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Abstract— The paper studies the problem of making an affine
system defined on a polytopic state space reach a prescribed
facet of the polytope in finite time without first leaving the
polytope. The focus is on solvability by continuous piecewise
affine feedback, and we formulate a variant of the problem
in which trajectories exit in a monotonic sense. This allows
to obtain necessary and sufficient conditions for solvability
in certain geometric situations. Next, we show that, generi-
cally, solvability via arbitrary triangulations is equivalent to
monotonic solvability. In contrast with existing simplex-based
methods, this provides an avenue for reach control on polytopes
that does not depend on the choice of triangulation of the
polytope.

I. INTRODUCTION

We study the reach control problem (RCP) for affine
systems on polytopes. The problem is for an affine system
defined on a polytopic state space to exit the polytope
through a prespecified facet in finite time without first leaving
the polytope [4], [5]. The problem sits within a family of
reachability problems for hybrid systems [1], [9], [3]. The
most definitive results on the problem are focused on reach
control on simplices by affine feedback [6], [10], [2]. Results
for polytopes come in one of two forms. Either one must
perform a triangulation of the polytope and apply simplex-
based reach control methods [6], [10]. Alternatively, one may
impose conditions so that the design can be carried out in
two independent steps: first one assigns control inputs at
the vertices of the polytope guaranteeing propitious closed-
loop behavior; second, one selects any triangulation of the
polytope and one forms a (continuous) piecewise affine
feedback based on the vertex control values of step one.
We study the relative merits of the two approaches, and we
find via examples that the two methods are complementary.
The investigation highlights that new research is needed to
understand triangulation in control problems.

Past research on reach control on polytopes has either
required strong sufficient conditions or restrictive assump-
tions on the system dynamics [5], [8]. This paper initiates a
study of the reach control problem in which such restrictions
are removed; instead geometric properties of the system
are exploited to the best possible extent. In particular, the
placement of O, the set of possible equilibria, relative to
the polytope P plays a key role, and in certain cases,
clear necessary and sufficient conditions can be obtained
which remove the conservativism or restrictiveness of pre-
vious work. We then formulate the monotonic reach control
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problem (MRCP) where it is required that trajectories exit
the polytopic state space in a monotonic sense relative to a
foliation of parallel hyperplanes. This notion of monotonic
solvability is shown to be generically equivalent to solvability
of RCP by piecewise affine feedback using any choice of
triangulation of P . The latter is particularly useful when
triangulation is performed by a standalone software not
adapted to control problems.

Notation. Let K ⊂ Rn be a set. The closure is K,
and the interior is K◦. The symbol U represents a control
class such as open-loop controls, continuous state feedback,
affine feedback, etc. The notation 0 denotes the subset of Rn

containing only the zero vector. The notation co {v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ Rn.

II. REACH CONTROL PROBLEM

Consider an n-dimensional polytope P :=
co {v1, . . . , vp} with vertex set V := {v1, . . . , vp}
and facets F0,F1, . . . ,Fr. The target set is the facet F0

of P . Let hi be the unit normal to each facet Fi pointing
outside the polytope. Define the index sets I := {1, . . . , p},
J = {1, . . . , r}, and J(x) = {j ∈ J | x ∈ Fj}, where
x ∈ P . For each v ∈ V , define the closed, convex cone
C(v) :=

{
y ∈ Rn : hj · y ≤ 0, j ∈ J(v)

}
. (Note that h0

does not appear since F0 is the target set). We consider the
affine control system defined on P:

ẋ = Ax+Bu+ a , x ∈ P , (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) =
m. Let φu(t, x0) be the trajectory of (1) under a control
law u starting from x0 ∈ P . We are interested in studying
reachability of the target F0 from P by feedback control.

Problem 2.1 (Reach Control Problem (RCP)): Consider
system (1) defined on P . Find a state feedback u(x) such
that:
(i) for every x0 ∈ P there exist T ≥ 0 and γ > 0 such

that φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0,
and φu(t, x0) /∈ P for all t ∈ (T, T + γ).

