
An Obstruction to Solvability of the Reach Control Problem Using
Affine Feedback ?

Miad Moarref, Melkior Ornik, Mireille E. Broucke

Department of Electrical and Computer Engineering, University of Toronto, Toronto ON Canada M5S 3G4

Abstract

This paper studies the reach control problem (RCP) using affine feedback on simplices. The contributions of this paper are threefold.
First, we identify a new obstruction to solvability of the RCP using affine feedback and provide necessary and sufficient conditions for
occurrence of such an obstruction. Second, for two-input systems, these conditions are formulated in terms of scalar linear inequalities.
Third, computationally efficient necessary conditions are proposed for checking the obstruction for multi-input systems as feasibility
programs in terms of linear inequalities. In contrast to the previous work in the literature, no assumption is imposed on the set of possible
equilibria, so the results are applicable to the general RCP.
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1 Introduction

This paper studies the reach control problem (RCP) using
affine feedback on simplices. Given an affine system defined
on a simplex S , the objective in the RCP is to design a feed-
back controller such that the trajectories of the closed-loop
system leave S in finite time through a prespecified facet,
without first leaving it through other facets. The RCP has
been the subject of a great deal of research due to its funda-
mental importance in controlling a subclass of hybrid sys-
tems known as piecewise affine systems (Bemporad et al.
(2000); Rodrigues (2004); Habets et al. (2006)). Piecewise
affine systems are state-based switched systems where each
discrete mode has a corresponding continuous-time affine
dynamics. The discrete modes correspond to polytopes in
the state space. For piecewise affine systems, reach control
is at each mode to design a controller that prevents transi-
tions of the closed-loop system to undesired discrete modes,
and guarantees transition to the prespecified desired mode.
The RCP has found applications in different fields includ-
ing biomolecular networks (Belta et al. (2002)), robot mo-
tion planning (Belta et al. (2005)), aircraft control (Belta and
Habets (2006)), robotic manipulators (Martino and Broucke
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(2014)), and aggressive maneuvers of mechanical systems
(Vukosavljev and Broucke (2014)).

The first approaches to solve the RCP in Habets and van
Schuppen (2004); Roszak and Broucke (2006) lead to either
conservative sufficient conditions or bilinear inequalities that
are NP-hard. It later became evident that the (polytopic) set
of possible closed-loop equilibria in the simplex, OS , plays
a crucial role in solvability of the RCP. In particular, several
computationally efficient controller synthesis methods were
devised by imposing the assumption that OS is a face of S
(Broucke (2010); Ashford and Broucke (2013); Broucke and
Ganness (2014)). The results were extended to polytopes in
(Lin and Broucke (2011); Helwa and Broucke (2013)). In Lin
and Broucke (2011) the problem was to find a triangulation
of the polytope and an associated piecewise affine feedback
to solve the RCP assuming the system has n−1 inputs. The
goal of (Helwa and Broucke (2013)) was to extend the results
of (Broucke (2010)) directly to polytopes by formulating the
so-called monotonic RCP. While all these works regard the
RCP, the specific problems solved and the approaches are
very different from those of this paper. In this paper we focus
on a sub-problem of the RCP regarding the ability to assign
a non-vanishing affine function on OS . We use a numerical,
optimization-inspired approach whereas the previous works
exploit system structure to arrive at analytical conditions for
solvability. Finally, a Lyapunov theory for the RCP based on
so-called flow functions (the analog of Lyapunov functions
for stability analysis) was presented in Helwa and Broucke
(2015). In this work, we do not assume existence of a flow
function, and we are interested in necessary conditions for
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solvability rather than the analysis of a given controller.

More closely related to this work, recent research has fo-
cused on the existence and structure of the equilibria in the
RCP (Semsar-Kazerooni and Broucke (2014)). The notion
of reach controllability was introduced to characterize when
closed-loop equilibria could be pushed off the simplex us-
ing affine feedback. Notions of topological and affine ob-
structions to solvability arose as necessary conditions to the
solvability of RCP (Ornik and Broucke (2015)). The term
“obstruction” is used in a similar spirit as in homotopy the-
ory - to extend a continuous (or affine) map on a simplicial
complex. The affine obstruction was studied in (Ornik and
Broucke (2015)) for the case of two- and three-dimensional
systems.

The main contributions of this paper are threefold. First, we
formulate necessary and sufficient conditions for existence
of a non-vanishing affine extension onOS . To the best of our
knowledge, this is the first result in the literature to present
an obstruction to solvability of the RCP using affine feed-
back for multi-input systems and for the most general form
of OS . Second, we propose graphically motivated and com-
putationally efficient necessary and sufficient conditions for
checking the obstruction on OS for two-input systems in
terms of scalar linear inequalities. Finally, computationally
efficient necessary conditions are proposed for checking the
obstruction onOS for multi-input systems as feasibility pro-
grams in terms of linear inequalities.

2 Problem Formulation

Consider an n-dimensional simplex S := co{v0, . . . , vn},
where v0, . . . , vn are n + 1 affinely independent points in
Rn. Without loss of generality (w.l.o.g.) we assume v0 =
0. Define VS := {v0, . . . , vn} to be the vertex set of S.
Let F0, . . . ,Fn denote the facets of S, where each facet
is indexed by the vertex it does not contain. We call F0

the exit facet. Let hj , j ∈ {0, . . . , n}, be the unit normal
vector of facet Fj pointing outside of the simplex. Let 0
denote the singleton set {0}. Define I := {1, . . . , n} and let
I(x) be the minimal index set among {0, . . . , n} such that
x ∈ co{vi | i ∈ I(x)}.

We consider an affine control system on S defined as

ẋ = Ax+Bu+ a, x ∈ S, (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m.
Define B := Im(B), the image of B. Let φu(t, x0) denote
the trajectory of (1) starting at x0 ∈ S, under control input u,
and evaluated at time instant t. Reach control theory studies
the reachability of the exit facet F0 from any initial point in
S.

Reach Control Problem (RCP). Consider the affine system
(1) defined on a simplex S. Find an affine feedback u(x) :=
Kx+ g, where K ∈ Rm×n and g ∈ Rm, such that for each
x0 ∈ S there exist T ≥ 0 and δ > 0 such that

v1 v2

v0

O

y(v1)

y(v2)

y(v0)

h0

h2 h1

C(v0)

C(v1) C(v2)
F0

F2 F1

S

Fig. 1. A simplex S = co{v0, v1, v2} with vertices
VS = {v0, v1, v2} and facets F0, F1, and F2. The facet Fi,
i ∈ {0, 1, 2}, is the convex hull of all vertices not including vi.
For each facet Fi, the unit normal vector pointing out of S is
shown by hi. The cones C(vi) are illustrated attached at each vi
along with sample vectors yi ∈ C(vi).

