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Abstract

The problem is studied of achieving a specified formation among a group of mobile au-
tonomous agents. The focus is on three alignment strategies. In the first, agent 1 should pursue
agent 2, agent 2 should pursue agent 3, etc. It is well known that under this strategy all agents
converge to a point. We also study whether collisions occur, showing that if the agents initially
are arranged in a counterclockwise or clockwise star formation, then they are always so arranged
and no collisions occur. A modified strategy is also studied, where agent ¢ pursues a virtual
displacement of agent ¢ + 1, and achievable formations are characterized.

In the second alignment strategy, each agent can see only its neighbor agents, typically
those within a given radius. We develop a strategy for each agent based on such a sensor. The
situation is more complicated than the first, because agents may go in and out of another agent’s
sensor range, so the model is time-varying. Our strategy is proved to result in convergence of
all agents to a point.

In the third alignment strategy, each agent senses a subgroup of agents and pursues the
centroid of the subgroup. We represent the sensing relationship among a group of mobile
autonomous agents by a directed graph where the vertices represent the agents. Convergence is
proved for whatever field of view, despite the absence of centralized coordination and despite the
fact that the subgroup of agents sensed by each agent changes over time as the system evolves.
Furthermore, a more general control strategy is concluded to achieve the same result.
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1 Introduction

In 1987 Craig Reynolds [4] introduced an elaborate model and wrote a program called boids [5]
that simulates a flock of birds in flight; they fly as a flock, with a common average heading, and
they avoid colliding with each other. Each bird has a local control strategy—there’s no leader
broadcasting instructions—yet a desirable overall group behavior is achieved. The local strategy of
each bird has three components: separation, steer to avoid crowding; alignment, steer towards the
average heading of neighbors; cohesion, steer towards the average position of neighbors. Recently,
Jadbabaie et al. [3] formulated a simple mathematical 2-dimensional version of Reynolds’ setup
and studied one of the steering strategies. They proved that the alignment strategy leads, under a
certain assumption (the graph modeling who are neighbors of whom always is connected, or at least
periodically connected), to the result that all the agents’ headings converge to a common heading.

Besides being of interest in biology (where it is apparently not well understood how birds flock
or fish school), Reynolds’ ideas have relevance in the subject of multiple vehicle formations, e.g.,
9], [12], [17]. Generally, the objective is for a group of mobile agents (robot rovers, unmanned
air vehicles, or unmanned underwater vehicles) either to achieve a formation, or to move while
maintaining a formation, or to reconfigure from one formation to another.

The study of the problem of achieving global behavior in a group of robots using only local
control strategies can be traced back 125 years. As mentioned in [2], Edouard Lucas (1877) had
proposed the following problem: “Three dogs are placed at the three vertices of an equilateral
triangle; they run one after the other, what is the curve described by each of them?” and Henri
Brocard (1880) gave the solution: “Let us suppose that the three dogs start simultaneously and
with the same speed, the pursuit curve for each dog is a logarithmic spiral which is equiangular,
and three dogs meet at a point in the center of the triangle known as a Brocard point.”

More recently, several researchers began investigating issues in distributed algorithms for multi-
agent systems. In [12], a group of simulated robots form approximations to circles and simple
polygons, using the scenario that each robot orients itself to, e.g., the furthest and nearest robot.
In [16], a similar setup is presented, but the collision avoidance and the group motion, e.g., a
matrix formation performing a right turn, are also considered. And in [7], [19], [20], distributed
point convergence algorithms are discussed, where a large set of robots represented as points in the
plane congregate at a single position. Moving synchronously in discrete time steps, robots iteratively
observe neighbors within some visibility range, and follow simple rules to update their positions.
Also, research papers focusing on the detailed mathematical analysis of emergent behavior are
beginning to appear. One example is the use of nearest-neighbor tracking strategies, where simple
navigation rules are used locally to generate desired global formations. For example, in [14] and
[15], Wang proposed a scheme where agents are instructed to track the motions of their nearest
neighbor, while one agent is provided with a reference trajectory and is designated to be the group
leader. In [10], the key idea was that each robot keeps a single friend at a desired angle to have n
mobile robots establish and maintain some predetermined geometric shape. Paper [17] addresses
distributed structural stabilization of a formation of multiple vehicles using structural potential
functions obtained naturally from the formation graphs of the vehicles. In [13], artificial potential
functions are used for coordination of multiple vehicles.



In this paper we study the suitability of three alignment strategies. In the first, we suppose
the agents have been numbered and marked, from 1 to n. Agent 1 can always see agent 2, agent 2
can always see agent 3, and so on, and finally agent n can always see agent 1. Thus the agents need
be outfitted only with on-board local sensors, such as cameras. The strategy is that agent 1 should
pursue agent 2, agent 2 should pursue agent 3, etc. It is well known that under this strategy all
agents converge to a point. We give a simple proof of this fact. We also study whether collisions
occur. We show that if the agents initially are arranged in a counterclockwise star formation or a
clockwise star formation, then they are always so arranged, and therefore there is no collision. Of
course, all agents being at a point is very specialized as a desirable configuration. So we study a
modified strategy, where agent 7 pursues a virtual displacement of agent i + 1 (and agent n pursue
a virtual displacement of agent 1). We study the achievable formations in this case.

In the second alignment strategy, each agent can see only its neighbor agents, typically those
within a given radius. We develop a strategy for each agent based on such a sensor. The situation
is more complicated than the first, of course, because agents may go in and out of another agent’s
sensor range, so the model is time-varying and could be modeled as a hybrid system. Our strategy
is proved to result in convergence of all agents to a point.