RCP says that trajectories of (1) starting from initial condi-
tions in P reach and exit the target F0 in finite time, while
not first leaving P .

Definition 2.1: A point x0 ∈ P can reach F0 with
constraint in P with control class U, denoted by x0

P−→ F0,
if there exists a control u of class U such that property (i)
of Problem 2.1 holds. We write P P−→ F0 by control class
U if for every x0 ∈ P , x0

P−→ F0 with control of class U.
The following conditions ensure that trajectories only exit

P via F0 [5].



Definition 2.2: We say the invariance conditions are solv-
able if for each v ∈ V there exists u ∈ Rm such that
Av +Bu+ a ∈ C(v), v ∈ V . Equivalently,

hj · (Av +Bu+ a) ≤ 0 , j ∈ J(v) . (2)
Let B = Im B, the image of B. Define the set

O := { x ∈ Rn : Ax+ a ∈ B } . (3)

Notice that the vector field Ax+Bu+ a can vanish at any
x ∈ O for an appropriate choice of u ∈ Rm, so O is the set
of all possible equilibrium points of (1). We also define the
set of possible equilibrium points of (1) on P by

OP := P ∩ O . (4)

Since O is an affine space, either OP = ∅ or OP is a κ-
dimensional polytope in P . If OP 6= ∅, we define the vertex
set of OP to be VO = {o1, . . . , oq}, where oi are the vertices
of OP (not necessarily vertices of P). Also define the index
set IO = {1, . . . , q}.

In this paper we focus on piecewise affine feedback. Let
T be a triangulation of polytope P . A point x ∈ P lies in
the interior of precisely one simplex in T whose vertices
are, say, v1, . . . , vk. Then x =

∑k
i=1 λivi, where λi > 0 and∑

i λi = 1. Coefficients λ1, . . . , λk are called the barycentric
coordinates of x. Given a state feedback u(x) on P , we say u
is a piecewise affine feedback if for any x ∈ P , x =

∑
i λivi

implies u(x) =
∑

i λiu(vi), where the λi are barycentric
coordinates of x. It is easy to show that u(x) is a continuous
state feedback on P . If u(x) is a piecewise affine feedback
on P , then for each n-dimensional simplex Sj ∈ T, there
exist Kj ∈ Rm×n and gj ∈ Rm such that u(x) takes the
form u(x) = Kjx+ gj , x ∈ Sj . We say T is a triangulation
of P with respect to O if T is a refinement of a subdivision
of the point set V ∪VO such that OP is a union of simplices
in T.

III. FROM SIMPLICES TO POLYTOPES

It is known that for simplices, RCP is solvable by affine
feedback if and only if two conditions hold: (a) the in-
variance conditions (2) are solvable, and (b) there is no
closed-loop equilibrium in the simplex [6], [10]. The no-
equilibrium requirement can also be expressed as a so-called
flow condition, which gives an equivalent numerical test.
We are interested to obtain the most immediate extension
of this result for polytopes. First, we restrict our attention
to continuous piecewise affine (PWA) feedback. Assuming
PWA feedback, the invariance conditions remain necessary
conditions for solvability of RCP on polytopes [5]. Instead,
the flow condition is no longer necessary for solvability
on polytopes. Indeed the statement that there is no closed-
loop equilibrium is no longer equivalent to existence of a
flow condition when dealing with general polytopes, because
the equivalence relies on the convexity of the closed-loop
vector field. Convexity is preserved with affine feedback,
but not necessarily with PWA feedback. On the other hand,
the flow condition affords useful properties; particularly that
trajectories exit the polytope in an orderly way. In this section

we begin an exploration of the extent to which results for
simplices carry over to polytopes. Guided by these insights,
we formulate in Section IV a restricted version of RCP:
we incorporate the requirement of a flow condition into
the problem statement, and we call this restricted problem
monotonic reach control.