(i) φu(t, x0) ∈ S,∀ t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0, and

(iii) φu(t, x0) /∈ S,∀ t ∈ (T, T + δ).

Two necessary conditions for solvability of the RCP by
affine feedback are known (Habets and van Schuppen
(2004); Roszak and Broucke (2006)). First, the velocity
vector Ax + Bu(x) + a must point inside the cone gener-
ated by S at points in the facets Fi, i ∈ I . This requirement
is known as the invariance conditions (Roszak and Broucke
(2006)). For x ∈ S, define the closed, convex cone

C(x) := {y ∈ Rn | hj · y ≤ 0, j ∈ I \ I(x)}. (2)

Note that h0 never appears in (2) and C(x) = Rn for x ∈ S◦,
where S◦ represents the interior of S. Figure 1 illustrates
the cones C(vi), i ∈ {0, 1, 2}, attached at the correspond-
ing vertex vi to describe allowable directions for the vector
field at the vertices. Here, e.g., since I(v0) = {0}, we have
C(v0) = {y ∈ R2 | hj · y ≤ 0, j ∈ {1, 2}}. We say that
u(x) satisfies the invariance conditions if

Ax+Bu(x) + a ∈ C(x), ∀x ∈ S. (3)

A second necessary condition for the feedback u(x) to solve
the RCP is that there are no closed-loop equilibria in S, i.e.,
Ax+Bu(x)+a 6= 0, for all x ∈ S. It was shown in Habets
et al. (2006); Roszak and Broucke (2006) that these two
necessary conditions combined form a sufficient condition
for solvability of RCP using affine feedback. Closed-loop
equilibria of (1) can only appear in the affine space

O := {x ∈ Rn | Ax+ a ∈ B}. (4)

Therefore, we are interested in the feedback u(x) that denies
any equilibria in the set

OS := S ∩ O = co{o1, . . . , oκ}.
The intersection of a simplex S and an affine space O is
either an empty set or a κ̂-dimensional (compact and con-
vex) polytope, where 0 ≤ κ̂ ≤ n and κ̂ < κ. We note that
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Fig. 2. Two hypothetical scenarios in R3 with
S = co{v0, v1, v2, v3}; (a) OS = co{o1, o2, o3} is a simplex,
and (b) OS = co{o1, o2, o3, o4} is a polytope but not a simplex.

dim(O) ≥ m. However, as OS might not pass through the
interior of S, there is no guarantee that dim(OS) ≥ m. We
define VOS := {o1, . . . , oκ} to be the set of vertices of OS .
Two examples of the set OS are shown in Fig. 2. Many pa-
pers in the literature study the RCP under the assumption
that OS is a κ̂-dimensional face of S. Due to the critical
role of the set OS in the second necessary condition, re-
laxing the above assumptions and characterizing OS serve
as major stepping stones for solving the RCP. In this paper,
we introduce an obstruction to the RCP on the set of pos-
sible equilibria OS and, in contrast to the above mentioned
papers, study OS in its most general form.

For all x ∈ OS the closed-loop vector field satisfies Ax +
Bu(x) + a ∈ B. Therefore, since OS ⊆ S, the existence of
an affine map F : OS → B that satisfies

F (x) ∈ C(x), ∀x ∈ OS , (5)

is a necessary condition for the existence of an affine feed-
back u(x) that satisfies the invariance conditions (3). It is
sufficient to check these invariance conditions at vertices
of OS . Furthermore, if the affine map F is non-vanishing
on OS , then the corresponding affine feedback produces no
closed-loop equilibria in S . The following lemma formu-
lates the non-vanishing condition on F as κ inequalities.
The proof is omitted due to its similarity to Theorem 6 in
(Roszak and Broucke (2006)).

Lemma 1 Assume that there exists a vertex map f : VOS →
B that is extendible on OS 6= ∅ to an affine map F : OS →
B. The following statements are equivalent:

(1) The affine map F satisfies (5) and is non-vanishing.
(2) The vertex map f satisfies

f(oi) ∈ C(oi), i ∈ {1, . . . , κ},
(∃ ξ ∈ Rn) ξ · f(oi) < 0, i ∈ {1, . . . , κ}.

It is worth mentioning that the second condition above is
equivalent to the statement that the vector field points outside
the setOS . In light of Lemma 1, in this paper we address the
following problem as a necessary condition and a stepping
stone for solving the RCP.

Problem 2 Given the set OS 6= ∅, find a vertex map f :
VOS → B such that f(oi) ∈ C(oi), i ∈ {1, . . . , κ}, and
that there exists a vector ξ ∈ Rn satisfying ξ · f(oi) < 0,
i ∈ {1, . . . , κ}.

Based on Lemma 1, if Problem 2 is infeasible then an ob-
struction to solvability of the RCP using affine feedback
exists. For single-input systems, i.e. m = 1, an immedi-
ate consequence of Theorem 1 in Semsar-Kazerooni and
Broucke (2014) is that Problem 2 is solvable if and only if
B ∩ cone(OS) 6= 0, where

cone(OS) :=
κ⋂
i=1

C(oi). (6)

However, this only becomes a sufficient condition in the
case of multi-input systems (see Example 13). In this paper,
we focus on solvability of Problem 2 for systems with more
than one input. Necessary and sufficient conditions for the
obstruction identified in Problem 2 are formulated in the
next section.

3 Necessary and Sufficient Conditions for Existence of
a Non-vanishing Affine Extension on OS

Let B = QR be the QR factorization of B. Since B has full
column rank, the columns of Q ∈ Rn×m form an orthonor-
mal basis for B (Golub and Van Loan (1996), p. 223), such
that QTQ = Im×m and QQT b = b for all b ∈ B. Our ob-
jective is to find a vertex map f such that f(oi) ∈ B∩C(oi),
i ∈ {1, . . . , κ}. To this end, define the convex cone Ci,
i ∈ {1, . . . , κ}, as

Ci :={w ∈ Rm | (QThj) · w ≤ 0, j ∈ I \ I(oi)} (7)

=
⋂

j∈I\I(oi)

Hj , (8)

where Hj is a closed convex cone defined as

Hj := {w ∈ Rm | (QThj) · w ≤ 0}, j ∈ I. (9)

Cones Ci are analogues of the cones C(oi) in the original
problem set-up. In fact, as B is mapped by into Rm by QT ,
the same mapping transforms C(oi) ∩ B into Ci. Cones Hj

identify each of the possible constraints impacting Ci.

Lemma 3 Let y ∈ B. Then QT y ∈ Ci if and only if y ∈
B ∩ C(oi).

