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On Invariance of Cyclic Group Symmetries in Multiagent Formations

Joshua A. Marshall and Mireille E. Broucke

Abstract— This paper explores how the interconnection topol-
ogy among individuals of a multiagent system influences sym-
metry in its trajectories. It is shown how circulant connectivity
preserves cyclic group symmetries in a formation of simple
planar integrators. Moreover, it is revealed to what extent
circulant connectivity is necessary in order that symmetric
formations remain invariant under the system’s dynamics.

I. I NTRODUCTION

“It’s a basic principle: Structure always affects function.”
— Steven Strogatz inSync[1, p. 237]

This paper explores how the interconnection structure of a
multiagent system influences, in particular, symmetry in its
trajectories. A current research emphasis in the multiagent
systems and cooperative control literature is to generalize:
What are the connectivity conditions for achieving consen-
sus [2], [3]? What happens if the interconnection topology
among agents is dynamic [4]? These are matters of funda-
mental theoretical significance. On the other hand, practical
issues arise when designing multiagent systems required to
perform specific tasks. For instance, consider the problem of
dynamic target tracking using a team ofn > 1 autonomous
robots. This task requires the team to act as a mobile and
reconfigurable sensor array. Suppose each agent is equipped
with a target-tracking sensor (e.g., ultrasonic sensors, alaser
range finder, or a CCD camera) that, when combined with the
sensor readings of other agents, can be utilized to estimate
the location of a target. If the sensors measure distances
to the target, then it can be shown that a configuration
that optimizes the estimate is one in which the sensors are
uniformly placed in a circular fashion around the target [5].
Notice how this optimal sensor placement is “symmetrical,”
in the sense that the configuration remains optimal under
rotations by 2π/n about the target.

The problem of achieving and maintaining symmetry in
multiagent formations is not a new endeavor. For example,
[6] investigates distributed heuristic algorithms for thefor-
mation of geometric patterns in the plane (e.g., circles and
polygons). In [7], artificial potentials are used to generate sta-
ble symmetric formations by inserting virtual leaders among
the agents. How information flow influences the stability of
formations is studied in [8]. In [9], the authors demonstrate
how local pursuit strategies can generate regular polygon
formations in systems of kinematic unicycles. Symmetry
in the interconnection structure is exploited in [10], where
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the problem studied is distributed controller synthesis for
large arrays of spatially interconnected systems. Of particular
relevance to the current work is [11], wherein the symmetry
in a network of coupled identical dynamical systems is
exploited to classify invariant manifolds of the overall system
dynamics with respect to their stability. Hence, “stability in
the network descends from its topology” [11, p. 67].

The present research is especially influenced by the work
of [12] and [13], wherein a circulant interconnection struc-
ture among multiple agents is utilized to deduce the overall
steady-state behavior of the agents. In particular, [12] studies
the asymptotic behavior of a collection of points in discrete-
time circulant pursuit. Similarly, [13] studies the stability of
certain geometric patterns for a collection of continuous-time
fixed-speed agents in cyclic pursuit.

This paper studies connectivity as it relates to the problem
of choosing distributed controllers thatinherently preserve
symmetric formations. Designing stable formations, e.g.,as
in [7], [8], [13], is not studied here. The paper begins
by providing some terminology and background. Next, in
Sec. III, it is shown how circulant connectivity preserves
cyclic group symmetries in a formation ofn > 1 simple
planar integrators, each endowed with only relative sensing
capabilities. In Sec. IV, it is revealed to what extent circulant
connectivity is necessary in order that symmetric formations
remain invariant under the system’s dynamics.

II. SYMMETRY GROUPS, GRAPHS, AND PURSUIT

This section introduces some terminology and background
material relating to symmetry groups, algebraic graph theory,
and the class of multiagent systems studied in this paper.