Suppose we are given a triangulation T of P with respect
to O and we are given u(x), a piecewise affine feedback
defined on T which satisfies the invariance conditions of P .
Define

bi := Aoi +Bu(oi) + a ∈ B ∩ C(oi) , i ∈ IO .

If we want to exclude closed-loop equilibria in P , then we
only need to concentrate on the behavior of the closed-loop
vector field in OP . A basic result of convex analysis says
that there are no closed-loop equilibria in OP if there is a
flow condition on OP .

Lemma 3.1: Let {b1, . . . , bq | bi ∈ B} be such that 0 6∈
co {b1, . . . , bq}. Then there exists β ∈ B such that β ·bi < 0,
i = 1, . . . , q.

The condition that 0 6∈ co {b1, . . . , bq} can be related to
the existence of closed-loop equilibria in P .

Theorem 3.2: Consider the system (1) defined on a poly-
tope P . Let T be a triangulation of P with respect to O,
and let u(x) be a piecewise affine feedback defined on T.
If 0 6∈ co {b1, . . . , bq}, then the closed-loop system has no
equilibrium in P .

In [2], two geometric sufficient conditions were obtained
for constructing a flow condition on simplices. The first
condition was that B ∩ cone(S) 6= 0, where cone(S) is the
tangent cone to simplex S at the vertex not containing the
exit facet F0. The second condition is that there is a set of
linearly independent vectors {b1, . . . , bq | bi ∈ B ∩ C(vi)},
where it is assumed that v1, . . . , vq are the vertices of OP . To
relate these results to the more general setting of polytopes,
we need to translate the geometric conditions to analogous
conditions for polytopes, and secondly, we need to relate
those translated geometric conditions to the statement that
there are no equilibria in OP via Theorem 3.2.

First, we introduce a condition analogous to the statement
for a simplex S that B ∩ cone(S) 6= 0. Define

cone(OP) :=
⋂

o∈VO

C(o) .

In particular, B∩cone(OP) is the cone of directions in B that
simultaneously satisfy the union of all invariance conditions
at all vertices of OP .

Lemma 3.3: Suppose B ∩ cone(OP) 6= 0. Then there
exists {b1, . . . , bq | bi ∈ B ∩ C(oi)} such that 0 6∈
co {b1, . . . , bq}.

Next, consider the condition for a simplex S that there
is a linearly independent set of vectors {b1, . . . , bq | bi ∈
B∩C(vi)}. Removing the restriction that vertices of OP are
vertices of S, we have the following analogous condition for
polytopes.

Lemma 3.4: Suppose there exists a linearly independent
set of vectors {b1, . . . , bq | bi ∈ B ∩ C(oi)}. Then 0 6∈
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Fig. 1. B ∩ cone(OP ) = 0

co {b1, . . . , bq}.
Based on Theorem 3.2, both of the previous conditions

imply there is no closed-loop equilibrium in P , assuming
P is triangulated with respect to O. But this is not enough
to deduce that RCP is solved. The primarily obstacle is that
convexity of the closed-loop vector field is lost using general
PWA controls. Consequently, the no closed-loop equilibrium
condition is no longer equivalent to the existence of a flow
condition. For this reason we’ll bring in a stronger condition,
to be developed in the next section. It is interesting to note
that the first condition B ∩ cone(OP) 6= 0 is not merely
one of the sufficient conditions, but is also necessary for
solvability by continuous state feedback. We present here a
result for single-input systems; we conjecture that the result
also holds for multi-input systems, though the proof will be
considerably more complex.

Theorem 3.5: Consider the system (1) defined on a poly-
tope P . Suppose m = 1 and OP 6= ∅. If B∩ cone(OP) = 0,
then RCP is not solvable by continuous state feedback.

Example 3.1: Consider the system

ẋ =

[
1 −10
1 −10

]
x+

[
1
1

]
+

[
1
−1

]
u .

The polytope P = co {v1, . . . , v4} is shown in Figure 1. It
can be verified that OP = co {o1, o2}, where o1 = (0, 0.1)
and o2 = (1, 0.2). SetO is shown in Figure 1. It can be easily
checked that the invariance conditions are solvable. However,
B ∩ cone(OP) = 0, as seen in the figure. By Theorem 3.5,
RCP is not solvable by continuous state feedback.

