
1

Symmetry Invariance of Multiagent Formations in
Self-Pursuit

Joshua A. Marshall,Member, IEEE,and Mireille E. Broucke,Member, IEEE

Abstract— Structure in the interconnection topology among
individuals of a multiagent system plays a fundamental role
in the system’s steady-state and transient behaviors. Thispa-
per explores how certain interconnection topologies influence
symmetry in a multiagent system’s trajectories. It is shown
how circulant connectivity preserves rotation, and in particular
instances, dihedral group symmetries in a formation of locally
interacting planar integrators. Moreover, it is revealed to what
extent circulant connectivity is also necessary in order that
symmetric formations remain symmetric under the multiagent
system’s dynamics.

Index Terms— Cooperative control, multiagent formations,
information flow, symmetry groups, circulant matrices.

I. I NTRODUCTION

“It’s a basic principle: Structure always affects function,”
says Steven Strogatz in his book entitledSync [1, p. 237].
This paper explores how the interconnection structure among
locally interacting agents influences, in particular, the invari-
ance of discrete symmetries in its trajectories. Consider the
problem of dynamic target tracking using a team ofn > 1
autonomous mobile robots. This task requires that agents
act as a mobile and reconfigurable sensor array. Suppose
each agent is equipped with a target-tracking sensor (e.g.,
an ultrasonic sensor, a laser range finder, or a CCD camera)
that, when combined with the sensor readings of other agents,
can be utilized by a central observer to estimate the location
of a target. If the sensors measure distances to the target,
then it can be shown that a configuration that optimizes the
estimate is one in which the sensors are uniformly placed in
a circular fashion around the target [2]. This optimal sensor
placement is “symmetrical,” in the sense that the configuration
remains optimal under rotations by2π/n about the target. The
problem of symmetrical arrangement of agents in a formation
has applications in area coverage [3], [4], [5], sampling of
distributed data [6], antenna arrays and reconfigurable satellite
dishes [7], estimation and localization [8], and in mobile
communication networks to reduce power usage and increase
the quality of transmissions [9].

The problem of achieving and maintaining symmetry in
multiagent formations has been widely studied [10], [11],
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[12]. For example, distributed heuristic algorithms for the
formation of geometric patterns in the plane (e.g., circlesand
polygons) are investigated in [13]. Artificial potentials are used
to generate stable symmetric formations by inserting virtual
leaders among the agents in [14]. A method for stabilizing
multiple agents to rigidly constrained formations, while mov-
ing along a desired path, is examined in [15]. In [16], a hybrid
control strategy is employed to achieve stability for a desired
formation, irrespective of its symmetry. Symmetric formations
have been considered for a variety of types of agents from
satellites [17] to wheeled vehicles [18], [19], [20].

How information flow influences the stability of forma-
tions is studied in [21]. Of relevance to the current work is
[22], which exploits the symmetry in a network of coupled
identical dynamical systems to classify invariant manifolds of
the overall system dynamics with respect to their stability.
Hence, “stability in the network descends from its topology”
[22, p. 67]. Symmetry in the interconnection structure is also
exploited in [23], which studies the problem of distributed
controller synthesis for large arrays of spatially interconnected
systems.

The present research is especially influenced by [24] and
[25], wherein a circulant interconnection structure among
multiple agents is utilized to deduce the overall steady-
state behavior of the agents. In particular, [24] studies the
asymptotic behavior of a collection of agents in discrete-time
circulant pursuit. Similarly, [25] studies the stability of certain
geometric patterns for a collection of continuous-time fixed-
speed agents in cyclic pursuit.

This paper studies connectivity as it relates to the problem
of choosing distributed controllers thatinherently preserve
symmetric formations. Designing or studying the stability
of symmetric formations, as in [15], [16], [22], [14], [21],
is not examined here. We identify interconnection structures
that naturally result in invariant manifolds corresponding to
formation symmetries. This paper considersn > 1 identical
planar integrators in self-pursuit, each endowed with only
relative sensing capabilities, and with a fixed sensing topology.
It is revealed how the information flow structure among agents
influences symmetry in the multiagent system’s trajectories.
In particular we show that the only agent interconnection
topology that preserves finite symmetry groups in the plane
is a circulant interconnection structure. Under the assumption
of linear dynamics and relative sensor information, the agents
will converge to their center of mass, diverge away from the
center of mass, or form a circle. Our concern in this paper is
not with the asymptotic behavior of the agents but with the
shapeof the formation as the dynamics evolve. See [26], [27],
[28] for related studies on control of the shape of a formation.
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Our results can be viewed as a first step toward more complex
frameworks such as nonlinear agent dynamics, time-varying
sensing topologies, multi-agent systems with fixed external
references, and control strategies other than linear pursuit.

The motivation for studying this problem is two-fold. One
is as a first step toward a more general theoretical framework
for symmetry invariance in multi-agent systems. The second
is because symmetric arrangements of agents are useful in
applications. However, we wish to emphasize that is the
first motivation which is more relevant in this paper. We
study an idealized problem of rendezvous with an idealized
vehicle model of point mass agents, using among the simplest
communication structures: self-pursuit. Each of these choices
represents an abstraction of real-world situations. Our empha-
size is on the theoretical question of what control behaviors
can be achieved under a severe restriction on sensor data. In
the literature cited above the emphasis has been on achieving
rendezvous and consensus alone, whereas the theme of this
paper is to show other desirable behaviors can be achieved.
Ultimately, a compendium of useful collective behaviors could
be classified for a given sensor structure. A next step in the
research is to understand how the simplifying assumptions in
our framework can be removed while retaining the same set
of desirable collective behaviors.