A. Cyclic Group Symmetry

It is assumed that the reader is familiar with some basic
group theory; e.g., as in [14]. Recall that the set of isometries
in R

2 form a group, denotedI(R2). A subgroupG of I(R2)
is called asymmetry groupof a subsetU ⊂R

2 if U remains
invariant under every element ofG. A group is calledcyclic
when all its elements are powersgk of some one element
g. For any elementg in a groupG, the set{gk : k ∈ Z} is
the cyclic subgroup ofG generated byg. If gm = 1 for some
positive integerm, then the group generated byg consists of
a finite number of elements. Ifm is the least positive integer
for which this is true, thenm is called the group’s order.

Definition 1 (Rotation Group):The rotation groupof or-
derm, denotedCm, is the cyclic group generated by a rotation
through 2π/m about the origin.

Therefore, it is said thatU ⊂ R
2 has symmetryCm if the

rotation groupCm is a symmetry group ofU .



B. Agents in Pursuit

In this paper, it will be useful to view the agents as points
in the complex plane,C. Consider a collection ofn > 1
agents,z1(t),z2(t), . . . ,zn(t)∈C, evolving in timet. Suppose
that each agent is a simple integrator; i.e., ˙zi(t) = ui(t) ∈ C,
i = 1,2, . . . ,n, whereui(t) is the control input. Here, we shall
assume that the agents have onlyrelativesensing capabilities
(i.e., there is no global reference frame) and, therefore, that
the inputsui(t) are of the type

ui(t) = ∑
k6=i

aik (zk(t)−zi(t)) , i = 1,2, . . . ,n. (1)

That is, the aggregate multiagent system is of the form

ż(t) = Az(t), (2)

where z(t) = (z1(t),z2(t), . . . ,zn(t)) ∈ C
n. A direct conse-

quence of the relative sensing limitation is:
Property 1: The matrixA has zero row-sums.
In other words,A[1,1, . . . ,1]⊤ = 0. This implies that if the

agents are all collocated, then there is no motion. GivenA,
one can define adigraph, denotedΓ(A). That is, if aik 6= 0,
then there exists a directed edge inΓ(A) from vertex i to
k, implying that agenti receives information about agentk.
In the present context, for convenience, we abuse notation
and simply neglect the elementsaii when constructingΓ(A).
This paper concerns itself with the trajectories of (2), andwe
address the following question: What fixed interconnection
topologiesΓ(A) and associated weightsA = [aik] preserve
symmetries in multiagent formationsz(t) ∈ C

n for all t ≥ 0?

C. Circulant Interconnections

It will be shown in Secs. III and IV that of fundamental
significance to the topic of symmetry is a particular structure
in the sensing topology: namely,circulant connectivity. If a
system has circulant connectivity we mean that the system
matrix A is a circulant matrix [15]; i.e., of the form

A =











a0 a1 · · · an−1

an−1 a0 · · · an−2
...

...
...

a1 a2 · · · a0











=: circ(a0,a1, . . . ,an−1).

Each row is merely the row above, shifted one element
to the right (modulon). The matrix is entirely determined
by its first row. Also, intrinsic to the theory of circulants
is the fundamental permutation matrixof order n, Πn =
circ(0,1,0, . . . ,0). If A is a circulant matrix, then it can be
written as a sum of fundamentals,A= ∑n−1

i=0 aiΠi
n [15, p. 68].

A matrix A1 is said to have the samestructureas another
matrix A2, of the same dimensions, if for every zero entry
of A1 the corresponding entry inA2 is also zero, and vice
versa. Accordingly, if a square matrixA is such that there
exists a circulant matrixAc of the same order and structure
asA, then we callA structurally circulant.

D. Formation Graphs

At each instantt, one can define a set of locations
V t = {z1(t),z2(t), . . . ,zn(t)} and a setE t of edge vectors
eik(t) : V t ×V t → C such that an edgeeik(t) := zk(t)−zi(t)
exists inE t only if there exists a corresponding edge inE .
Abusing terminology, it is convenient to refer to the pair
(V t ,E t) =: Γ(A,z(t)) as theformation graph(or often just
graph for short). Fig. 1 provides two example formation
graphs. In particular, the graph in Fig. 1a and its correspond-
ing adjacency matrix both exhibit a circulant structure.
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Fig. 1. Example formation graphsΓ(A,z(t)).