PROOF. (=⇒) Since y ∈ B we can write QQT y = y.
Assume QT y ∈ Ci. For j ∈ I \ I(oi), (7) yields (QThj) ·
(QT y) ≤ 0 ⇐⇒ hTj QQ

T y ≤ 0 ⇐⇒ hj · y ≤ 0. Consid-
ering (2), y ∈ B ∩ C(oi). (⇐=) The result follows from
arguments similar to the first part of the proof. 2

If QThj 6= 0 then Hj represents a closed half space in Rm.
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If QThj = 0 then Hj = Rm. Since Ci is the intersection of
a finite number of half spaces it is a convex polyhedral cone,
and it can be written as the convex hull of a finite set of rays.
For each i ∈ {1, . . . , κ}, let the unit vectors corresponding
to these rays be vi,r, r ∈ {1, . . . , ri}. Therefore, any vector
w ∈ Ci can be written as the conic combination of vi,r,
r ∈ {1, . . . , ri}, i.e., w =

∑ri
r=1 λrvi,r, for some λr ≥ 0.

Next, for i ∈ {1, . . . , κ}, define

Ni :=
ri⋃
r=1

{h ∈ Rm | h · vi,r < 0}. (10)

Each Ni represents the set of all vectors h ∈ Rm for which
there exists a vector w ∈ Ci such that h · w < 0. In other
words, each Ni contains all the vectors h for which there
exists an element w which is contained in Ci and in the half-
space opposite from h. This definition may be inelegant;
however, we will soon show that it can be naturally inter-
preted in relation to the standard notion of dual cones. Note
that Ni is a (not necessarily convex) blunt cone (i.e., a cone
that does not contain 0) because h ∈ Ni implies λh ∈ Ni
for any λ > 0, and 0 6∈ Ni. Theorem 4 formulates a neces-
sary and sufficient condition for the obstruction described by
Problem 2 in terms of the intersection ofNi, i ∈ {1, . . . , κ}.

Theorem 4 There exists a solution to Problem 2 if and only
if

κ⋂
i=1

Ni 6= ∅. (11)

PROOF. (=⇒) Suppose Problem 2 is solvable, i.e., there
exist f(oi) ∈ B ∩ C(oi), i ∈ {1, . . . , κ}, and ξ ∈ Rn
such that ξ · f(oi) < 0 for all i ∈ {1, . . . , κ}. By
Lemma 3, QT f(oi) ∈ Ci and we can write QT f(oi) =∑ri
r=1 λrvi,r, for some λr ≥ 0. Since f(oi) ∈ B we

have QQT f(oi) = f(oi). Therefore, for i ∈ {1, . . . , κ},
ξ · f(oi) = ξTQQT f(oi) = (QT ξ) · (

∑ri
r=1 λrvi,r) < 0.

Since λr ≥ 0 for all r ∈ {1, . . . , ri}, there exists r∗ such
that (QT ξ) · vi,r∗ < 0. Therefore, QT ξ ∈ Ni, for all
i ∈ {1, . . . , κ}, and (11) is satisfied.

(⇐=) Suppose (11) holds. Since Ni does not contain 0,
there exists a non-zero vector h∗ ∈ Rm such that for each
i ∈ {1, . . . , κ} there exists a vector vi,r∗

i
such that h∗·vi,r∗

i
<

0. Let f(oi) := Qvi,r∗
i
, i ∈ {1, . . . , κ}. Clearly, f(oi) ∈

B = Im(Q). Since QT f(oi) = QTQvi,r∗
i
= vi,r∗

i
∈ Ci,

by Lemma 3, f(oi) ∈ B ∩ C(oi). Next, let ξ = Qh∗.
Then for i ∈ {1, . . . , κ}, ξ · f(oi) = (Qh∗) · (Qvi,r∗

i
) =

h∗TQTQvi,r∗
i
= h∗ · vi,r∗

i
< 0. 2

To the best of our knowledge, Theorem 4 is the first re-
sult in the literature that provides a necessary and sufficient
condition for solvability of Problem 2 for multi-input sys-
tems and for the most general form of the set OS . However,
since the cones Ni are not necessarily convex, condition

(11) in Theorem 4 leads to a non-convex feasibility prob-
lem. Nonetheless, assuming that (11) is satisfied and a vec-
tor h∗ ∈

⋂κ
i=1Ni is known, Problem 2 can be formulated

as a computationally efficient feasibility program in terms
of linear inequalities, as shown in the next corollary.

Corollary 5 Suppose there exists a vector h∗ ∈
⋂κ
i=1Ni.

The vertex map f(oi) = Qwi, i ∈ {1, . . . , κ}, is a solution
to Problem 2, where wi always exists and is a solution of
the following feasibility program:

find wi ∈ Ci
subject to h∗ · wi < 0.

(12)

PROOF. Suppose h∗ ∈
⋂κ
i=1Ni. Considering (10), for

each i ∈ {1, . . . , κ}, there exists r∗i ∈ {1, . . . , ri} such that
h∗ · vi,r∗

i
< 0. Therefore, optimization program (12) is al-

ways feasible since clearly vi,r∗
i
∈ Ci. Since QTQwi =

wi ∈ Ci, by Lemma 3, f(oi) = Qwi ∈ B ∩ C(oi). For
i ∈ {1, . . . , κ}, observe that h∗ · wi = h∗TQTQwi =
(Qh∗) · (Qwi) < 0. Define ξ := Qh∗ ∈ Rn. Therefore,
ξ · f(oi) < 0, which completes the proof. 2

The necessary and sufficient condition in Theorem 4 is based
on the cones Ni, which are not necessarily convex. Instead,
it is appealing to reformulate the necessary and sufficient
condition (11) in terms of the more standard notion of the
dual cones, which are convex. This new dual formulation
simplifies the presentation of the results in the following
sections of the paper. To this end, note that the dual cone
of a cone C ∈ Rn is defined as (Boyd and Vandenberghe
(2004))

C∗ := {y ∈ Rn | y · c ≥ 0, ∀ c ∈ C}. (13)

Since every vector in Ci is a conic combination of the vectors
vi,r, r ∈ {1, . . . , ri}, the dual cone of Ci, i ∈ {1, . . . , κ}, is
written as

C∗i := {y ∈ Rm | y · vi,r ≥ 0, ∀ r = 1, . . . , ri}. (14)

Corollary 6 There exists a solution to Problem 2 if and only
if

κ⋃
i=1

C∗i 6= Rm. (15)

PROOF. Considering (10) and (14), it is easy to see that
Ni = Rm \ C∗i . Therefore,

κ⋂
i=1

Ni =
κ⋂
i=1

(Rm \ C∗i ) = Rm \
κ⋃
i=1

C∗i . (16)

Thus, conditions (11) and (15) are equivalent. 2

Corollary 6 presents necessary and sufficient conditions for
the obstruction identified in Problem 2 as a compact and

4



plausible cone condition. According to Elbassioni and Ti-
wary (2011), however, determining if the union of a set of
polyhedral cones covers Rm is an NP-complete problem.
Therefore, Corollary 6 (and analogously Theorem 4) can-
not be efficiently solved using optimization software. In the
rest of the paper, we present computationally efficient con-
ditions for solvability of Problem 2. In particular, (i) for
two-input systems, necessary and sufficient conditions are
presented in Section 4 in terms of easily verifiable convexity
relations, and (ii) for general systems, necessary conditions
are presented in Section 5 as feasibility programs in terms
of linear inequalities. The results of Sections 4 and 5 can be
easily programmed and solved using available optimization
software.

