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On Invariance of Cyclic Group Symmetries in Multiagent Formations

Joshua A. Marshall and Mireille E. Broucke

Abstract— This paper explores how the interconnection topol- the problem studied is distributed controller synthesis fo
ogy among individuals of a multiagent system influences sym- |arge arrays of spatially interconnected systems. Of paleti
metry in its trajectories. It is shown how circulant connectivity relevance to the current work is [11], wherein the symmetry

preserves cyclic group symmetries in a formation of simple . . . . .
planar integrators. Moreover, it is revealed to what extent in a network of coupled identical dynamical systems is

circulant connectivity is necessary in order that symmetric ~€Xploited to classify invariant manifolds of the overalstgm
formations remain invariant under the system’s dynamics. dynamics with respect to their stability. Hence, “stabiiih

the network descends from its topology” [11, p. 67].
The present research is especially influenced by the work
“It's a basic principle: Structure always affects function of [12] and [13], wherein a circulant interconnection struc
— Steven Strogatz isync[1, p. 237]  ture among multiple agents is utilized to deduce the overall

This paper explores how the interconnection structure of §€ady-state behavior of the agents. In particular, [12]iss
multiagent system influences, in particular, symmetry én itth€ @symptotic behavior of a collection of points in diseret
trajectories. A current research emphasis in the multiageiMe circulant pursuit. Similarly, [13] studies the statilof
systems and cooperative control literature is to generalizCe"ain geometric patterns for a collection of continutoe
What are the connectivity conditions for achieving conserfixeéd-speed agents in cyclic pursuit.
sus [2], [3]? What happens if the interconnection topology This paper s_tud_|es connectivity as 't. relates to the problem
among agents is dynamic [4]? These are matters of fundat choosilng d|str|.buted contro_llers th&therently preserve
mental theoretical significance. On the other hand, praicticSymmetric formations. Designing stable formations, eag.,
issues arise when designing multiagent systems requiredfo [7]: [8], [13], is not studied here. The paper begins
perform specific tasks. For instance, consider the problem BY Providing some terminology and background. Next, in
dynamic target tracking using a team of> 1 autonomous Sec. lll, it is shown how circulant connectivity preserves
robots. This task requires the team to act as a mobile a®Cclic group symmetries in a formation of > 1 simple
reconfigurable sensor array. Suppose each agent is equippén@r integrators, each endowed with only relative sensin
with a target-tracking sensor (e.g., ultrasonic sensokasexr capab|llt_|e_s. !n Sec. IV, it is revealed to what ext_ent cimm_
range finder, or a CCD camera) that, when combined with tHONnectivity is necessary in order that symmetric fornregio
sensor readings of other agents, can be utilized to estimdfnain invariant under the system's dynamics.
the location of a target. If the sensors measure distances

to the target, then it can be shown that a configuration o ]
that optimizes the estimate is one in which the sensors are NS Section introduces some terminology and background

uniformly placed in a circular fashion around the target [5]Material relating to symmetry groups, algebraic graphiteo
Notice how this optimal sensor placement is “symmetrical,and the class of multiagent systems studied in this paper.
in the sense that the configuration remains optimal undey Cyclic Group Symmetry
rotations by 2t/n about the target. ) . - . :
The problem of achieving and maintaining symmetry in It is assumed that t_he reader is familiar with some basic
multiagent formations is not a new endeavor. For exampld) %!P theory; e.g., as in [14]. Rgcall that the set of Isorastr
[6] investigates distributed heuristic algorithms for toe- N R° form a group, denoted(R*). A subgrcz)qu of I{R?)
mation of geometric patterns in the plane (e.g., circles arlg c@/led asymmetry groupf a subsetw  R® if u remains
polygons). In [7], artificial potentials are used to genesst- invariant gnder every element &. A group is calledcyclic
ble symmetric formations by inserting virtual leaders ag’mnWhen all its element_s are powegs of somekone elem_ent
the agents. How information flow influences the stability of- FOr any elemeng in a groupG, the seti]g keZ}is
formations is studied in [8]. In [9], the authors demonsgtrattN€ CYclic subgroup of generated by. If g™ = 1 for some
how local pursuit strategies can generate regular polygdPSitive integem, then the group generated fyconsists of
formations in systems of kinematic unicycles. Symmetr finite number of elements. ih is the least positive integer

in the interconnection structure is exploited in [10], wder or Wh'Ch this is true., themn is called the_group’s order.
Definition 1 (Rotation Group):The rotation groupof or-
This work was funded in part by the Natural Sciences and Emging derm, denotedCy, is the cyclic group generated by a rotation
Research Council of Canada and the Walter C. Sumner Foundatio through 2-[/m about the origin.
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I. INTRODUCTION