E. Permutations

Of particular utility when studying formations and sym-
metry is the theory of permutations. LetN := {1,2, . . . ,n}
and consider a bijectionσ : N → N , which is called a
permutationof the setN . Associated with every permutation
σ is a square matrix, denotedPσ, of ordern. Given ann×n
matrix A= [aik], Pσ is such thatPσA= [aσ(i),k] and, therefore,
thatPσAP⊤

σ = [aσ(i),σ(k)] (e.g.,Πn is the matrix corresponding
to σ(i) = i +1). Let σl (i) := σ◦σ◦· · ·◦σ(i), the permutation
σ applied l times to elementi ∈ N . Every i ∈ N generates
a subset ofN called acycleof length l , wherel is the least
positive integer such thatσl (i) = i. In general, a permutation
σ can be factored (or partitioned) into a product of disjoint
cycles, denotedσ = (i1, i2, . . . , im) · · ·(ip, ip+1, . . . , in), where
i1, i2, . . . , in ∈ N . This factorization is unique up to the
ordering of factors, which are disjoint cycles. A permutation
is calledprimitive if it has only one factor (of full lengthn).
For more about permutations, see [15, Sec. 2.4].

III. SYMMETRIC FORMATIONS AND INVARIANCE

We refer to the configuration of pointsz(t) ∈ C
n at time

t as a multiagentformation, irrespective of the interagent
connections. The principal result of this section is Theorem
2, which states that if the system matrixA is circulant, then
symmetric formations remain symmetric. Letj :=

√
−1.

Definition 2 (Formation Symmetry):The formationz(t)∈
C

n at time t is said to have symmetryCm if there exists a
permutationσ : N → N such that

ej2π/mz(t) = Pσz(t). (3)

That is, by rotating the agentsz(t)∈C through angle 2π/m
one obtains the same set of points inC, but (generally)
with a different labeling. Since agents at the origin play



no role in symmetry, for simplicity’s sake, it is assumed
throughout this paper that there are no agents located at the
origin. Henceforth, it will simply be said that a formation
z(t) ∈ C

n has symmetryCm “with Pσ” if the vector z(t)
satisfies Definition 2 with associated permutation matrixPσ.
Following Definition 2, several remarks are in order.

Remark 1: If at time t a formationz(t) has symmetryCm,
thenm dividesn. Apply the constraint (3)m times, yielding

ej2πm/mz(t) = z(t) = Pn
σz(t)

(i.e., σm(i) = i for every i ∈ N ). Thus, σ factors inton/m
disjoint cycles of lengthm. Hence,Cm is a subgroup ofCn.

Remark 2: If a formationz(t) has symmetryCn, then the
associated permutationσ is primitive. For if not (i.e.,σ has
a cycle of lengthl < n), then one obtains at thel -th iteration

ej2πl/nz(t) = Pl
σz(t) = z(t),

which can only be true forl < n if z(t) ≡ 0.
Remark 3:Suppose a formationz(t) has symmetryCm,

where m < n. If there are collocated agents, then it is
possible that there exists more than one permutationσ
such that (3) is satisfied. For instance, then = 8 agents in
Fig. 1b have symmetryC4 with the primitive permutation
σ = (1,2, . . . ,8). However, the constraint (3) also holds with
σ = (1,2,3,4)(5,6,7,8). Following Remark 1, it is clear from
the geometry of symmetryCm that any factors ofσ must have
a length that is a multiple ofm.

Consequent to Remark 3, it is assumed in this paper that
if a formationz(t) has symmetryCm according to Definition
2, then its associated permutationσ is one that factors
into exactly n/m cycles of lengthm. Let gcd(n,q) denote
the greatest common divisor of the integersn and q. The
following is a useful fact.

Remark 4: If m divides n, then there always exists an
integerq∈ {1,2, . . . ,n−1} such that gcd(n,q) = n/m since
one can always chooseq = n/m.