4 Two-input Systems

This section is focused on two-input systems, i.e., systems
for which B is a 2-dimensional sub-space of Rn. This allows
us to present a graphical representation of Corollary 6, and
propose computationally efficient necessary and sufficient
conditions for solving Problem 2 for two-input systems. To
this end, consider (8) where Ci is defined as the intersection
of a set of closed convex cones Hj . According to Theorem 2
in Sandgren (1954), for i ∈ {1, . . . , κ} we can write

C∗i = co
{ ⋃
j∈I\I(oi)

H∗j

}
= co{H∗j | j ∈ I \ I(oi)}, (17)

where H∗j is the dual cone of Hj . The set H∗j is either a ray
or the singleton 0, as proved in the following lemma.

Lemma 7 If QThj 6= 0 then H∗j is a ray given by H∗j :=

{−αQThj | α ≥ 0}. Otherwise, H∗j = 0.

PROOF. Considering (9) and (13), for all j ∈ I , we can
write

H∗j ={y | y · w ≥ 0, ∀w ∈ Hj} (18)

={y | y · w ≥ 0, ∀w s.t. − (QThj) · w ≥ 0}.

If QThj = 0 then H∗j = {y | y · w ≥ 0, ∀w ∈ Rm} = 0.
Next, assume QThj 6= 0. Any vector αy∗, where y∗ =
−QThj , lies in H∗j if and only if α ≥ 0. We claim that
any vector y that is not collinear with y∗ does not lie in
H∗j . W.l.o.g, let y := βy∗ + β⊥y

∗
⊥, where y∗ · y∗⊥ = 0,

y∗⊥ 6= 0, β, β⊥ ∈ R, and β⊥ 6= 0. Equation (9) yields
y∗⊥ ∈ Hj and −y∗⊥ ∈ Hj . However, y · y∗⊥ = β⊥|y∗⊥|2 and
y ·(−y∗⊥) = −β⊥|y∗⊥|2. Therefore, either y ·y∗⊥ or y ·(−y∗⊥)
is less than zero. Hence, by (18), y /∈ H∗j . 2

W.l.o.g., by reordering indices, assume QThj 6= 0, j ∈
{1, . . . , n′}, where 0 ≤ n′ ≤ n. Now assume the system has
two inputs, i.e., assume m = 2. W.l.o.g., by reordering in-
dices j ∈ {2, . . . , n′}, assume the rays H∗j , j ∈ {1, . . . , n′},

0

h∗

(a)

H∗1
h∗

(b)

H∗1

H∗2

h∗

co{H∗1 , H∗2}

(c)

Fig. 3. The graphic corresponding to the proof of part (i) of
Lemma 8. The set co{0 ∪

(⋃
1≤j≤n′ H

∗
j

)
} is equal to (a) the

singleton 0 (if n′ = 0), (b) the ray H∗1 (if n′ = 1), or (c) the cone
co{H∗1 , H∗2} (if n′ = 2).

are arranged in clockwise order (see Fig. 4 for an exam-
ple). Let H∗0 := H∗n′ and define −H∗j := {y | − y ∈ H∗j },
j ∈ {0, . . . , n′}. The following lemma presents three special
cases where the obstruction described by Problem 2 does
not exist.

Lemma 8 Suppose the affine system has two inputs. Prob-
lem 2 is solvable if one of the following conditions is satis-
fied.

(i) n′ ≤ 2
(ii) ∃ j∗ ∈ {0, . . . , n′ − 1} such that H∗j∗+1 = −H∗j∗

(iii) ∃ j∗ ∈ {0, . . . , n′−1} such thatH∗j ⊆ co{H∗j∗ , H∗j∗+1},
∀j ∈ {1, . . . , n′}

PROOF. (i) Assume n′ ≤ 2. Considering (17), we have
C∗i ⊆ co{0 ∪ (

⋃
1≤j≤n′ H

∗
j )}, i ∈ {1, . . . , κ}. Hence,⋃κ

i=1 C∗i ⊆ co{0∪ (
⋃

1≤j≤n′ H
∗
j )}. Considering Fig. 3, the

set co{0 ∪ (
⋃

1≤j≤n′ H
∗
j )} is equal to the singleton 0 if

n′ = 0, the rayH∗1 if n′ = 1, or the cone co{H∗1 , H∗2} 6= Rm
if n′ = 2. Therefore, there always exists a vector h∗ /∈
co{0 ∪ (

⋃
1≤j≤n′ H

∗
j )} and, by Corollary 6, Problem 2 is

solvable.

(ii) Assume there exists j∗ ∈ {0, . . . , n′ − 1} such that
H∗j∗+1 = −H∗j∗ . Since the rays are arranged in clockwise
order, all rays H∗j , j ∈ {1, . . . , n′}, lie in the same side of
the line H∗j∗ ∪H∗j∗+1, in a closed half-plane P (see Fig. 4).
Considering (17), the cones C∗i , i ∈ {1, . . . , κ}, are subsets
of P . Hence by Corollary 6, Problem 2 is solvable.

(iii) Assume there exists j∗ ∈ {0, . . . , n′ − 1} such that
H∗j ⊆ co{H∗j∗ , H∗j∗+1}, ∀j ∈ {1, . . . , n′}. Hence, con-
sidering Lemma 7, each vector −QThj , j ∈ {1, ..., n′},
can be written as a conic combination of the two vectors
−QThj∗ and −QThj∗+1. Recall that the indices were re-
ordered w.l.o.g. such that QThj = 0, j ∈ {n′ + 1, ..., n}.
Furthermore, according to (17) and Lemma 7, any vector
in C∗i can be written as a conic combination of the vectors
−QThj , j ∈ I \ I(oi). Therefore, any vector in C∗i can be
written as a conic combination of the two vectors −QThj∗
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Fig. 4. The graphic corresponding to the proof of part (ii) of
Lemma 8.