We conclude this section by showing that solvability of
RCP on polytopes by any class of controls is inextricably
linked to what happens on OP . In particular, if RCP is not
solved by some piecewise affine feedback, it is because some
trajectory encircles OP , approaches OP , or remains on OP .

Lemma 3.6: Suppose there exists x0 ∈ P and an open-
loop control u(t) such that the associated (unique) solution
φu(t, x0) of (1) satisfies φu(t, x0) ∈ P for all t ≥ 0. Define
A = co {φu(t, x0) | t ≥ 0}. Then A ∩OP 6= ∅.

IV. MONOTONIC REACH CONTROL PROBLEM

The previous section identified issues concerning existence
of equilibria on OP , necessary conditions for solvability

of RCP, and the relationship between failure to solve RCP
and behavior of trajectories with respect to OP . However,
clear necessary and sufficient conditions are not obtained.
This is because a no-equilibrium condition (in addition to
solvability of invariance conditions) is not known to be
sufficient to solve RCP on polytopes. Instead, we study a
more restrictive form of the problem which does lead to
the natural analog of results for simplices. These necessary
and sufficient conditions for solvability are examined under
various assumptions on the placement of OP . We also make
comparisons with the main results for simplices to better
understand the limits of those results when dealing with
polytopes.

Problem 4.1 (Monotonic Reach Control Problem (MRCP)):
Consider system (1) defined on P . Find a state feedback
u(x) such that:
(i) for every x0 ∈ P there exist T ≥ 0 and γ > 0 such

that φu(t, x0) ∈ P for all t ∈ [0, T ], φu(T, x0) ∈ F0,
and φu(t, x0) /∈ P for all t ∈ (T, T + γ).

(ii) There exists ξ ∈ Rn such that for all x ∈ P , ξ · (Ax+
Bu(x) + a) < 0.

The new condition (ii) is called a flow condition, and the
problem is called “monotonic” because trajectories flow
through the polytope in a common sense with respect to
a foliation of parallel hyperplanes with normal vector ξ.
We write P P−→ F0 monotonically if properties (i)-(ii) of
Problem 4.1 hold.

Now we investigate necessary and sufficient conditions for
solvability of MRCP under assumptions on the placement of
O with respect to P . The first result when OP = ∅ is based
on the following technical lemma.

Lemma 4.1: Consider the system (1) defined on a com-
pact, convex set A. If A ∩ O = ∅, then there exists β ∈
Ker (BT ) such that β · (Ax + Bu + a) < 0, for all x ∈ A
and u ∈ Rm.

Theorem 4.2: Consider the system (1) defined on a poly-
tope P , and supposeOP = ∅. Then P P−→ F0 monotonically
by piecewise affine feedback if and only if the invariance
conditions (2) are solvable.

In [2] necessary and sufficient conditions for solvability
of RCP on simplices were obtained based on the assumption
that OP is a face of the simplex. The same assumption for
polytopes makes possible a straightforward generalization to
polytopes for solvability of MRCP.

Assumption 4.1: Polytope P and system (1) satisfy the
following condition: OP is a κ-dimensional face of P , where
0 ≤ κ ≤ n. In particular, OP = co {v1, . . . , vq}, where vi
is a vertex of P . Let VO := {v1, . . . , vq}.

Theorem 4.3: Consider the system (1) and suppose As-
sumption 4.1 holds. Then P P−→ F0 monotonically by
piecewise affine feedback if and only if

(a) The invariance conditions (2) are solvable.
(b) There exists {b1, . . . , bq | bi ∈ B ∩ C(vi)} such that

0 6∈ co {b1, . . . , bq}.
Proof: (=⇒) Let y(x) := Ax+Bu(x)+a, where u(x)

is the PWA feedback achieving P P−→ F0 monotonically.