A. Canonical Ordering

The following theorem establishes a connection between
formation symmetryCm and a canonical ordering of the
agents, often simply assumed; e.g., as in [14].

Theorem 1:Consider a formation ˜z(t) with symmetryCm

and let q ∈ {1,2, . . . ,n− 1} satisfy gcd(n,q) = n/m (cf.
Remark 4). Then, there exists a permutationτ of the agent
locationsz(t) = Pτz̃(t) such that (3) holds withPσ = Πq

n.
The proof has been omitted for brevity’s sake.
Let τ be the permutation described in Theorem 1. Clearly,

if a formation has symmetryCm then any permutation of
the agent locations does not change this; it only changes
the permutationσ with which (3) holds. By simultaneously
permuting the rows and columns ofA (i.e., computePτAP⊤

τ )
one can view this as just a coordinate transformation given
by Pτ or, equivalently, simply arelabelingof the agents.

B. Symmetry Invariance

The focus of this paper is on identifying certain intercon-
nection structures that inherently result in invariant manifolds
corresponding to formation symmetry. This naturally leadsto
the following definition.

Definition 3 (Formation Symmetry Invariance):Let m be
a divisor ofn. Formation symmetryCm is said to beinvariant
under the system dynamics (2) if for everyq∈ {1,2, . . . ,n−
1} such that gcd(n,q) = n/m and for every initial formation
z(0) ∈ C

n with Pσ = Πq
n, the formationz(t) has symmetry

Cm with Pσ = Πq
n for all t ≥ 0.

What follows is the first principal result of this paper. It
shows that with the proper ordering, rotation group symmetry
of a formation is invariant under circulant dynamics.

Theorem 2:If A is a circulant matrix, then formation
symmetryCm is invariant under the dynamics (2) for every
m that dividesn.

Proof: For everym that dividesn, associated with the
constraint (3) at timet = 0 is a complex linear subspace
M = {z∈ C

n : Mz= 0}⊂C
n, whereM = Πq

n−ej2π/mIn. It is
well known that the subspaceM is A-invariant if MA= AM.
SinceA is a circulant matrix, it can be written in the form
A = ∑n−1

i=0 aiΠi
n [15, p. 68], implying that

MA =
(

Πq
n−ej2π/mIn

)n−1

∑
i=0

aiΠi
n

=
n−1

∑
i=0

aiΠi+q
n −ej2π/m

n−1

∑
i=0

aiΠi
n

=
n−1

∑
i=0

aiΠi
n

(

Πq−ej2π/mIn
)

= AM.

Therefore, the subspaceM is invariant under the system’s
dynamics (2), which means that the formation constraint (3)
holds withPσ = Πq

n for all t ≥ 0.
Example 1:Consider then = 8 agents depicted in Fig.

2a. This formationz(0) has symmetryC4 with associated
permutationσ = (1,3,5,7)(2,4,6,8). Let

A = circ(−1,−1,0,0,0,0,2,0) (4)

be the corresponding multiagent system matrix. Thus, every
agenti ∈ V is repelled from agenti +1, but doubly attracted
to agenti +6. The simulation in Fig. 1b shows the evolution
of the formation starting atz(0) under the dynamics (2) with
(4). The fact that the agents converge to the origin is not of
interest here. Rather, dashed lines connecting agents of the
cycle{1,3,5,7} form a square at regular intervals during the
simulation, highlighting thatC4 symmetry is preserved. ⋄

The following corollary to Theorem 2 addresses the more
general case when the formation is not initially ordered.

Corollary 1: Given a permutationσ, let τ be such that
PτPσP⊤

τ = Πq
n (cf. Theorem 1). Letm be any divisor ofn

and supposez(0) ∈ C
n has symmetryCm with permutation

matrix Pσ. If PτAP⊤
τ is a circulant matrix, then the formation

z(t) has symmetryCm with Pσ for all t ≥ 0.
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(b) Simulation demonstrating symmetry invariance.

Fig. 2. Initial formation graph and simulation results for Example 1.