H∗j∗

H∗j∗+1

H∗j∗−1 H∗1

H∗j∗+2

H∗n′ = H∗0

h∗

•••

•••

L

Fig. 5. The graphic corresponding to the proof of part (iii) of
Lemma 8 and the second part of Theorem 11.

and −QThj∗+1, which yields C∗i ⊆ co{H∗j∗ , H∗j∗+1}. Pick
a vector h∗ /∈ co{H∗j∗ , H∗j∗+1}. Clearly, h∗ /∈ C∗i , i ∈
{1, . . . , κ} (see Fig. 5). Therefore, by Corollary 6, Problem 2
is solvable. 2

The results of the following Lemma are used to address the
case where none of the conditions in Lemma 8 is satisfied.

Lemma 9 The following statements hold for two-input sys-
tems.

(i) The dual cones C∗i , i ∈ {1, . . . , κ}, are convex and
their boundaries are among H∗j , j ∈ I .

(ii) If ∪n
′−1
j=0 co{H∗j , H∗j+1} = R2, then

⋃κ
i=1 C∗i = R2 if

and only if each co{H∗j , H∗j+1}, j ∈ {0, . . . , n′ − 1},
is contained in some C∗i .

PROOF. (i) This can be verified by (17) and Theorem 2 in
Gerstenhaber (1951).

(ii) (⇐=) Assume each co{H∗j , H∗j+1}, j ∈ {0, . . . , n′−1},
is contained in some C∗i . Then, using the assumption in part
(ii) of the lemma, R2 = ∪n

′−1
j=0 co{H∗j , H∗j+1} ⊆

⋃κ
i=1 C∗i ,

i.e.
⋃κ
i=1 C∗i = R2.

(=⇒) Let
⋃κ
i=1 C∗i = R2. Now assume there exists

j∗ ∈ {0, . . . , n′ − 1} such that co{H∗j∗ , H∗j∗+1} 6⊆ C∗i ,
i ∈ {1, . . . , κ}. Since the boundaries of C∗i are among H∗j
(part (i) of the lemma) and considering the fact that H∗j∗

H∗4

H∗2

H∗3
C∗1

Fig. 6. In this example H∗4 ⊆ C∗1 , but 1 /∈ J4, because in this
hypothetical scenario I(o1) = {0, 4} and I = {1, 2, 3, 4}.

and H∗j∗+1 are in consecutive (clockwise) order, we can
conclude that the intersection of co{H∗j∗ , H∗j∗+1} with C∗i ,
i ∈ {1, . . . , κ}, is either 0 or any of the rays H∗j∗ or H∗j∗+1.
Hence, there exists a vector h∗ ∈ co{H∗j∗ , H∗j∗+1} such
that h∗ /∈ C∗i , i ∈ {1, . . . , κ}, which is in contradiction with⋃κ
i=1 C∗i = R2. 2

Based on Lemma 9, if the union of convex hulls
∪n
′−1
j=0 co{H∗j , H∗j+1} covers the whole space, then

⋃κ
i=1 C∗i =

R2 if and only if each convex hull co{H∗j , H∗j+1} is con-
tained in some C∗i . Furthermore, according to Corollary 6,
Problem 2 is infeasible if and only if the union of the cones
C∗i covers R2. In other words, if ∪n

′−1
j=0 co{H∗j , H∗j+1} = R2,

Problem 2 is infeasible if and only if each pair of rays H∗j
and H∗j+1 is contained in some C∗i . Thus, we need to know
each ray H∗j , j ∈ {1, . . . , n′}, is contained in which cones
C∗i , i ∈ {1, . . . , κ}. To this end, for j ∈ {1, . . . , n′}, define

Jj := {i ∈ {1, . . . , κ} | j ∈ I \ I(oi)}. (19)

Considering (17), if i ∈ Jj then H∗j ⊆ C∗i . However, there
may exist j∗ and i∗ such that H∗j∗ ⊆ C∗i∗ but i∗ /∈ Jj∗ .
For example, assume I = {1, 2, 3, 4} and I(o1) = {0, 4}.
Let the rays H∗2 , H∗3 , and H∗4 be as shown in Fig. 6. Here,
H∗4 ⊆ C∗1 , but 1 /∈ J4. Therefore, we should update the sets
Jj by adding new indices i∗ that satisfyH∗j ⊆ C∗i∗ . Note that
if C∗i contains the rays H∗j1 and H∗j2 , then by convexity C∗i
contains any ray H∗j3 ⊆ co{H∗j1 , H

∗
j2
}, where j1, j2, j3 ∈

{1, . . . , n′}. Based on this fact, Algorithm 10 updates the
sets Jj and stores them in new sets J̃j . The members of
each set J̃j are indices i ∈ {1, . . . , κ} such that H∗j ⊆ C∗i .
If J̃j ∩ J̃j+1 6= ∅ for all j ∈ {0, . . . , n′ − 1}, then there
exists some i∗ such that H∗j , H

∗
j+1 ⊆ C∗i∗ and thus the union

of the cones C∗i covers R2. The following theorem presents
computationally efficient necessary and sufficient conditions
for checking the obstruction associated with Problem 2 for
two-input systems.

Theorem 11 Suppose the affine system has two inputs and
none of the conditions in Lemma 8 is satisfied. Let the in-
dex sets J̃j for all j ∈ {0, . . . , n′} be computed as in Al-
gorithm 10. Problem 2 is solvable if and only if there exists
j∗ ∈ {0, . . . , n′ − 1} such that J̃j∗ ∩ J̃j∗+1 = ∅.
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Algorithm 10

J̃j := Jj , j ∈ {1, . . . , n′}
for j1, j2, j3 ∈ {1, . . . , n′}

if H∗j3 ⊆ co{H∗j1 , H
∗
j2
}

J̃j3 := J̃j3 ∪ (Jj1 ∩ Jj2)
end if

end for
J̃0 := J̃n′

PROOF. (⇐=) Suppose there exists j∗ ∈ {0, . . . , n′ − 1}
such that J̃j∗∩J̃j∗+1 = ∅. We study the following two cases
separately: (i) H∗j∗ = H∗j∗+1 and (ii) H∗j∗ 6= H∗j∗+1.