Since u(x) is a continuous state feedback, the invariance
conditions are solvable [5]. Now suppose that condition (b)
does not hold. This implies 0 ∈ co {y(v1), . . . , y(vp)}. On
the other hand, by assumption that P P−→ F0 monotonically,
there exists ξ ∈ Rn such that ξ · y(vi) < 0 for i ∈ I . This
implies 0 and co {y(v1), . . . , y(vp)} are strongly separated,
a contradiction.

(⇐=) For each vertex vi ∈ V \ OP , select a control
ui ∈ Rm to satisfy the invariance conditions (2). For vi ∈
VO, select ui ∈ Rm such that Avi + Bui + a = bi ∈ B ∩
C(vi). Form a triangulation T of P . Using the method of
[5], one can find unique Kj and gj corresponding to the
affine feedback u(x) = Kjx + gj on each n-dimensional
simplex Sj ∈ T such that u(vi) = ui, i = 1, . . . , p and
y(vi) = bi, i = 1, . . . , q. We obtain the piecewise affine
closed-loop system ẋ = (A+BKj)x+ (a+Bgj) =: y(x),
x ∈ P . We show a flow condition holds on P . First, a flow
condition holds for the closed loop vector field y(x) := (A+
BKi)x+Bgi+a on OP . By Lemma 3.1, there exists β1 ∈ B
such that β1 ·y(vi) = β1 ·bi < 0, i = 1, . . . , q. Next let P ′ :=
co {vi | vi ∈ V \VO}. Note that P ′∩O = ∅, so according to
Lemma 4.1, there exists β2 ∈ Ker (BT ) such that for all x ∈
P ′, β2 · (Ax+Bu(x)+a) < 0. Define β = αβ1+(1−α)β2
for some α ∈ (0, 1). Consider vi ∈ VO. Using the fact that
βT
2 bi = 0, we have β ·y(vi) = αβ1 ·y(vi) < 0. Next consider
vi ∈ V \ VO. We have

β·(Avi+Bui+a) = αβ1·(Avi+Bui+a)+(1−α)β2·(Avi+a) .

The term β1 ·(Avi+Bui+a) is a constant of unknown sign,
whereas we know β2 ·(Avi+a) < 0. Therefore it is possible
to select α sufficiently small so that β · (Avi +Bui + a) <
0 for all vi ∈ V \ VO. We conclude that for all vi ∈ V ,
β · y(vi) < 0.

Now let x ∈ P , and without loss of generality, suppose
x =

∑k
i=1 λivi, where λi are the barycentric coordinates of

x such that λi > 0 and
∑k

i=1 λi = 1. Since y(x) is affine on
simplices of T, we have y(x) =

∑k
i=1 λiy(vi). Therefore,

for x ∈ P , β · y(x) =
∑k

i=1 λiβ · y(vi) < 0. Since P is
compact, by a standard argument all trajectories exit P , and
by the invariance conditions, they do so through F0. Thus,
P P−→ F0 monotonically by piecewise affine feedback.

Remark 4.1: Lemmas 3.3 and 3.4 provide sufficient geo-
metric conditions for condition (b) of Theorem 4.3. These
provide the analog to the results for simplices appearing in
[2].

Finally, we consider the general case when OP ∩P◦ 6= ∅.
To illustrate the approach we study only single-input systems.
Starting from Theorem 3.5, we create a monotonic flow by
“pushing” the vector b ∈ B ∩ cone(OP) onto each of the
vertices of P while preserving the invariance conditions. We
show that if MRCP is solvable, then it is solvable by this
b-extremal solution. This then leads to a design procedure
for constructing the appropriate controls.

Let y ∈ Rn and define the index set

Iy := {i ∈ I | y ∈ C(vi)} .