IV. C IRCULANT NECESSITY

Thus far, it has been shown that circulant multiagent
systems preserve rotation group symmetries. But, when is
a circulant system matrix also necessary? In this section, we
reveal that circulant connectivity is necessary if formation
symmetryCm is to be invariant under the system’s dynamics
for everym that dividesn.

A. Counterexample

Firstly, for any singlem dividing n, the condition of
Theorem 2 thatA be circulant is not, in general, necessary for
symmetry invariance, as illustrated by the following example.

Example 2:Consider a system (2) ofn= 4 agents, where
the inputs (1) are given by

ui(t) = zi+1(t)−zi(t), i = 1,3,4

u2(t) = z4(t)−z2(t)− (z1(t)−z2(t))

The corresponding system matrixA is not circulant. Consider
the initial formationz(0) given by the graphΓ(A,z(0)) in Fig.
3. Although the graphΓ(A,z(0)) does not have symmetryC4

(see Sec. V), the formationz(0) does (and withPσ = Π4).
Simulations confirm thatz(t) has symmetryC4 for all t ≥ 0.

However, it can also be verified by simulation that there
exists an initial formation having symmetryC2 (a subgroup
of C4) with Pσ = Π2

4 such that symmetryC2 is not preserved
for all t ≥ 0 (e.g., letz1(0) = z3(0) andz2(0) = z4(0)). ⋄
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Fig. 3. Non-circulant graphΓ(A,z(0)) for Example 2.

B. A Special Class of Formations

When studying the necessity of circulant connectivity, it
is helpful to employ a special class of formations; namely,
those given by the constraint

ωqz(t) = Πnz(t), (5)

for someq∈ {1,2, . . . ,n−1} and whereω := ej2π/n. Notice
that the locationszi(t), i = 1,2, . . . ,n, generated by the
constraint (5) all have the same magnitude, and hence lie on a
common circle. The following lemma associates a formation
satisfying (5) with its symmetry.

Lemma 1:Supposeωqz(t) = Πnz(t) holds for someq ∈
{1,2, . . . ,n−1} andz(t) ∈ C

n. Then, the formationz(t) has
symmetryCm, wherem= n/gcd(n,q).

Proof: Let p := gcd(n,q) and definem:= n/p andkq :=
q/p. To show the formation has symmetryCm one must show
there exists a permutation matrixPσ such that (3) holds. From
ωqz(t) = Πnz(t) one has

(

ej2π/n
)q

z(t) =
(

ej2π/m
)kq

z(t) = Πnz(t). (6)

By Bézout’s identity1, there exist integerslq andlm such that
1 = gcd(kq,m) = lqkq + lmm. This fact with (6) yields

ej2π/mz(t) =
(

ej2π/m
)lqkq

z(t) = Πlq
n z(t).

By letting Pσ = Πlq
n , one obtains the desired result.

Notice that the proof of Lemma 1 also reveals how for-
mations satisfying the special constraint (5) have symmetry
Cm with the canonical ordering introduced in Sec. III-A (i.e.,
(3) holds withPσ = Πlq

n ).
Example 3:Consider the example graphsΓ(A,z(0)) with

ωqz(0) = Πnz(0) given in Fig. 4, wheren = 6. In Fig.
4a, q = 1 and the formation has symmetryC6 since m =
6/gcd(6,1) = 6/1 = 6. In Fig. 4b,q = 2 and the formation
has symmetryC3 sincem= 6/gcd(6,2) = 6/2 = 3. ⋄

1Given two nonzero integersa and b, Bézout’s identity says there exist
integersc andd such that gcd(a,b) = ac+bd [16, Sec. 1.2, Theorem 1.7].
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Fig. 4. Example graphsΓ(A,z(0)) with ωqz(0) = Π6z(0).

Let vq := (1,ωq,ω2q, . . . ,ω(n−1)q), the (q+ 1)-th column
of

√
nF∗

n , whereFn denotes the Fourier matrix [15, p. 32].
Lemma 2:For everyq ∈ {1,2, . . . ,n−1}, the vectorz∈

C
n satisfiesωqz= Πnz if and only if z= vqz1.