(i) Assume J̃j∗ ∩ J̃j∗+1 = ∅ and H∗j∗ = H∗j∗+1. We claim

Jj′ = ∅, ∀ j′ ∈ {1, . . . , n′} s.t. H∗j∗ = H∗j∗+1 = H∗j′ .
(20)

Suppose not. Let Jj′ 6= ∅. Since H∗j∗ = H∗j∗+1 =
co{H∗j′ , H∗j′}, Algorithm 10 guarantees that Jj′ is added to
J̃j∗ and J̃j∗+1. This yields J̃j∗∩ J̃j∗+1 6= ∅, a contradiction.
Therefore, (20) holds. By (19), observe that (20) implies

6 ∃ i ∈ {1, . . . , κ} s.t. j′ ∈ I \ I(oi), H∗j∗ = H∗j∗+1 = H∗j′ .
(21)

Next, for l1, l2 ∈ {1, . . . , n′}, we claim

H∗j∗ = H∗j∗+1 ⊆ co{H∗l1 , H
∗
l2} =⇒ Jl1 ∩ Jl2 = ∅. (22)

Suppose not. Then Algorithm 10 guarantees that Jl1 ∩Jl2 6=
∅ is added to J̃j∗ and J̃j∗+1. This yields J̃j∗ ∩ J̃j∗+1 6= ∅, a
contradiction. Therefore, (22) holds. By (19), observe that

Jl1 ∩ Jl2 = ∅ =⇒ 6 ∃ i ∈ {1, . . . , κ} s.t. l1, l2 ∈ I \ I(oi).
(23)

The sets C∗i , i ∈ {1, . . . , κ}, are m′-dimensional cones,
where 0 ≤ m′ ≤ 2. By (17), a 1-dimensional cone C∗i is the
union of some linearly dependent rays H∗j , j ∈ I \ I(oi).
Since by (21), no index j′ ∈ {1, . . . , n′} such that H∗j′ =
H∗j∗ = H∗j∗+1 appears in a set I \ I(oi), i ∈ {1, . . . , κ},
the ray H∗j∗ = H∗j∗+1 cannot be a subset of a 1-dimensional
cone. Furthermore, a 2-dimensional cone C∗i is the convex
hull of the union of rays H∗j1 and H∗j2 , j1, j2 ∈ I \ I(oi).
Combining (22) and (23), however, if H∗j∗ = H∗j∗+1 lies in
the convex hull of two rays H∗l1 and H∗l2 , then there is no
index i ∈ {1, . . . , κ} such that l1, l2 ∈ I \ I(oi). Therefore,
the ray H∗j∗ = H∗j∗+1 cannot be a subset of a 2-dimensional
cone either. Hence, H∗j∗ = H∗j∗+1 6⊆

⋃κ
i=1 C∗i and, accord-

ing to Corollary 6, Problem 2 is solvable.

(ii) Assume J̃j∗ ∩ J̃j∗+1 = ∅ and H∗j∗ 6= H∗j∗+1. Pick
any vector h∗ in the relative interior of co{H∗j∗ , H∗j∗+1}
(note that since condition (ii) in Lemma 8 is not satis-
fied, the rays H∗j∗ and H∗j∗+1 are linearly independent and
the relative interior is non-empty). We prove by contra-
diction that h∗ /∈

⋃κ
i=1 C∗i . Assume h∗ ∈ C∗i∗ for some

H∗j∗+1 = H∗l2

H∗j∗

H∗l1

h∗

C∗i∗

Fig. 7. The graphic corresponding to the proof of the first part of
Theorem 11.

i∗ ∈ {1, . . . , κ}. Since h∗ ∈ C∗i∗ and h∗ 6∈ H∗j , j ∈
{1, . . . , n′}, by (17), C∗i∗ is a 2-dimensional cone. Using
(17), there exist l1, l2 ∈ {1, . . . , n′} \ I(oi∗) such that h∗ ∈
co{H∗l1 , H

∗
l2
} ⊆ C∗i∗ , where H∗l1 and H∗l2 are two linearly

independent rays. Notice that i∗ ∈ Jl1 ∩ Jl2 . Since h∗ ∈
co{H∗j∗ , H∗j∗+1} ∩ co{H∗l1 , H

∗
l2
} 6= ∅ (see Fig. 7) and H∗j∗

and H∗j∗+1 are in consecutive (clockwise) order, we have
co{H∗j∗ , H∗j∗+1} ⊆ co{H∗l1 , H

∗
l2
}. Therefore, Algorithm 10

guarantees that i∗ is added to the sets J̃j∗ and J̃j∗+1. This
contradicts J̃j∗ ∩ J̃j∗+1 = ∅. Hence, h∗ /∈

⋃κ
i=1 C∗i and,

according to Corollary 6, Problem 2 is solvable.

(=⇒) First, we claim that
⋃n′−1
j=0 co{H∗j , H∗j+1} = Rm.

Suppose not. Then there exists a ray h∗ 6⊆ co{H∗j , H∗j+1},
j ∈ {0, . . . , n′−1}. LetH∗j∗ andH∗j∗+1 be the rays that have
the smallest angular distance to h∗ on each side (see Fig. 5).
Since h∗ and the relative interior of co{H∗j∗ , H∗j∗+1} have
no points in common, there exists a line L that separates
them. Since the rays are arranged in clockwise order, all the
rays H∗j , j ∈ {1, . . . , n′}, lie in the same side of the line L,
i.e., all the rays lie in an open half-plane. Therefore, H∗j ⊆
co{H∗j∗ , H∗j∗+1}, ∀j ∈ {1, . . . , n′}, and condition (iii) in
Lemma 8 is satisfied, which is a contradiction.

Now, suppose Problem 2 is solvable. According to Corol-
lary 6,

⋃κ
i=1 C∗i 6= Rm. Suppose by way of contradiction

J̃j ∩ J̃j+1 6= ∅ for all j ∈ {0, . . . , n′ − 1}. Therefore, for
each j ∈ {0, . . . , n′ − 1}, there exists i∗ ∈ {1, . . . , κ} such
that j, j + 1 ∈ I \ I(oi∗). By (17), co{H∗j , H∗j+1} ⊆ Ci∗ .
Therefore,

⋃n′−1
j=0 co{H∗j , H∗j+1} ⊆

⋃κ
i=1 C∗i , which is a

contradiction because
⋃κ
i=1 C∗i 6= Rm and we showed in the

previous argument that
⋃n′−1
j=0 co{H∗j , H∗j+1} = Rm. 2

Remark 12 (Computational complexity) It was assumed
that the raysH∗j , j ∈ {1, . . . , n′}, are arranged in clockwise
order. The time complexity of efficient sorting algorithms
is known to be in O(n log n) Knuth (1998). Lemma 8 re-
quires verification of three conditions: condition (i) is triv-
ially checked in constant time. Conditions (ii) and (iii) re-
quire at most O(n) and O(n2) operations, each of which
can be formulated as scalar linear equalities or inequalities.
Algorithm 10 contains, at worst, O(n3) repetitions of a set
union and intersection operation. Thus, the total complexity
of Algorithm 10 may vary depending on the data structure
used in the implementation, but it can certainly be bounded
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by O(n4). Theorem 11 has the same computational com-
plexity.