That is, Iy is the index set of vertices for which the velocity
vector y satisfies the invariance conditions of that vertex. By
Theorem 3.5, B∩cone(OP) 6= 0 is a necessary condition for
solvability of RCP when m = 1, so we assume we have such
a b ∈ B ∩ cone(OP). For the indices i 6∈ Ib, let ui be such
that yi := Avi + Bui + a ∈ C(vi) contains the maximal b
component. Since b 6∈ C(vi) and m = 1, the maximum exists
and is unique, and it corresponds to one or more invariance
conditions evaluating to zero at vi. Given a triangulation T of
P , let u(x) denote any PWA feedback such that u(vi) = ui,
i 6∈ Ib.

Proposition 4.4: Consider the system (1) defined on a
polytope P . Suppose m = 1 and OP 6= ∅. Suppose T is
a triangulation and u(x) an associated PWA control such
that P P−→ F0 monotonically using u(x). Then there exists
b ∈ B ∩ cone(OP) and u(x) as above such that P P−→ F0

monotonically using u(x).
Corollary 4.5: Let 0 6= b ∈ B ∩ cone(OP) and let ui,

i 6∈ Ib be defined as above. Also let yi := Avi + Bui + a,
i 6∈ Ib. If for every b ∈ B ∩ cone(OP), 0 ∈ co {yi | i 6∈ Ib},
then MRCP is not solvable by PWA feedback.

Proposition 4.4 suggests a design procedure to synthesize
a PWA control u(x) to achieve P P−→ F0 monotonically.
The procedure is simply to inject the largest possible b ∈
B ∩ cone(OP) component in any vertex with i 6∈ Ib, and to
use a sufficiently large b component for vertices with i ∈ Ib.
An example of the procedure is given in Section VI.

V. ARBITRARY TRIANGULATION AND MONOTONIC
REACH CONTROL

In the previous section we studied MRCP and we saw
that the effect of the flow condition is to allow a solution
that does not depend on the choice of triangulation. This
is a useful feature if the triangulation is performed by a
standalone software not adapted to control problems. An
intuition emerges that the role of the flow condition is
precisely to provide this invariance to triangulation. In this
section we explore the extent to which this intuition is
correct. For this we formulate a version of RCP under
arbitrary triangulations. By arbitrary triangulation of P we
mean any triangulation of P with the property that if v ∈ P
is a vertex of a simplex belonging to T, then v is a vertex of
P . We show that MRCP by PWA feedback and RCP under
arbitrary triangulations are equivalent in a generic sense.

Problem 5.1 (RCP by Arbitrary Triangulations):
Consider the system (1) defined on P . Find a control
assignment ui, i ∈ I , such that for an arbitrary triangulation
T of P , the associated PWA feedback u(x) with u(vi) = ui,
i ∈ I , achieves P P−→ F0.

A set of p > n points in Rn are in general position if no
n+1 of them lie in a common affine hyperplane. The convex
hull of any set of points in general position in Rn is called a
generic polytope. For a generic polytope, all (proper) faces
are simplices. A polytope whose faces are simplices is called
a simplicial polytope [11].



Theorem 5.1: Consider the system (1) defined on a
generic polytope P . MRCP is solvable by PWA feedback
if and only if RCP by arbitrary triangulations is solvable.

Proof: (=⇒) By the same argument as at the end of
the proof of Theorem 4.3, for any choice of triangulation
and associated PWA feedback, P P−→ F0.

(⇐=) Suppose ui, i ∈ I , is a control assignment such that
for any triangulation T of P , the associated PWA feedback
u(x) with u(vi) = ui, achieves P P−→ F0. Let yi :=
Avi+Bui+a, i ∈ I . We claim 0 6∈ co {y1, . . . , yp}. Suppose
not. By Caratheodory’s Theorem and w.l.o.g. there exist
α1, . . . , αk with 1 ≤ k ≤ n + 1 such that 0 =

∑k
i=1 αiyi

with αi > 0 and
∑

i αi = 1. Let x =
∑k

i=1 αivi ∈ P .
Since {v1, . . . , vk} are in general position, one can apply
the placing triangulation [7] to the ordered point set V =
{v1, . . . , vp} such that S := co {v1, . . . , vk} is a simplex of
the resulting triangulation T. Let u(x) be the PWA feedback
associated with T such that u(vi) = ui. Since u(x) is affine
on S, Ax + Bu(x) + a =

∑k
i=1 αi

(
Avi + Bu(vi) + a

)
=∑k

i=1 αiyi = 0. That is x is an equilibrium of the closed-
loop system, so RCP is not solved, a contradiction. We
conclude 0 6∈ co {y1, . . . , yp}. By a standard argument of
convex analysis, there exists ξ ∈ Rn such that ξ · yi < 0,
i ∈ I . By the same argument as at the end of the proof of
Theorem 4.3, we have P P−→ F0 monotonically.