Proof: The statementωqz= Πnz is equivalent toz2 =
ωqz1, z3 = ωqz2 = ω2qz1, . . . ,zn = ω(n−1)qz1, with ωnqz1 = z1.
Equivalently,z= vqz1, which concludes the proof.

C. Necessary Conditions for Invariance

The following theorem is about the necessity of circulant
connectivity and is the second principal result of this paper.

Theorem 3:If formation symmetryCm is invariant under
the dynamics (2) for everym that dividesn, then the system
matrix A is a circulant matrix.

Proof: Theorem 3.1.1 of [15] says that ann×n matrix A
is circulant if and only if it commutes with the fundamental
permutation matrix,Πn. Therefore, it suffices to show that
ΠnA−AΠn = 0. Let q ∈ {1,2, . . . ,n− 1} be arbitrary and
pick an initial formationz(0) = vqz1(0), with z1(0) 6= 0. By
Lemma 2, z(0) satisfiesωqz(0) = Πnz(0). By Lemma 1,
z(0) has symmetryCm with m= n/gcd(n,q). By assumption,
z(t) has symmetryCm for all t ≥ 0. By differentiating the
constraintωqz(t) = Πnz(t) with respect to time, one obtains

ωqAz(t) = ΠnAz(t)
(5)⇐⇒ (ΠnA−AΠn)z(t) = 0

⇐⇒ (ΠnA−AΠn)vqz1(t) = 0,

for all t ≥ 0, using Lemma 2 again in the last step. In
particular, sincez1(0) 6= 0, (ΠnA−AΠn)vq = 0. By Property
1, A has zero row-sums. Thus,Av0 = 0. Also, becausev0 is
an eigenvector ofΠn with corresponding eigenvectorλ = 1,
Πnv0 = v0 [15, pp. 72–73]. Therefore,

(ΠnA−AΠn)v0 = ΠnAv0−AΠnv0 = −Av0 = 0.

Recall that,[v0 v1 · · · vn−1] =
√

nF∗
n , whereFn is the Fourier

matrix [15, p. 32]. Therefore, it has been shown that
(ΠnA−AΠn)F∗

n = 0. SinceF∗
n is invertible,ΠnA−AΠn = 0.

Therefore,A is a circulant matrix.
The next example highlights the significance of the as-

sumption that not only is symmetryCn invariant, but also all
of its subgroups are invariant under the system’s dynamics.

Example 4:Consider n = 6 agents initially configured
such thatωz(0) = Π6z(0). Suppose the graphΓ(A,z(0))
is coupled in an all-to-all fashion, as in Fig. 4a. LetÃ =
circ(−5,1,1,1,1,1) and let A be the matrix Ã but with

its second row replaced by(1/2,−4,1/2,1/2,2,1/2). For
the initial formation ωz(0) = Π6z(0), Fig. 5a shows how
the rotation groupC6 is invariant under the dynamics (2),
despite the fact thatA is not circulant. In Fig. 5a, the dashed
lines connect agents{1,2,3,4,5,6}, in sequence, at regular
intervals during the simulation.

However, consider a different initial formationω2z(0) =
Π6z(0), which has symmetryC3 (since gcd(6,2) = 2, imply-
ing thatm= 6/2= 3).C3 is a subgroup ofC6. The associated
formation graph is given in Fig. 4b. Formation symmetry
C3 is not invariant under the dynamics (2), as one can see
from the simulation results of Fig. 5b, where the dashed
lines connect agents{1,2,3}. As time evolves, the initial
equilateral formation becomes only isosceles. ⋄

V. GRAPH SYMMETRY AND INVARIANCE

Although Theorems 2 and 3 make no mention ofgraph
symmetry, the condition thatA is a circulant matrix implies
the graph is also symmetric. Proposition 1 offers this last
result, but a definition and example are helpful first.