In the third alignment strategy, each agent senses a subgroup of agents and pursues the centroid
of the subgroup. We represent the sensing relationship among a group of mobile autonomous agents
by a directed graph where the vertices represent the agents. Convergence to a point is proved for
whatever field of view, despite the absence of centralized coordination and despite the fact that the
subgroup of agents sensed by each agent changes over time as the system evolves. Furthermore,
a more general control strategy is concluded to achieve the same result. Finally, the feasibility of
implementing our control strategies using local sensors is discussed.

Our setup is extremely simple: An agent is a point in the complex plane with no kinematic
constraints of motion. In future work the agents will be wheeled vehicles with non-holonomic
kinematic constraints.

2 A Strategy Based on Sequential Pursuit

Consider n ordered and numbered points, z1, ..., z,, in the complex plane. Each represents a freely
mobile agent. We consider the local strategy where each agent pursues the next one in the order.
Thus, for example, agent 1 pursues agent 2, so that the kinematic equation is

2',’1 =2Z9 — 2. (1)
Agent n pursues agent 1. In this way the overall model is

Zi=2i+1— %, t=1...,n—1,
Zp = Z1 — Zn,

or, in vector form,

z = Az, (2)



where A has the form A = P—1TI and P is the permutation matrix obtained by taking I and putting
its first row at the bottom:

010 ... 0
001 ... 0
P=1. . . . .
100 ... 0

It is interesting to observe that system (2) can be written as the closed-loop system for a
suitably defined decentralized feedback control law:

2(t) = u(t),

with the velocity control input

u(t) = —e(t), (3)
where e(t) is the error vector

e(t) == (I — P)z(t).

Notice in (1) that the velocity of z; is not constant in magnitude: The point slows down as z;

approaches zo. This is to keep the system linear. The constant-speed model would have been

. 22 — 21

H=—"
|22 — 21

We don’t study this case.

Theorem 1 Concerning system (2), for all initial locations of the agents, the centroid of the points
21(t), ..., 2n(t) is stationary and every z;(t), i = 1,2,...,n converges to this centroid.

Proof The characteristic polynomial of P is s” — 1. So the eigenvalues of P are the n'" roots of
unity, and therefore the eigenvalues of A are these roots of unity shifted left a distance of 1. That
is, A has an eigenvalue at the origin and n — 1 distinct eigenvalues strictly in the left half-plane.

An eigenvector, v, for the zero eigenvalue satisfies Av = 0, i.e., Pv = v. Thus all the compo-
nents of v are equal. Take them all to be 1. The corresponding eigenspace, &, is one-dimensional.

Let &1 denote the sum of all the other eigenspaces. It is claimed that £ and £ are orthogonal.
To see this, let A be a nonzero eigenvalue and w a corresponding eigenvector. Then

Pw=w+ \w.
Pre-multiply by v”" and use the fact that v P = v’ since v is all 1’s:

viw = vTw + Ml w.



Thus vT'w = 0.

Now consider the motion of 2 = Az. The initial state can be factored as
z(0) = av + w(0), (4)

where a is a constant, so av € &, and w(0) € & . Pre-multiply (4) by v” and use orthogonality of
&p and &£ to get that

vT2(0) = a x n,
that is, a = (21(0) + - -- + 2,(0))/n, the centroid of the initial points. The trajectory looks like
z(t) =av +w(t), w(t) € &.

Again, pre-multiplying by v”, we get that v’ z(t) is a constant. Thus, the centroid of the points
21(t), ..., 2zp(t) is stationary.

Finally, since w(t) — 0, we have z(t) — av, so that each z;(t) converges to a. [ |

Figure 1 demonstrates a simulation for six mobile autonomous agents using the local control
strategy based on sequential pursuit. Six agents are ordered and numbered clockwise. As another
example, the simulation result for converging to a single point of ten mobile autonomous agents is
shown in Figure 2. Here ten agents are ordered and numbered randomly. From Figure 2, it can be
seen that the trajectories of these autonomous agents may overlap.

Figure 1: Trajectories of six agents converging to a single point.

Now we consider a modified strategy where each agent pursues a displacement of the next
agent:

z'i:(zzqu—i—ci)—zz-, 1=1,...,n—1,

Zn = (21 4+ ¢n) — 2.
The vector form is

Z2=Az+c. (5)



Figure 2: Trajectories of ten agents converging to a single point.

Pre-multiply by v’
vz =vTe

Thus if v”'¢c # 0, that is, if the centroid of the points ¢, ..., ¢, is not at the origin, then the centroid
of the agents moves off to infinity. To avoid this, we must assume that v’ ¢ = 0. Then ¢ € &£, the
stable eigenspace, and there is a unique d € £; such that Ad+ ¢ = 0.

Theorem 2 Concerning system (5), assume the centroid of the points ci,...,c, is at the origin.
Then for any initial positions of the agents, the centroid of the points z1(t), ..., z,(t) is stationary
and every z;(t) converges to this centroid displaced by d;.

Proof The equation
z=Az+c

can be written as

d

E[z(t) —d) = Alz(t) —d+d] +c= Alz(t) — d].
;From Theorem 1, the centroid of the points z1(t) — dy,...,2,(t) — d,, is stationary and every
zi(t) — d; converges to this centroid. But the centroid of the points z1(t) —dy, ..., z,(t) — d, equals
the centroid of the points z(t),. .., z,(t). [ |

We simulate the modified control strategy where each agent pursues a displacement of the next
agent for six mobile autonomous agents as shown in Figure 3. The initial locations of the six agents
are randomly produced and the displacement vector is

c=[ =5+45v3, —5+35V3, 10, 10, —5—j5V3, —5—55v3 ] .

