. Hence,

Φ(ti+1, ti) = eAp(ti)
(ti+1−ti) = e−I(ti+1−ti)eVp(ti)

(ti+1−ti)

= e−(ti+1−ti)
{
I + Vp(ti)(ti+1 − ti) + · · ·

}
.

From the above expression, we can see that if p ∈ Q, each
element of Φ(ti+1, ti) is lower-bounded by a positive value
ε2. That is, Φ(ti+1, ti) ≥ ε2M, i = 0, 1, 2, . . . , where
M is a matrix with all elements 1 and the inequality is
componentwise.

If p(t) ∈ Q happens at least once in each
time interval of length T , then at least one of the
transition matrices Φ in the matrix product Ψj =
Φ(tmj

, tmj−1) · · ·Φ(tmj−1+1, tmj−1
) is row stochastic

with each element greater than ε2, and the others are row
stochastic matrices with each diagonal element greater than
ε1. In each time interval of length T , there are a finite
number of switching times. Let’s say the maximum number
of switching times is K for every time interval of length

T . As a result, Ψj , j = 1, 2, . . . is row stochastic and each
element is lower-bounded by ε2ε

K−1
1 . Thus, 0 ≤ λ(Ψj) ≤

1−nε2ε
K−1
1 < 1, j = 1, 2, . . . . Therefore, by Theorem 5,

lim
j→∞

Ψj · · ·Ψ1 = 1c, where c is a row vector.

Now we have to look at the times between the instants
{0, T1, T2, . . . }. For t ∈ [Tj , Tj+1],

z(t) = Φ(t, tmj+k) · · ·Φ(tmj+1, tmj
)z(Tj) =: Φ̃z(Tj),

where Φ̃ is a row stochastic matrix since Φ(t, tmj+k),. . . ,
Φ(tmj+1, tmj

) are all row stochastic. Hence, zi(t) is in the
convex hull of the set {zi(Tj) : i = 1, 2, . . . , n}. It follows
by a simple convexity argument that

max
i1,i2

‖zi1(t)− zi2(t)‖ ≤ max
q1,q2

‖zq1
(Tj)− zq2

(Tj)‖.

We conclude that limt→∞ z(t) = a1, where a is a complex
number depending only on z(0) and p(t). ¥

Theorem 4 is related to Theorem 2 in [7], with the
following main differences: The setup in Theorem 2 of [7]
is discrete-time whereas ours is continuous-time; the sensor
graph in Theorem 2 of [7] is undirected whereas our’s is
directed; the original theorem of Wolfowitz, with finitely
many matrices, is used in Theorem 2 of [7] (indeed, the au-
thors in [7] say: “The finiteness of the set M1,M2, . . . ,Mm

is crucial to Wolfowitz’s proof.”) whereas we needed a
version with infinitely many matrices.

Fig. 7 shows a simulation for n = 5. Each agent has a
cone-like field of view with infinite radius and 90 degree
angle. Each agent is programmed to rotate its view angle
90◦ clockwise if there are no other agents in its field of
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Fig. 7. Trajectories and the sensor graphs as the system evolves.



view. From Fig. 7, we can see that the initial sensor graph
is not strongly connected. As the system evolves, the sensor
graph might be strongly connected for some time and then
disconnected for some other time.

As a final comment, it’s not necessary for each agent
to pursue the centroid of the subgroup of sensed agents to
achieve convergence. Considering a more general control
strategy based on a general linear combination of the
subgroup, we have the i-th agent’s kinematic equation

żi(t) =
∑

j∈Ni(t)

aij(t)[zj(t)− zi(t)], aij > 0, (4)

or in vector form ż(t) = Ã(t)z(t), where element (i, i)
of Ã(t) is − ∑

j∈Ni(t)

aij(t) and element (i, j) is aij(t) if

j ∈ Ni(t) and 0 otherwise.
Theorem 4 still applies to this general system. Notice

that cyclic pursuit is a special case of (4), where aij(t) = 1
and Ni(t) = {i + 1}, i = 1, 2, . . . , n − 1, Nn(t) = {1};
and (3) is a special case of (4), where aij(t) = 1 and Ni(t)
contains the labels of agent i’s neighbor agents at time t.

V. CONCLUSION

Control of systems consisting of several autonomous
agents that are intended to perform a coordinated task is
currently an important and challenging field of research.
This is due to the broad range of applications of multi-
agent systems in space missions, operations in hazardous
environments, and military operations. In this paper, we
studied three formation strategies for coordinated control
of groups of mobile autonomous agents modeled as point
masses with full actuation. Each agent relies only on
locally available information, namely, the relative locations
of a sensed subgroup of agents. Global information and
communication are not required. Instead, local sensors
(perhaps vision) can be used to generate effective global
group behavior.
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