II. SYMMETRY GROUPS GRAPHS, AND PURSUIT



B. Agents in Pursuit D. Formation Graphs

In this paper, it will be useful to view the agents as points At €ach instantt, one can define a set of locations
in the complex planeC. Consider a collection oh >1 % = {zi(t),z(t),...,z:(t)} and a setz; of edge vectors
agentsz(t),z(t),...,z(t) € C, evolving in timet. Suppose &k(t) : 7 x %1 — C such that an edgex(t) := z(t) —z(t)
that each agent is a simple integrator; i() = uj(t) € C, E€XiStS InZ on'Iy if therg exists a cgrrespondlng edgezn .
i=1,2,...,n, whereu(t) is the control input. Here, we shall Abusing terminology, it is convenient to refer to th_e pair
assume that the agents have omliative sensing capabilities (7t:%t) = T (A Z(t)) as theformation graph(or often just
(i.e., there is no global reference frame) and, therefdrat, t 9raph for short). Fig. 1 provides two example formation

the inputsu;(t) are of the type graphs. In particular, the graph in Fig. 1a and its corredpon
ing adjacency matrix both exhibit a circulant structure.
4O =3 e (@ -aM), =120 O -
kZi '
5 6 1
That is, the aggregate multiagent system is of the form GO0
. 37 15
2t) = Adt), )
where z(t) = (z1(t),z(t),...,za(t)) € C". A direct conse-
guence of the relative sensing limitation is: O & g
Property 1: The matrixA has zero row-sums. 4 3 2 ’
In other wordsA[1,1,...,1]" = 0. This implies that if the @ ®)
agents are all collocated, then there is no motion. Giken Fig. 1. Example formation grapHs(A, z(t)).

one can define digraph, denotedr (A). That is, if ay # 0,

then there exists a directed edgeli(A) from vertexi to E. Permutations
K, implying that agent receives mfo_rmahon about agekut . Of particular utility when studying formations and sym-
In the present context, for convenience, we abuse nomt'?ﬁ‘etry is the theory of permutations. Lag :— {1,2 n}
and simply neglect the elemerds when constructing (A). 1" - cier a biection - ' h'.c_h is called a
This paper concerns itself with the trajectories of (2), aed S ljectiow : AL = 2C, which Is

. . X . ._permutationof the setn’ . Associated with every permutation
address the following question: What fixed mterconnectmfjy ™ yPp

tonologiesr (A q iated iohis — (2 is a square matrix, denotd®;, of ordern. Given annx n
sOFr)r?rgg':ﬁZs(in)matjr;tiaa;?(f:(l)arn(:ati\:)vag (E” [:(")kr] a’ﬂr?ie(r)\;e matrix A= [ai], Py is such thaP;A = [a,() x| and, therefore,
y 9 ) € =77 thatP;AP] = [3(i).a(k)] (€-9-,MMn is the matrix corresponding

too(i)=i+1). Leta' (i) :=0000---0a(i), the permutation

C. Circulant Interconnections o applied! times to element € A(. Everyi € o' generates
It will be shown in Secs. Il and IV that of fundamental @ Subset of\_ called acyclle_of lengthl, wherel is the least
significance to the topic of symmetry is a particular straetu POsitive integer such that (i) =i. In general, a permutation

in the sensing topology: namelgirculant connectivity If a O ¢&n be factored (or partitioned) into a product of disjoint
system has circulant connectivity we mean that the systef¥cles, denoted = (i,iz,...,im) - (ip,ipt1,...,in), where

matrix A is acirculant matrix[15]; i.e., of the form i1,i2,...,in € AC. This factorization is unique up to the
ordering of factors, which are disjoint cycles. A permudati
a a -+ an-1 is calledprimitive if it has only one factor (of full lengtm).
-1 & - ap2 For more about permutations, see [15, Sec. 2.4].
A= ) =: circ(ap,az,--.,a8n-1)-