The simulation result shows that the group of agents achieves an equilateral triangle formation.
Also, Figure 4 shows a simulation for six mobile autonomous agents to achieve a line formation
using the same control strategy where the displacement vector is

c=1[10, 10, 10, 10, 10, —50]".
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Figure 3: Achieving an equilateral triangle formation for six mobile agents.

Figure 4: Achieving a line formation for six mobile agents.

Now we turn to the issue of collision avoidance. A collision occurs if z;(t) = z;(t) for some ¢
and 7 # j. Of course the setup is very idealized, as the agents are modeled as points and collisions
must therefore be very rare events indeed. Our study is actually more general and concerns how
the arrangement of agents evolves.

We begin with a tool for studying angles. Let z2_z>1 denote the directed line segment from a
point zo to another point z;.

Lemma 1 Let z1, 29,23 be three points in the complex plane, as shown in Figure 5. Let o denote
the counterclockwise angle from line z9z1 to line zoz3, r1 = |21 — 22| and r3 = |23 — 22|. Define
F =S3{(z1 — 22)(23 — 22)}. Then

(a) 0<a<m,r >0,andrs >0 4f F >0,
(b) r<a<2m,r >0, andr3 >0 iff F <O,

(c) the points are collinear iff F = 0.



Figure 5: Illustration for points z1, 29, 23 and angles «, 61, 05.

Proof We introduce polar form:
Z1 — %2 :Tlejgl, zZ3 — 22 :TgejQS,
where 01,605 are the angles shown in Figure 5. Then
F =3{(z1 — 22)(23 — 22)} = S{rie % r3e%} = S{rir3e’®} = rirssin(a).

Thus, 71 >0, r3 >0, and 0 < a<7wiff F > 0;and r; > 0,r3 >0and 7 < a < 27 iff F < 0. Also,

F=0ifa=0,a=m,r =0, or r3 =0, i.e., the points are collinear. |

Now we return to the system of n agents. Consider n distinct points zi,...,z,, not all
collinear. Let zy be their centroid and r; be the distance between z; and the centroid. Let ¢;
denote the counterclockwise angle from line zpz; to line zpz;4q for ¢ = 1,...,n — 1 and «,, denote

the counterclockwise angle from line zﬁn to line zo_z>1. See Figure 6.

Definition 1 The n points are said to be arranged in a counterclockwise star formation if r; > 0
and a; >0 for alli=1,...,n and Y. | a; = 2w. They are said to be arranged in a clockwise star
formation if r; > 0 and o; <0 for alli=1,... ,n and " | oy = —2m.

In what follows, we consider only counterclockwise star formations, since clockwise star for-
mations require an analogous treatment. Also, the case n = 2 is trivial, so is omitted. First we
require the following.

Lemma 2 Suppose that n distinct points z1,... ,z, with n > 2 form a counterclockwise star for-
mation. Then «; < 7.

Proof Suppose by way of contradiction and by renumbering the points, if necessary, that oy > .
Now we fix a coordinate system centered at zp with the positive real axis given by the ray from zj
passing through z;. Then we have 3{z;} = 0, S{22} < 0 and I{zx} < 0 for £ = 3,... ,n. Hence,
S{z0} =31, 3z} <0, a contradiction. [ |

n
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Figure 6: A counterclockwise star formation.

Lemma 3 If n points z1,... ,z, are all collinear at some time t1, then they are collinear for all
t<ty andt > t.

Proof Suppose the n (not necessarily distinct) points are all collinear at ¢ = t;. We reorient
the coordinate system so that they lie on the real axis R. Considering the system equation (2), if
zi €R i=1,...,n, then Z; € R, Vi. This means R" is an invariant subspace of system (2). Hence,
zi(t) € R for all time, implying the points are collinear for all ¢. [ |

Theorem 3 Suppose that n distinct points, with n > 2, initially are arranged in a counterclockwise
star formation. Then the points remain in a counterclockwise star formation; in particular, they
never collide.

Proof Consider the functions

(Zi(t)—Z())(zZ-+1(t)—z0)}, i = 1,...,TL—]_,
(zn(t) = 20)(21(t) — 20)} -

&

{
{

By the definition of a counterclockwise star formation and Lemma 2, ;(0) > 0 and 0 < «;(0) < m,
where «;, i = 1,2,...,n are as in Figure 6. Hence, by Lemma 1, F;(0) > 0, Vi. We want to show
that Fj(t) > 0 for all ¢, implying r;(¢) > 0 and 0 < «;(t) < 7 for all ¢, by Lemma 1. This means
the points remain in a counterclockwise star formation.

Suppose by way of contradiction that some Fj;, namely F,,, becomes zero at the first time ;.
We can select m such that Fj,,11(¢1) > 0, for if all F;’s are zero at t1, the points are all collinear,



by Lemma 1, which is a contradiction, by Lemma 3. Furthermore, for simplicity we renumber the
indices if necessary so that m + 2 < n. We have

F, (tl)
Fria(th)
Fi(t)

vV Vv

0 Vte0,t), i=12...,n.

Taking the derivative along trajectories of the system 2 = Az and noting that 2y = 0 by Theorem 1,
we have