Next, we use the results of this section to solve Problem 2
for an affine system with two inputs. Example 13, which
is four-dimensional as by Ornik and Broucke (2015) lower-
dimensional examples will not be particularly illustrative,
is important for two reasons. First, it shows that the neces-
sary condition proposed in Semsar-Kazerooni and Broucke
(2014) for single-input systems, i.e., B ∩ cone(OS) 6= 0,
where cone(OS) is defined in (6), is not a necessary con-
dition for solvability of Problem 2 for multi-input systems.
Second, as mentioned earlier, since OS is not a face of S,
previous results in the literature cannot address the solvabil-
ity of the RCP in Example 13, without resorting to some
triangulation of S.

Example 13 Consider a simplex S = co{v0, . . . , v4} ⊆
R4, where vT0 = [0 0 0 0], and for j ∈ I := {1, 2, 3, 4},
define vj := ej , the jth Euclidean basis vector. Therefore,
hj := −ej , j ∈ I . Let the parameters of the affine system
(1) be

A =


−8 −8 2 −6
4 16 0 4

4 10 0 4

−4 2 0 0

 , B =


−3 −1
3 2

2 1

0 −1

 , a =


0

1

0

0

 .
Based on (4), it is easy to verify that

O =

{
x ∈ R4

∣∣∣∣ [−8 16 4 0

0 −6 −2 −2

]
x =

[
0

−1

]}
,

and OS = co{o1, o2, o3}, where o1 = (0, 0, 0, 12 ), o2 =

( 14 , 0,
1
2 , 0), and o3 = ( 13 ,

1
6 , 0, 0). Note that I(o1) = {0, 4},

I(o2) = {0, 1, 3}, and I(o3) = {0, 1, 2}. The QR factoriza-
tion of B is computed as

Q =

[
0.64 −0.64 −0.43 0

−0.41 −0.41 0 0.82

]T
, R =

[
−4.69 −2.35

0 −1.22

]
.

The cones Ci, i ∈ {1, 2, 3}, are shown in Fig. 8(a) and
it is easy to see that their intersection is the singleton 0.
Using Lemma 3, we conclude that B ∩ cone(OS) = 0.
Next, we use Theorem 11 to solve Problem 2. This will
show that the necessary condition proposed in Semsar-
Kazerooni and Broucke (2014) for single-input systems,
i.e., B ∩ cone(OS) 6= 0, is no longer necessary for two-
input systems. Note that QThj 6= 0 for all j ∈ I and
the rays H∗j , j ∈ I , are already in clockwise order as
illustrated in Fig. 8(b). It is easy to see that J1 = {1},
J2 = {1, 2}, J3 = {1, 3}, and J4 = {2, 3}. Next, Algo-
rithm 10 yields J̃1 = {1}, J̃2 = {1, 2}, J̃3 = {1, 2, 3},
and J̃0 = J̃4 = {2, 3}. Since J̃1 ∩ J̃4 = ∅, by The-
orem 11, Problem 2 is solvable. This is also in accor-
dance with Corollary 6, since

⋃3
i=1 C∗i 6= R2 as shown

in Fig. 8(b). Next, we use Corollary 5 to compute a
vertex map f : VOS → B that solves Problem 2. Con-
sider the vector h∗ = [1.5 0.42]T ∈ co{H∗1 , H∗4}.

v2,1 and v3,1

v2,2

v1,1
v1,2

v3,2

C2 C3

C1

(a)

H∗4

H∗2

H∗3

H∗1

C∗3C∗2

C∗1
(b)

Fig. 8. The graphics corresponding to Example 13. The rays are
shown with dashed lines, the vectors are shown with solid ar-
rows, and the cones are illustrate by blue arcs. (a) the cones
Ci, i ∈ {1, 2, 3}, and (b) the corresponding dual cones C∗i ,
i ∈ {1, 2, 3}. vi,1, vi,2 are the boundary rays for cones Ci.

Clearly, h∗ /∈
⋃3
i=1 C∗i and, by (16), h∗ ∈

⋂3
i=1Ni. Solv-

ing (12), we find the following feasible vectors: w1 =
[−33.6 −120.46]T ∈ C1, w2 = [−67.71 35.1]T ∈ C2,
and w3 = [−90.59 47.59]T ∈ C3. The corresponding
closed-loop vertex map f(oi) = Qwi, i ∈ {1, 2, 3}, is
then computed as f(o1) = (27.69, 70.67, 14.33,−98.36),
f(o2) = (−57.64, 28.98, 28.87, 28.66), and f(o3) =
(−77.37, 38.51, 38.63, 38.86). We can use the vertex map
f to find an affine feedback u(x) = Kx + g such that
the closed-loop vector field is non-vanishing on OS and
satisfies Ax + Bu(x) + a ∈ C(x), x ∈ OS . To this end,
the vertex map f is extendible on OS to the affine map
F = KFx+ gF , where

KF =


−233.52 2.8 1.48 55.37

112.11 0.86 −0.09 139.34

115.21 1.36 0.14 28.66

113.41 6.34 0.61 −196.71

 , gF =


0

1

0

0

 .
Note that KF = A + BK = A + QRK and gF = Bg +
a = QRg + a. Hence, the affine feedback controller gains
K = R−1QT (KF − A) and g = R−1QT (gF − a) are
computed as

K =

[
114.31 −2.15 0.38 −86.03
−117.41 −4.34 −0.61 196.71

]
, g =

[
0

0

]
.

It is easy to verify that the closed-loop affine sys-
tem defined over simplex S satisfies the conditions
in Corollary 9 in Roszak and Broucke (2006) with
ξ = −[5.37 5.83 0.87 5.27]T . Therefore, the RCP is
solvable even though B ∩ cone(OS) = 0.

5 Computationally Efficient Necessary Conditions for
Existence of a Non-vanishing Affine Extension onOS

In this section, we present necessary conditions for solvabil-
ity of Problem 2 as a feasibility program in terms of linear
inequalities. Feasibility problems subject to linear inequal-
ities can easily be programmed and solved using available
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optimization software. In contrast to Section 4, the neces-
sary conditions are applicable to all systems regardless of
the number of inputs.

Let I be an (m+ 1)-subset of {1, . . . , κ}, i.e. I is a subset
of {1, . . . , κ} with m + 1 elements. For each i ∈ I, let
EI(oi) ⊆ I(oi) be the set of non-zero exclusive members
of I(oi) in the set

⋃
i∈I I(oi), defined as EI(oi) := {l ∈

I(oi) | l 6∈ I(oj), ∀ j ∈ I, j 6= i}\{0}. Next, define SI to
be the set of non-zero shared vertices in

⋃
i∈I I(oi) given by

SI :=

(⋃
i∈I

I(oi)

)
\
(⋃
i∈I

EI(oi) ∪ {0}
)
. (24)

The following lemma is used in the proof of the main result
of this section.