Definition 4 (Graph Symmetry):The graph Γ(A,z(t)) =
(V t ,E t) is said to have symmetryG at time t if it has the
property that for every elementg ∈ G, if v(t) ∈ V t , then
gv(t) ∈ V t , and if e(t) ∈ E t , thenge(t) ∈ E t . Moreover, the
mapsv(t) 7→ gv(t) ande(t) 7→ ge(t) are permutations.

Example 5:Fig. 1a has symmetryC2, but notC4 because
a rotation throughπ/2 does not map vertices to vertices. Fig.
1b has symmetryC1, but notC2 because a rotation through
π changes the edge directions. ⋄

Proposition 1: Suppose the formationz(t) has symmetry
Cm with Pσ = Πq

n. If A is a structurally circulant matrix, then
the graphΓ(A,z(t)) also has symmetryCm.

Proof: As per Definition 4, it is enough to show that
the map induced by a generator of the cyclic groupCm maps
vertices inV t (resp., edges inE t) to vertices inV t (resp.,
edges inE t) by a bijection. Rotation through 2π/m is a
generator of the cyclic groupCm. Constraint (3) implies the
mapz(t) 7→ ej2π/mz(t) is a bijection onV t , which means that
verticeszi(t)∈V t are mapped to vertices inV t by a bijection.
Consider the rotation of an arbitrary edgeeik(t)∈ E t through
angle 2π/m, yielding ej2π/meik(t) = ej2π/m(zk(t)−zi(t)) =
zk+q(t) − zi+q(t) = ei+q,k+q(t). Since eik(t) ∈ E t , aik 6= 0.
But, sinceA is structurally circulant,ai+q,k+q 6= 0, implying
that ei+q,k+q(t) ∈ E t . Hence, by the constraint (3), edges
eik(t) ∈ E t are mapped to edges inE t by a bijection.

This final example illustrates the fact that graph symmetry
is not sufficient to preserve cyclic group symmetries.

Example 6:Consider a system ofn = 6 agents withA =
circ(−3,1,2,−1,3,−2) and corresponding graph att = 0
given by Γ(A,z(0)) in Fig. 4a, which has symmetryC6

with Pσ = Πn. Following Theorem 2, formation symmetry
C6 is invariant. But, consider a new initial formation, given
by a permutation of the original one, ˜z(0) = Pτz(0), where
τ = (1)(2,3)(4)(5)(6). Since the coupling is all-to-all, the
new graphΓ(A, z̃(0)) also has symmetryC6. However, (3)
does not hold withPσ = Πq

n for any q, sincePτΠnP⊤
τ is not

of the formΠq
n. It can be shown by simulation that symmetry



1

23

4

5 6

(a) C6 symmetry preserved.

1

2

3

4

5

6

(b) C3 symmetry not preserved.

Fig. 5. Simulations for Example 4.

C6 of the formation ˜z(0) is not invariant undeṙ̃z(t) = Az̃(t),
despite the fact thatΓ(A, z̃(0)) has symmetryC6. ⋄

VI. CONCLUSIONS

By combining the sufficiency result of Theorem 2 and the
necessity result of Theorem 3, we have shown that for a
multiagent system of the form (1)–(2), formation symmetry
Cm is invariant under the system’s dynamics for everym that
dividesn if and only if the system has circulant connectivity.

In light of our results, there exist a few open questions.
Firstly, one might wonder about the necessity of the canoni-

cal labeling introduced in Sec. III-A and assumed in Defini-
tion 2. Is this ordering assumption without loss of generality?
Do there exist other classes of ordering for which there is
symmetry invariance if and only if the system matrix is
circulant? Secondly, to what extent are the presented results
specific to the simple integrator model (1)–(2)? And finally,
multiagent systems design is often presented as the problem
of synthesizing local control strategies that generate desired
global behaviors. Instead, the contributions of this paperem-
phasize the importance of structure. It seems reasonable that
structure could be exploited towards design. Given a set of
fixed agent behaviors, can we control a multiagent system’s
function (e.g., its steady-state and transient behaviors)by
intelligently switching the agent interconnection topology?
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