B = S{ém (zm+1 — 20)} + %{mznwl}
= S{(zm+1 — 2m) (Zm+1 — 20)} + S{(2m — 20) (2m+2 — 2m+1)}
= _2Fm + Gma

where G, = S{(zm — 20) (2m+2 — 20)}. Observe that

G = TmTm+2 8in (@, + Q1) -

By Lemma 1, F,,,(t1) = 0 implies that at ¢; either r,,, = 0; rp41 = 0; @y, = 0 and 7y, 71 > 05
or ay, = m and 7, a1 > 0. We cannot have 7,11 = 0 since F,11(t1) > 0. Condition oy, = 7
and 7, 7m41 > 0 is also impossible, since «;(¢1) > 0, Vi, so all the points are either on the line
formed by zp,+1 and z,, a contradiction, or they are on or to one side of it, implying the centroid
is not on the line formed by z,,+1 and z,,, also a contradiction. So consider the case that a,, =0
and rp,, P41 > 0 at ¢3. Then

'm
Gonltr) = =P (1),

Hence G,,(t1) > 0. By continuity of G,,, there exists 0 < ¢y, < #; such that G,,(t) > 0 for all
t € [to,t1]. Also, by assumption, Fy,(t) > 0 for ¢ € [0,¢;). Hence,

F,, =-2F,+ G, > —-2F,,, te [to,tl) .
Therefore
Fm(t) > exp (—2(t — to))Fm(tU) >0, t e [to,tl) .

By continuity of F,, F,,(t1) > 0, a contradiction.

Finally, consider the case that r,, = 0 at ¢ = t;. Suppose that by a rotation of the coordinate
system, if necessary, zpn4+1(t1) = —r, where r = r,,,11(¢1) > 0. Also, to keep the notation simple,
we renumber the points so that m = n — 1. We have Z,,(t1) = zm41(t1) — zm(t1) = —r. Let
k < m be such that ri(t;) # 0 and rj(t;) = 0 for j = k+1,...,m. Such a k exists, for if
rj(t1) = 0 for all j # m+1, then 0 is not the centroid, a contradiction. Now if n = 3, we must have
{2k (t1)} = 0; otherwise 0 is not the centroid. Then, the points are all collinear, a contradiction by

10
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Figure 7: Illustration for points at ;.

Lemma 3. If n > 3, since «;(t1) > 0, Vi, we must have that 3{z;(t1)} > 0, for if I{zx(¢1)} = 0 then
I{zi(t1)} <0, Vi, implying the points are all collinear or the centroid is not 0, both contradictions.
The geometry of the situation is depicted in Figure 7. Let 6x(¢t1) = ¢ > 0. By continuity of 6y,
there exists to < t1 such that for ¢ € [t, 1], Ox(t) > 0/2. Since the points are in a counterclockwise
star formation until ¢; we have that 6,,(t) > 6(¢) for ¢ € [to,t1). By definition

zm(t1) — Zm(t1 — h) = hzm(t1) + O(h)

where O(h)/h — 0 as h — 0. We obtain

Rizm(t —h)} = rh+O(h)
Szm(t —h)} = O(h).

Thus, for A > 0 sufficiently small R{z,,(¢; — h)} > 0 and we know {zp,(t;1 — h)} > R{z,(t1 —
h)}tan /2, with 0 < 6/2 < 7/2. Combining these facts we obtain

O(h) > (rh + O(h)) tan /2 .

Dividing by h and taking the limit as h — 0 we obtain limj,_,q|O(h)/h| > rtand/2 > 0, a
contradiction. |

3 A Strategy for Sensors with a Limited Field of View

In this section we study a different control strategy that is motivated by Reynolds’ cohesion steering
strategy, and provide a rigorous analysis by adopting some ideas in [3]. Suppose as before that
there are n autonomous agents represented by points in the complex plane and numbered 1 through
n; the agents don’t need to know the labels. Each agent has a sensor with a limited field of view, in
the sense that it can see and know the relative positions of only those agents that are within some
distance of itself. And we call those neighbor agents. Let N;(¢) denote the set of labels of agent 4’s
neighbor agents at time ¢. Reynolds’ cohesion strategy is for agent ¢ to steer towards the average

11



of the neighbor agents’ directions. For technical reasons (i.e., for a tractable stability problem),
we consider where agent ¢ steers towards the sum of the neighbor agents’ directions. Thus the
kinematic equation is

4t)= > [zt)—z)], i=1...,n. (6)

JEN;(t)

We use an undirected graph G with vertex set {z1, 22, ..., 2, } to describe the sensor relationship
among agents at time ¢: (z;,z;) is an edge just in case agents z; and z; are within sensor range of
each other (all the sensors are assumed to have the same range). We call this the sensor graph. The
sensor relationship changes over time, so the sensor graph changes too. Let {G, : p € P} denote
the class of all possible undirected graphs defined on n vertices. Corresponding to each graph G,,
let J, € R**™ denote the adjacency matrix, whose ijth entry is 1 if (4, 7) is an edge and 0 if not,
let D, € R"™ " denote the diagonal matrix whose ith diagonal element is the valence of vertex i,
and define

Ap=J, — D,.
As an example, Figure 8 shows two sensor graphs for four agents. The two corresponding matrices
are
-1 1 0 0 -1 1 0 0
1 -2 1 0 1 -3 1 1
A= o 1 -2 11’ A= o 1 -2 1
0 0 1 -1 o 1 1 -2

Z1 22
|

'r
I
|

A

Figure 8: Two sensor graphs for four agents.

At time ¢, let the sensor graph be G, ;) and let the corresponding matrix be A, ;). The overall
system is then

2(t) = Apyz(1), (7)

where z(t) is the position vector. The signal p(t) switches among a finite number of values as ¢
progresses. It is assumed that chattering doesn’t occur, that is, that p(¢) switches a finite number
of times in every finite time interval. Then (7) has a well-defined solution.