Lemma 14 Each ray H∗j , j ∈ I \ SI , is contained in all,
except (potentially) one, cones C∗i , i ∈ I.

PROOF. Equation (24) yields I \ SI = (I \
⋃
i∈I I(oi))∪

(
⋃
i∈I EI(oi)). First, assume j ∈ I \

⋃
i′∈I I(oi′). Since

I \
⋃
i′∈I I(oi′) ⊆ I \ I(oi), i ∈ I, (17) yields H∗j ⊆ C∗i ,

i ∈ I. Therefore, each ray H∗j , j ∈ I \
⋃
i′∈I I(oi′), is

contained in all m + 1 cones C∗i , i ∈ I. Second, assume
j ∈ EI(oi′), i′ ∈ I. Since

EI(oi′) ⊆ I \ I(oi), i′ ∈ I, i ∈ I \ {i′},
(17) yields H∗j ⊆ C∗i , i ∈ I \ {i′}. Therefore, each ray H∗j ,
j ∈ EI(oi′), i′ ∈ I, is contained in all cones C∗i , i ∈ I,
except potentially C∗i′ . This completes the proof. 2

Given the set I, let the cone MI be defined as

MI := {y ∈ Rn | hj · y ≤ 0, j ∈ I \ SI}. (25)

The next result shows that if B is not of sufficiently high
dimension, and there are no non-zero vectors lying in B ∩
MI , then the obstruction described by Problem 2 exists.

Theorem 15 Assume 1 ≤ m < κ and let I be an (m+1)-
subset of {1, . . . , κ}. If Problem 2 is solvable, then B ∩
MI 6= 0.

PROOF. By way of contradiction, assume Problem 2 is
solvable, but B ∩MI = 0. Define the coneMI as

MI :={w ∈ Rm | (QThj) · w ≤ 0, j ∈ I \ SI}
=

⋂
j∈I\SI

Hj ,

where Hj is defined in (9). Similar to Lemma 3, it is easy
to show that if y ∈ B, then QT y ∈ MI if and only if
y ∈ B ∩ MI . By assumption, B ∩ MI = 0. Therefore,

MI = 0, and M∗I = Rm, where M∗I is the dual cone of
MI . Using Theorem 2 in Sandgren (1954), we can write

M∗I = co
{ ⋃
j∈I\SI

H∗j

}
= co{H∗j | j ∈ I \ SI}.

Based on Theorem 3.2 in Beck and Robins (2007), the m-
dimensional cone M∗I can be triangulated into simplicial
cones, where each simplicial cone is defined as the convex
hull of preciselym linearly independent raysH∗j , j ∈ I\SI .
Therefore,

M∗I =
⋃
Jm

co
{ ⋃
j∈Jm

H∗j

}
, (26)

where Jm is an m-subset 1 of I \ SI . Evidently, not all m-
subsets of I \SI might consist of linearly independent rays,
however, their union is equal toM∗I . Consider the rays H∗j ,
j ∈ Jm ⊆ I \SI . Now, let us note |I| = m+1 ≥ 2. Hence,
from Lemma 14, there exists at least one i∗ ∈ I such that
H∗j ⊆ C∗i∗ , j ∈ Jm. Since dual cones are convex, we also
have co{

⋃
j∈Jm

H∗j } ⊆ C∗i∗ . Now, (26) yields

M∗I =
⋃
Jm

co
{ ⋃
j∈Jm

H∗j

}
⊆

κ⋃
i=1

C∗i .

Since M∗I = Rm, we have
⋃κ
i=1 C∗i = Rm. Therefore,

according to Corollary 6, Problem 2 is unsolvable, which is
a contradiction. 2

Based on Theorem 15, if Problem 2 is solvable, the cone
condition B∩MI 6= 0 must hold for any (m+1)-subset of
{1, . . . , κ}. The number of (m + 1)-subsets of κ elements
is given by the binomial coefficient. Therefore, Theorem 15

presents
(

κ

m+ 1

)
sets of necessary conditions for solvabil-

ity of Problem 2. These conditions rely on determining an
intersection of up to n half-spaces in Rm, which was shown
in Brown (1978) to be equivalent to the multi-dimensional
convex hull problem. This problem can be solved in time
polynomial in n. One of the algorithms was given in Skiena
(2008), with the worst case complexity of O(nbm/2c+1).

We finish this section with an interesting special case where
the familiar conditionB∩cone(OS) 6= 0 (Semsar-Kazerooni
and Broucke (2014)) emerges from Theorem 15 as both a
necessary and sufficient condition.

Assumption 16 Any shared vertex index j ∈ I is shared by
all I(oi), i = 1, . . . , κ.

Corollary 17 Suppose Assumption 16 holds and 1 ≤ m <
κ. Problem 2 is solvable if and only if B

⋂
cone(OS) 6= 0.

1 Since the convex hull of rays H∗j , j ∈ I \SI , covers the whole
space Rm, the cardinality of the set I \SI is greater than or equal
to m.

9



PROOF. (=⇒) From (6) we can write

cone(OS) =
κ⋂
i=1

C(oi) =
κ⋂
i=1

{y | hj · y ≤ 0, j ∈ I \ I(oi)}

= {y | hj · y ≤ 0, j ∈ [I \ I(o1)] ∪ · · · ∪ [I \ I(oκ)]}
= {y | hj · y ≤ 0, j ∈ I \ [I(o1) ∩ · · · ∩ I(oκ)]}.

(27)

Suppose Assumption 16 holds. Then for any set I defined as
an (m+1)-subset of {1, . . . , κ}, the set of non-zero shared
vertices SI can be written as SI = I(o1)∩· · ·∩I(oκ)\{0}.
Thus, I \ [I(o1) ∩ · · · ∩ I(oκ)] = I \ SI . Therefore, (25)
and (27) yield cone(OS) = MI . The result follows from
Theorem 15.

(⇐=) Problem 2 is trivially solvable by setting f(oi) = y
for any 0 6= y ∈ B ∩ cone(OS). 2

6 Conclusions

In this paper, we introduced a new obstruction to solvabil-
ity of the RCP on a simplex using affine feedback, and we
provide necessary and sufficient conditions for occurrence
of the obstruction. These conditions can be formulated as
scalar linear inequalities for two-input systems. Finally, we
proposed computationally efficient necessary conditions for
checking the obstruction for multi-input systems as feasibil-
ity programs in terms of linear inequalities.
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