I1l. SYMMETRIC FORMATIONS AND INVARIANCE

a & - We refer to the configuration of poinigt) € C" at time

Each row is merely the row above, shifted one elemertltas a multiagenformation irrespective of the interagent

. L . . connections. The principal result of this section is Theore
to the right (modulon). The matrix is entirely determined : . S
o L . 2, which states that if the system matAxis circulant, then
by its first row. Also, intrinsic to the theory of circulants

is the fundamental permutation matrief order n, N, = symmetric formations remain symmetric. Lpt= v —1.

circ(0,1,0,...,0). If Ais a circulant matrix, then it can be CP::'Q:EZT i(ggirdmgt |?]gvsey;nr:1?rt]rgtfrr§? € il:‘otrrTe ?(talogii(gsea
written as a sum of fundamentals = z}";olail'l'n [15, p. 68]. y m

. . . ermutationo : such that
A matrix A; is said to have the sansructureas another P A=A
matrix Ay, of the same dimensions, if for every zero entry jor/m
. o . e Z(t) = Psz(t). 3

of A; the corresponding entry iA, is also zero, and vice (t) = Poz(t) )
versa. Accordingly, if a square matri is such that there  Thatis, by rotating the agenté&t) € C through angle #/m
exists a circulant matriXA; of the same order and structureone obtains the same set of points @) but (generally)
asA, then we callA structurally circulant with a different labeling. Since agents at the origin play



no role in symmetry, for simplicity’s sake, it is assumedB. Symmetry Invariance
throughout this paper that there are no agents located at thel’he focus of this paper is on identifying certain intercon-

origin. I—r|1enceforth, it will simply be said that a formation ,qtion structures that inherently result in invariant ifeids

z(t)_ € C ha_s _s_ymmet_ryCm Wlth Ps" if the vector Z(t_) corresponding to formation symmetry. This naturally letds

satisfies Definition 2 with associated permutation magx o following definition.

Following Definition 2, several remarks are in order. Definition 3 (Formation Symmetry Invariancelet m be
Remark 1:1f at timet a formationz(t) has symmetrfm, 3 divisor ofn. Formation symmetrgy, is said to benvariant

thenm dividesn. Apply the constraint (3n times, yielding ynder the system dynamics (2) if for eveqg {1,2,...,n—

1} such that gcth, g) = n/m and for every initial formation

&7 Mz(t) = 2(t) = Py(t) z(0) € C" with Py = Mg, the formationz(t) has symmetry
o _ _ Cm with Py = M3 for all t > 0.
(i.e., o™(i) =i for everyi € a(). Thus, o factors inton/m What follows is the first principal result of this paper. It

disjoint cycles of lengtm. Hence Cr, is a subgroup o€n.  shows that with the proper ordering, rotation group symynetr
Remark 2:1f a formationz(t) has symmetr\Cy, then the of a formation is invariant under circulant dynamics.
associated permutatiam is primitive. For if not (i.e.,0 has Theorem 2:If A is a circulant matrix, then formation
a cycle of length < n), then one obtains at tHeth iteration symmetryCp, is invariant under the dynamics (2) for every
m that dividesn.

el2M/Nz(t) = Pyz(t) = (1), Proof; For everym that dividesn, associated with the
constraint (3) at time& = 0 is a complex linear subspace
which can only be true fok < n if z(t) =0. M ={zc C":Mz=0} c C", whereM = nd—el2vmy Itis

Remark 3:Suppose a formatioa(t) has symmetnyCr,  well known that the subspace is A-invariant if MA= AM.
where m < n. If there are collocated agents, then it isSinceA is a circulant matrix, it can be written in the form
possible that there exists more than one permutation A= zi":—olai-l'l'n [15, p. 68], implying that
such that (3) is satisfied. For instance, the- 8 agents in

K . L . n-1
Fig. 1b have symmetnZ, with the primitive permutation MA — (nqieerr/ml ) all
o=(1,2,...,8). However, the constraint (3) also holds with " A iZj "

0=(1,2,3,4)(5,6,7,8). Following Remark 1, it is clear from n1 _ n1

the geometry of symmeti@, that any factors off must have = %al‘l'ﬁq —elzym Zj g,

a length that is a multiple af. i= i=
Consequent to Remark 3, it is assumed in this paper that _ ”’1ai_|_|i (l_lq _ el2mm) )

if a formationz(t) has symmetnCy according to Definition i; n .