12



Our goal is to show that, for a class of switching signals p(¢) and a class of initial configurations
of the agents, all agents converge to the same point (i.e., the centroid). We need an assumption to
prove this (the same assumption as in [3]), namely, that the sensor graph is always connected.

Theorem 4 With regard to system (7), assume Gy is connected for every t > 0. Then the
centroid of the points z1(t), ...,z (t) is stationary and every z;(t), i = 1,2,...,n converges to this
centroid.

The proof requires a lemma.

Lemma 4 Let A € R**"™ be a real symmetrical matriz with eigenvalues \; satisfying Ap < A\p_1 <
- < Ay < A = 0. Let & denote the eigenspace for Ay = 0 and let & denote the orthogonal
complement of &. Then for every x € &1,

2T Az < Mzl z.

Proof Let vi,vo,...,v, be normalized eigenvectors of A corresponding to the eigenvalues \; =
0,A2,...,An. Then
A= )\21)21); +---+ Anvnvg.

So for xz € &1,

=l Az )\ngvgvgx + -+ Al opul 'z
Ao (zTvovd' e + - + 2Tvpvl x)
Aozt (vevd + - + vpv]l)z
= ozl (vl +vovd + -+ + vz
Aoz L.

Al

Proof of Theorem 4: If G, is connected, A, has the properties that every row sum is equal to
0, the diagonal elements are less than 0, and the other elements are non-negative. Thus, letting a;;
denote the ijth element of A,, we have

—aii:Zaij>0, Vi=1,...,n.
J#i
Hence, from Gerschgorin’s theorem [18], we can conclude that the eigenvalues of A, are in the set
{A:Re A < 0orX=0}. In particular, the nonzero eigenvalues have negative real parts.

Next we observe, again when G, is connected, that A, has a unique zero eigenvalue, i.e.,
rank A, = n — 1. To see this, note that D, is nonsingular and define a new matrix

~ _1 -1
Ay=D;'A,=B,~1, B,:=D;"J,

13



The associated graph G(J,) is connected, and so is the associated graph G(B),). Therefore, B, is
irreducible. By the Perron-Frobenius theorem [1], B), has a unique largest real eigenvalue A, and the
other eigenvalues \;, i = 2,...,n, satisfy Re \; < A\1. So flp, with eigenvalues {\; — 1,..., A, — 1},
has a unique largest real one. Using Gerschgorin’s theorem again, we know that the eigenvalues
of A, are in the set {\ : Re A < 0 orA = 0} and also we know that A, has a zero eigenvalue.
Consequently, flp has a unique largest eigenvalue A0, = 0, i.e., rank A, = rank flp =n-—1.

Now we proceed as in the proof of Theorem 1. For every ¢, Aj;) has A = 0 as an eigenvalue of
multiplicity 1 and the vector v of 1’s is a common eigenvector. Thus & = span {v} is a common
eigenspace and its orthogonal complement, &1, is the sum of all the other eigenspaces, for all . As
before, the trajectory looks like

z(t) =av +w(t), w(t) €&

and it remains to show that w(t) — 0.

Since w(t) = z(t) — av and ApyHv =0,

We know that for any w(0) € &£, the solution w(t) € £, V¢ > 0. In other words, &; is a positively
invariant set for the system < (t) = Apw(t). Choose the Lyapunov function

1
V(w) = —ww.
2
Take the derivative of V(w(t)) along the solution of 1 (t) = A,w(t):

V(w(t) = w” (£) Apyw(t).
i From Lemma 4,
V(w(t)) = w" (£) Apyw(t) < =W (w(t)),

where W (w) := —(maxA,1)w’w, Ay is the largest nonzero eigenvalue of A,, and the max is over
P

all p for which the sensor graph is connected. Thus
W(w) >0, Ywe& —{0}, and W(0) =0.

Therefore, by the Lyapunov stability theorem for non-autonomous systems [8], the trajectory start-
ing in & converges to 0. |

We simulate twenty mobile autonomous agents using the local control strategy for sensors with
a limited field of view. The initial locations of the twenty agents are generated randomly as shown
in Figure 9. To understand the general effect of the size of the sensor range on the performance of
asymptotical convergence to a single point, we carry out the simulation three times with the same
initial positions as shown in Figure 9, but different sensor ranges. Specifically, for sensor range
r = 30, 25, 50, the trajectories of the twenty agents are given in Figures 10, 11, and 12, respectively.
The simulation results show that the sensor range r = 25 cannot guarantee that the sensor graph
is connected all the time, and thus the agents do not converge to a single point but rather to two
points. For the sensor ranges r = 30, 50, the sensor graph is always connected, and convergence to
a single point results.

14
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Figure 9: Initial locations. Figure 10: Trajectories (sensor range is 30).
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Figure 11: Trajectories (sensor range is 25). Figure 12: Trajectories (sensor range is 50).

4 A Strategy Based on a Linear Combination of the Subgroup

In the previous section, we considered where each autonomous agent can see and know only those
agents within the disk of pre-specified radius about itself. Given the same radius, mutual visibility
among the autonomous agents can naturally be represented by an undirected graph called a sensor
graph. And under the assumption that the sensor graph is always connected, a group of mobile
autonomous agents achieves a single point of convergence. Our next question is this: Is it possible
to attain the same result or further results for any type of sensors with different constraints? For
instance, the camera doesn’t have a disk-like visibility but a cone-like field of view. In this section,
we will present a general result that indicates the convergence of groups of agents to a single point
for whatever field of view.