VI. EXAMPLES

We give several examples motivating why new research is
needed on reach control for polytopes and illustrating some
of the findings of the paper.

Example 6.1: In the first example we show that using
simplex-based methods for reach control, RCP is solvable
for one triangulation but not for another. However, MRCP
is solvable using any triangulation, thereby illustrating The-
orem 5.1. Consider the system

ẋ =

[
−2 1
−1 1

]
x+

[
0
−1

]
+

[
1
−1

]
u .

The polytope is shown in Figure 2. We find O = {x |
− 3x1 + 2x2 = 1}, depicted as a dashed line in Figure 2.
It can be easily verified that OP = co {o1, o2}, where
o1 = (0, 1/2) and o2 = (1/3, 1). The control objective
is to achieve P P−→ F0 by PWA feedback using existing
simplex methods in the literature. Suppose we triangulate
P as in Figure 2(a). Then the control objective splits as
S1

S1−→ F0 by affine feedback and S2
S2−→ F by affine

feedback. We study the invariance conditions of S1 at v4.
We have Av4 + a = (1, 0), so for any choice of control
the invariance conditions of S1 are always violated at v4.
Consequently, S1

S1−→ F0 is not achievable. Instead, suppose
we triangulate P as in Figure 2(b). The control objective is
again S1

S1−→ F0 by affine feedback and S2
S2−→ F by affine

feedback. We choose the control values at the vertices to
be u1 = 4, u2 = 0, u3 = 0, u4 = 2. The corresponding
velocity vector, yi, at each vertex vi is shown in Figure 2(b).
Based on these selected control values at the vertices, one

x1

x2

v2 = (1,0)v1 = (0,0)

v4 = (0,1) v3 = (1,1)

B

-B
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x2

y1 y2

y3
y4
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o1 

v4 v3 

v2 v1 
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Fig. 2. Two triangulations of P for Example 6.1.

can construct a PWA feedback such that the control objective
based on existing simplex methods is achieved [5].

Now we show MRCP is solvable. We choose the same
control values at the vertices as above. Let ξ = (0, 1). It can
be verified that ξ · (Avi + Bui + a) < 0, for i = 1, . . . , 4.
Triangulate P using any triangulation T and construct the
associated PWA feedback u(x) based on the control values
at the vertices [5]. For instance, if the second triangulation
shown in Figure 2(b) is selected, then we obtain the following
PWA control law:

u(x) =

{ [
−4 0

]
x+ 4 , x ∈ S1[

−2 −2
]
x+ 4 , x ∈ S2 .

Note that generally the two control laws will not be the same.
Since the invariance conditions of P are satisfied, we get
P P−→ F0 monotonically. Notice the result holds even if the
first triangulation were selected.

Example 6.2: In the previous example simplex methods
could be used to solve RCP, although there was an advan-
tage to the solution via MRCP, since it was valid for any
triangulation. Now we consider an example where simplex
methods fail for any choice of triangulation, but MRCP is
solvable. Consider the system

ẋ =

 1 1 −2
1 −3 −2
0 0 −1

x+

 0
1
0

+

 0
0
1

u .
The polytope is shown in Figure 3. The vertices of P are:
v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 0, 1), v4 = (0, 0, 0),
and v5 = (0, 1, 0). First, we check if the problem is solvable
using simplex methods. There are two possible triangulations
of P , shown in Figure 3. For the first triangulation the
control objective is S1