2, then its associated permutatian is one that factors — AM.

into exactlyn/m cycles of lengthm. Let gcdn,q) denote
the greatest common divisor of the integersand g. The Therefore, the subspacw is invariant under the system’s

following is a useful fact. dynamics (2), which means that the formation constraint (3)
Remark 4:1f m divides n, then there always exists an holds with P; = M3 for all t > 0. [ |
integerq € {1,2,...,n— 1} such that gcth,q) = n/m since Example 1:Consider then = 8 agents depicted in Fig.
one can always choosg=n/m. 2a. This formationz(0) has symmetryCs with associated
permutationo = (1,3,5,7)(2,4,6,8). Let
A. Canonical Ordering A= circ(—1,-1,0,0,0,0,2,0) (4)

The.following theorem establishes a connect.ion betwegib the corresponding multiagent system matrix. Thus, every
formation symmetryCr, and a canonical ordering of the agenti € ¢’ is repelled from agerit+ 1, but doubly attracted
agents, often simply assumed; e.g., as in [14]. to agenti +6. The simulation in Fig. 1b shows the evolution

Theorem 1:Consider a formatiom(f) with symmetryCn  of the formation starting at(0) under the dynamics (2) with
and letq e {1,2,...,n— 1} satisfy gcdn,q) =n/m (cf.  (4). The fact that the agents converge to the origin is not of
Remark 4). Then, there exists a permutationf the agent interest here. Rather, dashed lines connecting agentseof th
locationsz(t) = PZ(t) such that (3) holds witi; = . cycle{1,3,5,7} form a square at regular intervals during the

The proof has been omitted for brevity’s sake. simulation, highlighting tha€4 symmetry is preserved. ¢

Let T be the permutation described in Theorem 1. Clearly, The following corollary to Theorem 2 addresses the more
if a formation has symmetrZ,, then any permutation of general case when the formation is not initially ordered.
the agent locations does not change this; it only changesCorollary 1: Given a permutatioro, let T be such that
the permutatioro with which (3) holds. By simultaneously P;P;P, = N3 (cf. Theorem 1). Letm be any divisor ofn
permuting the rows and columns Af(i.e., compute® AR")  and suppose(0) € C" has symmetnCy, with permutation
one can view this as just a coordinate transformation givematrix Ps. If PLAR, is a circulant matrix, then the formation
by P; or, equivalently, simply aelabelingof the agents. z(t) has symmetnCn, with P; for all t > 0.



(see Sec. V), the formatiorn0) does (and withP; = M4).
Simulations confirm that(t) has symmetnC, for all t > 0.
However, it can also be verified by simulation that there
exists an initial formation having symmet@p (a subgroup
of C4) with Py = I'If1 such that symmetr¢, is not preserved
forallt >0 (e.g., letz;(0) = z3(0) and z(0) = z4(0)). <

Fig. 3. Non-circulant grapii (A, z(0)) for Example 2.

B. A Special Class of Formations

When studying the necessity of circulant connectivity, it
is helpful to employ a special class of formations; namely,
those given by the constraint

wiz(t) = MNpz(t), (5)

for someq € {1,2,...,n—1} and wherew:= el?V", Notice
that the locationsz(t), i = 1,2,...,n, generated by the
constraint (5) all have the same magnitude, and hence lie on a
common circle. The following lemma associates a formation
satisfying (5) with its symmetry.

Lemma 1: Supposewz(t) = Myz(t) holds for someq €
{1,2,...,n—1} andz(t) € C". Then, the formatiorz(t) has
(b) Simulation demonstrating symmetry invariance. symmetryCy,, wherem=n/gcd(n,q).

Proof: Let p:=gcd(n,q) and definen:=n/p andkq :=

g/ p. To show the formation has symmety, one must show
there exists a permutation matis such that (3) holds. From

IV. CIRCULANT NECESSITY wiz(t) = Mpz(t) one has

Thus far, it has been shown that circulant multiagent (ejzn/”)qz(t) _ (ejZTI/m)qu(t) — Maz(t). ©6)
systems preserve rotation group symmetries. But, when is

a circulant system matrix also necessary? In this sectien, VBy Bézout's identity, there exist integerlg andly, such that
reveal that circulant connectivity is necessary if formati 1= gcd(ky, m) = lqkq+ Imm. This fact with (6) yields
symmetryCy, is to be invariant under the system’s dynamics . _ lokq

for every m that dividesn. el2My(t) = (eJZT‘/ m) Mz

Fig. 2. Initial formation graph and simulation results for BExze 1.