Suppose as before that there are n autonomous agents represented by points in the complex
plane and numbered 1 through n; the agents don’t need to know the labels. Let N;(¢) denote the
set of labels of those agents sensed by agent 4 at time ¢ and let n;(t) denote the cardinality of
N;(t) (the number of agents sensed by agent ¢ at time ¢). We consider the local control strategy
where each agent pursues the centroid of the subgroup of sensed agents at time t. In other words,
each agent senses the positions of the subgroup of agents relative to itself and updates its velocity
linearly by the sensed information. Thus, the kinematic equation is

15



nll(t) . Z {zj(t) B zi(t)}v nz(t) # 0,
4(t) = JEN i=1,2,...,n. (8)

0, ni(t) =0,

Now, we use a directed graph G with vertex set {z1, 22,...,2,} to describe the sensor relation-
ships among the group of agents at time ¢. The graph G is defined such that the directed edge from
vertex ¢ to vertex j is one of the graph’s edges just in case agent ¢ can sense agent j. And we still
call this a sensor graph. Since the sensor relationships change over time, we use all such possible
graphs to describe them. Let {G, : p € P} denote a suitably defined set, indexing the class of all
possible directed graphs G, defined on n vertices. Corresponding to each directed graph G, let
Jp € R"™™ denote the adjacency matrix of the directed graph G, on n vertices whose ijth entry is
1 if there is a directed edge from ¢ to j, and 0 if there isn’t, let D, € R"*" denote the diagonal
matrix whose ith diagonal element is the number of directed edges from vertex i to others within
the graph Gp, and let U, € R"*" denote the diagonal matrix whose ith diagonal element is the
reciprocal of the sth diagonal element of matrix D, if it is not zero, and 0 if it is zero. And then
we define

A, =Uy(Jp, — D), Vp e P.

Thus, for example, two sensor graphs for four agents are shown in Figure 13. The two corresponding
matrices are

-11 0 0 -1 1 0 0
{00 0 o0 | F -1 0 3
A=l o1 -1 o AT 0 1 -1 0

00 1 -1 0 0 1 -1

A A

2
1 ’ 1 X
3
A 1\5.4

Figure 13: Two directed sensor graphs for four agents.

At time ¢, let the sensor graph be G,y and let the corresponding matrix be A,;). Then the
overall system is

2(t) = Apyz(1), (9)
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where z(t) is the position vector z(t) = [ z1(t) 22(t) --- 2,(t) |7, and p(t) : Rt — P is
a piecewise constant switching signal whose value at time ¢ is the index of the directed graph
representing the sensor relationship at time ¢.

Our goal here is to show for a large class of switching signals p(¢) and for any initial positions
of the agents that all the agents will converge to the same place in the plane. Obviously, if some
agent never senses other agents, convergence cannot occur. Mathematically this would mean that
the directed graph ;) is never a connected graph. To avoid this situation, we could assume
the directed graph is connected all the time. However, this assumption is too strong and we
cannot guarantee it. So the situation of perhaps the greatest interest is that where G, ;) might be
disconnected only for some time and connected for some other time. We denote by Q the subset
of P consisting of the indices of the strongly connected graphs in {G, : p € P}; strongly connected
means that there exists at least one directed path from any vertex to any other vertex.

Theorem 5 Let z(0) be an initial position and let p : RT — P be a piecewise constant switching
signal for which there exists a positive T so that p(t) € Q at least once in each time interval of
length T. Then each z;(t) converges to the same point a, where a is a complex number depending
only on z(0) and p(t).

The following theorems about row stochastic matrices and a lemma about the diameter of a
convex hull are central to the proof of Theorem 5. A square real matrix is row stochastic if it is
nonnegative and its row sums all equal 1. (A nonnegative matriz is a one whose entries are all
nonnegative.)

Theorem 6 [6] Let Q € R™*™ and P(t) = e®'. Then for every t > 0, P(t) is row stochastic iff

(@) Qi <0, Vi; (b)) Qij >0, Vi#j; (c) ZQM =0, Vi.
J

For a matrix P = (p;;) € R"*", we define §(P) by

§(P) := max max [p;,j — Piyjl-
J 21,22

Thus 0(P) measures how different the rows of P are. The rows of P are identical iff §(P) = 0.
Also, we define A(P) by

A(P) :=1—miny_ min(p;;,pis;)-
J

11,02

Then we have the following theorem.

Theorem 7 [11] Let {Py, P,,...} be a finite or infinite set of row stochastic matrices satisfying
0 < X(P;) < B < 1. Then for each infinite sequence, Py, , Py,, ..., there exists a row vector ¢ such
that

lim Py Py, _, -+ P, = 1,

J]—00

17



where 1:=[1 1 --- 1],

The version of Theorem 7 stated above is somewhat modified from the original version. The
proof of the modified one is given as below.

Proof Since 0 < A(P) <f<1,i=1,2,.

lim H APy, ) =0.

]*)00

Applying Lemma 2 in [11], 6(P, P, -+ P,) < an:l A Pg,,), so

lim §(Py; Py;_, -+ Pg,) = 0.
j—00
Let My = Py, My = Py, Py, ..., Mj = Py, Py, -+ Py, ..., and specifically, let C{ be the
first column of the matrix M; and let ¢, be the mth element of C{. Then
lim max|¢/, — ¢/ | = 0.
j—00 myn

Also, we know C’{ = Py, C{_l, that is, each element of C’{ is a convex combination of elements of
C’{*l, SO
0 < max(c),) < max(cjm 1) "and 1> min(¢},) > min(c; ),
m

m m

and therefore, max(czn) and min(c?n) converge as j approaches oo, say lim max(c},) = a; and
j—oo m

lim min(c},) = ;. Then we have

j—oo m
lim [max(c!,) — min(cl,)| = |a; — Bi| =0,
j—oo m m

since |max(cl,) — min(ch)| = max|c, — c|. Hence, oy = B;. Furthermore, notice that
m m m,n

min(c/,) < ¢, < max(cl), Vm

m m

SO

lim 07 =o.
]*)CX)

That means

lim 7 = 1oy
j—00

and similarly for other columns of the matrix M;. Therefore

lim Pk Pk s Pkl = 1c.