S1−→ F0 by affine feedback and
S2

S2−→ F = S1 ∩ S2 by affine feedback. We examine the
invariance conditions of S1 at v4. We have Av4+Bu4+a =
(0, 1, u4). The normal vectors to facets F3 and F1 in S1
are h3 = (0, 0,−1), and h1 = (−0.5774, 0.5774, 0.5774)
respectively. The invariance conditions of S1 at v4 yield
h3 · (Av4 + Bu4 + a) ≤ 0 and h1 · (Av4 + Bu4 + a) ≤ 0.
That is, u4 ≥ 0 and u4 ≤ −1. Thus, RCP is not solvable
by simplex methods using this triangulation. Now we try the
second triangulation in Figure 3. We examine the invariance
conditions of S1 at v3. In this case, we have Av3 + Bu3 +
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Fig. 3. Two triangulations of P for Example 6.2.
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Fig. 4. Polytope for Example 6.3

a = (−1, 0,−1 + u3), h2 = (−0.7071,−0.7071, 0), and
h2 · (Av3+Bu3+a) > 0 for all u3 ∈ R. Again, RCP is not
solvable by simplex methods using this triangulation.

Now we study solvability of MRCP. Select control values
u1 = 0, u2 = 0, u3 = −20, u4 = 0, and u5 = 0. It can be
verified they satisfy the invariance conditions of P . Let ξ =
(−1,−0.01, 1). One can then verify that ξ·(Avi+Bui+a) <
0 for all i = 1, . . . , 5. Triangulate P using any triangulation
T and construct the associated PWA feedback u(x) based
on the control values at the vertices [5]. For instance, if the
first triangulation in Figure 3 is selected, then we obtain the
following control law:

u(x) =

{ [
0 0 −20

]
x , x ∈ S1[

0 0 −20
]
x , x ∈ S2 .

Since the invariance conditions of P are satisfied, we get
P P−→ F0 monotonically.

Example 6.3: In this example we study a case when
OP ∩ P◦ 6= ∅, and we use the procedure suggested by
Proposition 4.4 to solve MRCP. Consider the system

ẋ =

[
2.1 2.5
1 1

]
x+

[
0
1

]
+

[
1
1

]
u

The polytope is shown in Figure 4. We find O = {x | 1.1x1+
1.5x2 = 1} depicted as a dashed line in Figure 4. Clearly,
P◦ ∩ O 6= ∅. We find that OP = co {o1, o2}, where
o1 = (0, 2/3) and o2 = (0.90909, 0). It can be verified that

the invariance conditions are solvable at the vertices of P .
Also, as seen in the figure, b := (1, 1) ∈ B ∩ cone(OP).
Our procedure to solve MRCP is to push a maximal amount
of b at the vertices vi, i 6∈ Ib. We have Ib = {1}, and the
extremal control values are u(v2) = −2.1, u(v3) = −4.6,
u(v4) = −2. As seen in the figure, certain invariance condi-
tions evaluate to zero at these vertices. Next we must select
u(v1) with a b component sufficiently large such that a flow
condition on P is obtained. If we choose u(v1) = 0.0075
then the invariance conditions hold at v1 and moreover, a
flow condition based on ξ = (−2.01, 0.01) can be verified
to hold at all vertices. Finally, we form a triangulation T
of P consisting of two simplices S1 = co {v1, v2, v3} and
S2 = co {v1, v3, v4}. The piecewise affine feedback is

u(x) =

{ [
−2.1075 −2.5

]
x+ 0.0075 , x ∈ S1[

−2.6 −2.0075
]
x+ 0.0075 , x ∈ S2 .

The example shows that the method of pushing b works even
if b does not point to the exit facet F0. Also, we did not
need to push a large amount of b at v1. It turns out that a
small push (c1b, c1 = 0.0075) is enough to construct a flow
condition on P . This small push is important. If we select
c1 = 0, it can be verified that 0.090909(Av1 + Bu(v1) +
a) + 0.90909(Av2 + Bu(v2) + a) = 0, so a flow condition
cannot be achieved on P .
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