(t) = NRz(t).
A. Counterexample By letting Py = MY, one obtains the desired result. m
Firstly, for any singlem dividing n, the condition of Notice that the proof of Lemma 1 also reveals how for-
Theorem 2 thaf\ be circulant is not, in general, necessary fomations satisfying the special constraint (5) have symynetr
symmetry invariance, as illustrated by the following exémp C, with the canonical ordering introduced in Sec. llI-A (i.e.,
Example 2:Consider a system (2) of= 4 agents, where (3) holds withP; = r|',$),
the inputs (1) are given by Example 3:Consider the example graph$A,z(0)) with
A R w9z(0) = Mpz(0) given in Fig. 4, wheren = 6. In Fig.
U(t) =241(t) —2(),i=134 4a, q =1 and the formation has symmetGg since m =
U2(t) = z(t) — 22(t) — (z(t) — 2(t)) 6/gcd6,1) = 6/1 = 6. In Fig. 4b,q= 2 and the formation

The corresponding system matis not circulant. Consider has symmetrfCs sincem=6/gcd(6,2) =6/2=3. ©

the initial formationz(O) given by the graplh‘(A7 Z(O)> in Fig' 1Given two nonzero integera and b, Bézout’s identity says there exist
3. Although the grapl (A,z(0)) does not have symmet(;  integersc andd such that gcth, b) = ac+bd [16, Sec. 1.2, Theorem 1.7].



25 its second row replaced bgl/2,—4,1/2,1/2,2,1/2). For

the initial formation wz(0) = Mez(0), Fig. 5a shows how

the rotation groupCs is invariant under the dynamics (2),
1,4 despite the fact thak is not circulant. In Fig. 5a, the dashed

lines connect agent§l, 2,3,4,5,6}, in sequence, at regular

intervals during the simulation.

However, consider a different initial formatioi?z(0) =

36 Mez(0), which has symmetrZs (since gcdb6,2) = 2, imply-
(@g=1 (b) q=2 ing thatm=6/2 = 3). Cz is a subgroup o€s. The associated
formation graph is given in Fig. 4b. Formation symmetry
Cs is not invariant under the dynamics (2), as one can see
from the simulation results of Fig. 5b, where the dashed
lines connect agent§l,2,3}. As time evolves, the initial
equilateral formation becomes only isosceles. o

Fig. 4. Example graphE(A,z(0)) with wz(0) = Mez(0).

Let Vg := (1,08, ,..., " 19), the (q+ 1)-th column
of /nF;, whereF, denotes the Fourier matrix [15, p. 32].
Lemma 2:For everyg € {1,2,...,n— 1}, the vectorze V. GRAPH SYMMETRY AND INVARIANCE
C" satisfieswiz=Myz if and only if z=v4z1.
Proof: The statementyiz = M,z is equivalent toz, =
Wiz, 723 = Wz = W97, ...,z = WDz with W92 = z;.
Equivalently,z= vqz;, which concludes the proof. [ ]

Although Theorems 2 and 3 make no mentiongoéph
symmetry, the condition tha is a circulant matrix implies
the graph is also symmetric. Proposition 1 offers this last
result, but a definition and example are helpful first.

C. Necessary Conditions for Invariance Definition 4 (Graph Symmetry)The graphl (A, z(t)) =

The following theorem is about the necessity of circulant®t-Zt) 1S said to have symmetr§ at timet if it has the
connectivity and is the second principal result of this papePrOPerty that for every elemerg € G, if v(t) € 74, then
Theorem 3:If formation symmetryCy, is invariant under gv(t) € 74, and ife(t) € Z;, thenge(t) € £i. Moreover, the

the dynamics (2) for evergn that dividesn, then the system mapsv(t) — gv(F) ande(t) — ge(t) are permutations.
matrix A is a circulant matrix. Example 5:Fig. 1la has symmetr,, but notC, because