]*)00
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Lemma 5 Let V = {v1,v9,...,u,} be a finite set of points in C and let P = Conv{V'} be the

convez hull of the set V. Then the diameter of the convex hull d(P) := max ||p; — p;|| satisfies
Pi,p; €

d(P) = r — Usl|-
(P) = max [lor vy

VUp,Us €

Proof First we claim that py,py are vertices of the convex hull P if ||p; — ps|| = d(P). To see this,

Figure 14: Illustration for the proof of Lemma 5.

suppose not. That is, at least one of p1,po, say p1, is in the interior of the convex hull or in one of
the edges of P. If py is in the interior of the convex hull, then we can find a point p) on the line
p1p2 and still in P such that ||p1 — p2|| < [[p] — p2||. This contradicts that ||p; — pe|| is maximum.
And if py is in one of the edges of P, we can choose two points p3, ps in this edge along different
directions from point p; (see Figure 14). Then from trigonometry, the line segment p1pz is shorter
than one of the line segments p3pz, papz, which contradicts that |[p; — p2| is maximum.

On the other hand, suppose p’ is a vertex of P. Then Conv(V\{p'}) is not the same as the set
P = Conv(V), and so p’ must be in the set V. As a result, the set of vertices of the convex hull is
a subset of V. Also, V C P, we have

max v, —vs| = [lp1 — pal,
Ur,Us €
from which the result follows. n
Proof of Theorem 5: Suppose p changes its value at time instants tg =0 < t; < to < ---. If
there are actually only finitely many switches, the final at ¢,,,, artificially define #,,,; = ¢, +jb,j =
1,2,..., where b is a finite positive value. So the time R' can be divided into an infinite number

of time intervals

[to, 1), [t1,t2), - oo, [tis tig1)s - - - -

Since p(t) is piecewise constant, there exist tyae, tmin > 0 such that i, < tiv1 — t < tmae- Also,
Apty = Ap(t)» Yt € [tistiva)-
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The solution of system (9) is
2(1) = et (6 5-1) gty (1—10) ().
We write the transition matrix
Bt t;) = e 70 i =0,1,2,. .., t €[t tia],
SO

z(t) = O(t, ;)P (tis ti1) -+ D(t1,20)2(0), € [ti,tiv1].

For the given T', generate a subsequence {t;,;} of {t;} as follows: (1) Set t,,, = to = 0. (2)
IfT € (ti—lati]a set &y, = &;. (3) If tm, +1 € (ti—lati], set tm, = ;. And so on. Then taking
Tj = tm,;, we have

Z(Tl) = (I)(tmlatmlfl)q)(tmlflatm1*2) T (I)(tl,tg)z(()) = \Illz(o)a
Z(T2) = (I)(th,th,l)(I)(th,l,th,Q) Tt (I)(tm1+17tm1)z(T1) = \IIZZ(Tl) = \112\Illz(0),
and so on so that
2(T5) = W0y - - ¥12(0).

First, we will show lim z(7};) = al. It suffices to show that
j—00

lim \Ifj\lfj,1 e \Ifl = ].C,

Jj—00
where ¢ is a row vector. (Then a = ¢z(0).)
The matrix A, p € P, satisfies (a) Ay, <0, Vi; (b) Ay, >0,Vi#75; () YAy, =0, Vi.
J

Hence by Theorem 6, we know ®(t;41,t;) = et tit17%) is row stochastic and the diagonal
elements are lower-bounded by a positive value € since P is a finite set and ¢; 1 — ¢; is in the close
interval [tmin, tmaz]-

Furthermore, for p € Q (i.e., the graph G, is strongly connected), A, = Up(J,— D)) = U, J,—1,
and the matrix V), := U, J), is irreducible (i.e., for every (i, j) there exists a natural number ¢ such

that u§,‘§} > 0, where v,(,g]? denotes the (7,7) element of V| ). Hence,
D(tigr, t;) = etrtnltivi=h) — o= I(tiv1—ti) gV (b1 =)
[Vop tis1—t)]”
= e (et —t) {H V(e (tiv1 — ) + Do —— } :
;From the above expression, we can see that if p € Q, each element of ®(¢;11,t;) is lower-bounded
by a positive value €. That is, ®(tj41,t;) > e2M, i = 0,1,2,..., where M is a matrix with all

elements 1, and the notation ®(¢;y1,%;) > eoM means that ®(¢;11,t;) — e2M is nonnegative.
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If p(t) € Q happens at least once in each time interval of length T', then at least one of the
transition matrices ® in the matrix product

\II] = @(tm]‘atmj—l)@(tmj—latmj—Q) T @(tm]‘_l-l-latmj_l)? .7 = 1323 s

is row stochastic with each element greater than €3, and the others are row stochastic matrices with
each diagonal element greater than €;. In each time interval of length 7', there are a finite number
of switching times. Let’s say the maximum number of switching times is K for every time interval
of length T'. As a result, ¥;, j = 1,2,... is row stochastic and each element is lower-bounded by
e2el ! Thus, 0 < A(T;) <1 —neel 1 <1, 5=1,2,....

Therefore, by Theorem 7,
lim \Ifj\lfj,1 e \Ifl = ].C,

j—00
where c is a row vector. That is,

lim z(7}) = 1cz(0) = al.

Jj—00

Now we have to look at the times between the instants {0,77,T5,...}. We will show that

m@;i “zll (t) — Ziy (t)H < max “zlh (Tj) — Zgy (Tj)Hv Vite [Tj? Tj+1]7 (10)

2140 q1,92

where z;, (t), 2, (t) are the elements of vector z(t). For ¢t € [T}, Tj11],

Z(t) = @(tatmj+k)q)(tmj+katmj+kfl) o q)(tmj-l-lath)Z(T]) = q)Z(T’])a

where ® is a row stochastic matrix since D(t, tm; k), Pltmj+ks tmy+k—1)5 -+ -5 P(tm;+1,tm;) are all
row stochastic matrices. Hence, z;(t), 4 = 1,2,...,n is in the convex hull of the set {z;(7}), i =
1,2,...,n}. Then (10) follows from Lemma 5.

Therefore, we conclude that

lim 2(t) = al,
t—00
where @ is a complex number depending only on z(0) and p(?). [ |

Figure 15 shows a simulation for five autonomous agents to congregate at a common place using
the local control strategy discussed in this section. FEach agent has a cone-like field of view with
infinite radius and 90 degree angle. The agent rotates its view angle 90 degree clockwise if there
are no other agents in its field of view. From Figure 15, we can see that the initial sensor graph is
not strongly connected. As the system evolves, the sensor graph might be strongly connected for
some time and then disconnected for some other time.

Actually, it’s not necessary for each agent to pursue the centroid of the subgroup of sensed
agents to achieve a single point convergence. Considering a more general control strategy based on
a linear combination of the subgroup, we have the general kinematic equation

4(t)= > aii(t)[z(t) — ()],  a;>0, i=12,...,n, (11)
JEN;(t)
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Figure 15: Trajectories of five agents and the sensor graphs as the system evolves.

or in vector form

z(t) = A(t)z(), (12)
where the diagonal elements of A(t) are Ay(t) = — 3 a;j(t) and the non-diagonal elements are
JEN;(t)
1o = ) aii(t), 7€ Ni(b),
Ao ={ 4" 15N

In the present context, system (8) can be viewed as a special case of (11) with a;;(t) =
#(t)’ Vj € Ni(t). However, the matrix A(f) has the same structural properties as the matrix A,
in system (9), so Theorem 5 applies directly.

To summarize, both the strategy based on sequential pursuit discussed in Section 2 and the
strategy for sensors with a limited field of view discussed in Section 3 also can be viewed as special
cases of this general control strategy. The former is the simplified version with a;;(¢t) = 1, and
Ni(t) =i¢+1,i=1,2,...,n—1, Ny(t) = 1. The latter is the simplified version with a;;(t) =1
and N;(t) containing the labels of agent i’s neighbor agents at time t.

We conclude by briefly discussing the feasibility of implementing our control strategies using
only local sensors. To be specific, let’s focus on the control strategy

2',’1 =Z2 — Z1, (13)
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i.e., “agent 1 pursues agent 2.” What generic sensing is required for such a strategy? With reference
to Figure 16, let X, denote the coordinate frame for the plane (“g” is for global). Agent 1 is assumed
to have on it a fixed local coordinate system, . It is assumed that as z; moves 3; does not rotate
with respect to X,. Also, agent 1 is assumed to have a sensor that can measure the position with
respect to X; of agent 2. Coordinate frame ¥, is the translation of ¥; to the origin of ¥,. A
complex number z represents a point in ¥,; then 1z denotes its representation in ¥1; and likewise
for 9'z. Thus 'z, is a complex number representing the position of agent 2 in agent 1’s local
coordinate system.

We have
Loy =91y — 915,
Also, if there is an angle of rotation 6 from X, to X4, then
91 206l = 2,
and similarly for z;. Thus
29 — 21 = T poed? — 915070 = 15,07,
Also,
4 =956
Substituting the last two equations into (13) and cancelling /¢, we get
9z =1z, (14)

The conclusion is that (13) and (14) are equivalent. Strategy (14) can be implemented with a local
sensor on-board agent 1, and the assumption for equivalence is that > doesn’t rotate with respect
to Xg.

g

[ Y]

Figure 16: Global coordinate frame and local coordinate frame.
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5 Conclusion

Control of systems consisting of multiple autonomous agents that are intended to perform a coordi-
nated task is currently an important and challenging field of research. This is due to the broad range
of applications of multi-agent systems in space missions, operations in hazardous environments, and
military operations.

In this paper, we proposed three alignment strategies for coordinated control of groups of
mobile autonomous agents modeled as point masses with full actuation. Each agent relies only
on locally available information, namely, the relative locations of the sensed subgroup of agents.
Global information and communication are not required. Instead, local sensors (perhaps vision)
can be utilized to generate effective global behavior in groups of mobile autonomous agents. It was
shown that the task of achieving a specified formation among a group of autonomous agents can
be realized by our control strategies despite the absence of centralized coordination and despite the
fact that the subgroup of the agents sensed by each agent changes over time as the system evolves.
Also, we proved that three alignment strategies lead, under some assumptions, to the result that
all agents converge to a single place.

Our future work includes developing our local control strategies for groups of mobile au-
tonomous agents with more detailed vehicle dynamics or non-holonomic constraints, as well as
the coupling of this work with the orientation control strategy.
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