Proof: Theorem 3.1.1 of [15] says that an n matrixA & rotation throughm/2 does not map vertices to vertices. Fig.
i circulant if and only if it commutes with the fundamentallP Nas symmetriy, but notC; because a rotation through
permutation matrix[T,. Therefore, it suffices to show that T ¢hanges the edge directions. _ ¢
MWA—AM, =0. Letqe {1,2,....,n— 1} be arbitrary and Proposition %: Suppose the formaﬂo_z(t) has symmetry
pick an initial formationz(0) = v4z1(0), with z1(0) # 0. By Cm with P; =M. If Ais a structurally circulant matrix, then
Lemma 2,2(0) satisfieswdz(0) = Myz(0). By Lemma 1, e graphi(Az(t)) also has symmetrgr.
2(0) has symmetrn, with m=n/gcdn,q). By assumption, Proqf: As per Definition 4, it is enough to show that
Z(t) has symmetnyCn, for all t > 0. By differentiating the the map induced by a generator of the cyclic gr@4pmaps

constraintu?z(t) = Maz(t) with respect to time, one obtains VEices in74 (resp., edges irey) to vertices in7; (resp.,
edges in%;) by a bijection. Rotation throught@m is a

WIAZ(t) = MpAZt) & (MhA—AMR) Z(t) =0 generator of the cyclic grou@m,. Constraint (3) implies the
= (MpA— Aly) vgza(t) = 0 mapz(t) — eiZYMz(t) is a bijection o, which means that

verticesz (t) € v; are mapped to vertices irt by a bijection.
for all t > 0, using Lemma 2 again in the last step. InConsider the rotation of an arbitrary edgg(t) € ; through
particular, sincez; (0) # 0, (MyA—Ally)vq = 0. By Property angle 2ym, yielding el?V™Mey (t) = el2VM(z(t) — z(t)) =
1, A has zero row-sums. ThuBy = 0. Also, becauseo is 7, 4(t) — Z.q(t) = @.qkiq(t). Since ex(t) € %, ak # 0.
an eigenvector of1, with corresponding eigenvectdr=1,  But, sinceA is structurally circulantgiq.q # 0, implying
MnVo = Vo [15, pp. 72—73]. Therefore, that g, qk+q(t) € £t. Hence, by the constraint (3), edges
. . . ek(t) € £; are mapped to edges inr by a bijection. |
(MaA = AlTn) Vo = MnAVo — AlVo = —Avo = 0. '(I'%is final example illustrates the fact that graph symmetry
Recall that,[vo v1 --- vo_1] = /NF, whereF, is the Fourier is not sufficient to preserve cyclic group symmetries.
matrix [15, p. 32]. Therefore, it has been shown that Example 6:Consider a system af= 6 agents withA =
(ML,A—Al,)FF =0. SinceR; is invertible,M,A— AN, =0. circ(—3,1,2,—1,3,—2) and corresponding graph at=0
Therefore,A is a circulant matrix. ® given by I'(A,z(0)) in Fig. 4a, which has symmetrZs
The next example highlights the significance of the aswith P; = M. Following Theorem 2, formation symmetry
sumption that not only is symmetf, invariant, but also all Cg is invariant. But, consider a new initial formation, given
of its subgroups are invariant under the system’s dynamicby a permutation of the original one(0j = P;z(0), where
Example 4:Considern = 6 agents initially configured 1 = (1)(2,3)(4)(5)(6). Since the coupling is all-to-all, the
such thatwz(0) = Mez(0). Suppose the graph(A,z(0)) new graphl(A,Z(0)) also has symmetrgs. However, (3)
is coupled in an all-to-all fashion, as in Fig. 4a. L&t= does not hold wittP; = My for any g, sincePM,P, is not
circ(—5,1,1,1,1,1) and let A be the matrixA but with  of the form[{.. It can be shown by simulation that symmetry



cal labeling introduced in Sec. IlI-A and assumed in Defini-
tion 2. Is this ordering assumption without loss of gengyali

. Do there exist other classes of ordering for which there is
symmetry invariance if and only if the system matrix is
] circulant? Secondly, to what extent are the presentedtsesul
specific to the simple integrator model (1)—(2)? And finally,
multiagent systems design is often presented as the problem
of synthesizing local control strategies that generatérets
global behaviors. Instead, the contributions of this pager

. phasize the importance of structure. It seems reasonadile th
structure could be exploited towards design. Given a set of
] fixed agent behaviors, can we control a multiagent system’s
function (e.g., its steady-state and transient behavibys)
intelligently switching the agent interconnection topl@
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