In summary, the contributions of the paper are as follows:
first we study cyclic group symmetries in planar multi-agent
formations. We define the notion of cyclic formation symmetry
and relate this to a permutation applied to the agent indices.
We show that this permutation is always similar (in the sense
of similar matrices) to a certain power of the fundamental
permutation matrix, assuming that a canonical labeling of the
agent indices is adopted. The idea of a canonical labeling for
cyclic symmetries, which is not new [29], [30], is contrasted
with repositioning the agents. Using this labeling, we show
that cyclic formation symmetry is invariant under a circulant
communcation structure. Invariance is obtained by showing
that the agents evolve on a complex linear subspace, and the
dynamics on this subspace are explicitly characterized. Next,
we explore the extent to which circulant communication struc-
ture is necessary for cyclic formation symmetry invariance. By
way of an example, we show that a cyclic group symmetry
may be invariant even of the communication structure is not
circulant. However, if a cyclic group symmetry and all of
its subgroups are invariant under the multiagent dynamics,
then the communication structure must be circulant. Next, we
consider the question of whether all of the above results canbe
explained simply by studying the topology of the sensor graph.
We introduce the notion of graph symmetry - analogous to
formation symmetry - and the notion of a structurally circulant
matrix - analogous to a circulant matrix - notions which regard
only the associated graph structures. It is shown by way of
example that graph symmetry is not sufficient to preserve
cyclic group symmetries. Finally, we briefly address dihedral
symmetries. We define dihedral group symmetry and show, by
way of example, that dihedral symmetries are generally not
preserved by a circulant communication structure. However, a
special class of dihedral symmetries in which the agents lie
on a circle do have this property.

The paper is organized as follows. Section II begins with
notation and background. Section III introduces systems of
agents in self-pursuit and some associated concepts in al-
gebraic graph theory. Next, in Section IV, it is shown how
circulant connectivity preserves cyclic group symmetriesin
multiagent formations. Section V reveals to what extent circu-
lant connectivity is necessary in order that symmetric forma-
tions remain invariant under the system’s dynamics. Finally,
Sections VI and VII discuss graph symmetry and dihedral
symmetry invariance, respectively.

II. N OTATION AND BACKGROUND

This section introduces some notation and background ma-
terial relating to permutations and symmetry groups, particu-
larly cyclic and dihedral symmetries.

A. Permutations

Let N := {1, 2, . . . , n}. A bijectionσ : N → N , is called a
permutationof the setN . In general, one can writeσ(1) = i1,
σ(2) = i2, . . . , σ(n) = in, or [31, pp. 24–25],

σ :

(

1 2 · · · n
i1 i2 · · · in

)

.

Associated with every permutationσ is a square matrix,
denotedPσ, of ordern. Given ann×n matrix A = [aik], Pσ

is such thatPσA = [aσ(i),k] and, therefore, thatPσAP⊤
σ =

[aσ(i),σ(k)] (e.g., Πn is the matrix corresponding toσ(i) =
i+1). Let σl(i) := σ◦σ◦· · ·◦σ(i), the permutationσ applied
l times to elementi ∈ N . Every i ∈ N generates a subset
of N called acycle of length l, wherel is the least positive
integer such thatσl(i) = i. In general, a permutationσ can be
factored into a product of disjoint cycles. This factorization
is unique up to the ordering of factors (which are disjoint
cycles). A permutation is calledprimitive if it has only one
factor (which has full lengthn).

B. Cyclic and Dihedral Group Symmetry

It is assumed that the reader is familiar with some basic
group theory; good references are [29], [32]. In this paper,
we utilize two abstract finite groups, the cyclic and dihedral
groups. A group is calledcyclic when all its elements are
powersgk of some one elementg. For any elementg in a
groupG, the set{gk : k ∈ Z} defines the cyclic subgroup of
G generated byg. If gm = gI for some positive integerm,
then the group generated byg is a finite group. Ifm is the least
positive integer for which this is true, thenm is the group’s
order and the group is{gI , g, g2, . . . , gm−1}. Alternatively, the
finite cyclic group of orderm has the presentation〈g : gm =
gI〉.

An example of the abstract cyclic group in the plane is the
rotation symmetry (here called the cyclic group inR2), which,
roughly speaking, means an object looks the same after a given
rotation in the plane.

Definition 1 (Cyclic Group inR2): Thecyclic group inR2

of orderm, denotedCm, is the finite cyclic group generated
by a rotation through2π/m about the origin.
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We say that a subsetU ⊂ R2 has symmetryCm if the cyclic
groupCm is a symmetry group ofU . Every finite subgroup of
I(R2), the group of isometries ofR2, leaves at least one point
invariant [29, p. 44]. In this paper, it is assumed (without loss
of generality) that this point is always the origin.

Consider two group elements: gR and gF

in G (which can be interpreted as a rotation
and reflection in R2, respectively). Then the set
{gI , gR, g2

R, . . . , gm−1
R , gF , gRgF , g2

RgF , . . . , gm−1
R gF}

defines the finitedihedral group of order2m. Alternatively,
this group has the presentation〈gR, gF : gm

R = g2
F =

(gRgF )2 = gI〉.
Definition 2 (Dihedral Group inR2): The dihedral group

in R2 of order2m, denotedDm, is the finite dihedral group
generated bym rotations through2π/m about the origin and
m reflections about lines through the origin that make angles
of π/m with each other.

The dihedral groupDm is the complete symmetry group
of an m-sided regular polygon [29, p. 46]. We say thatU ⊂
R2 has symmetryDm if the regular polygon groupDm is a
symmetry group ofU . Note thatCm is a subgroup ofDm; i.e.,
symmetryDm implies symmetryCm, but not the converse.

We are interested only in finite subgroups of the isometry
group I(R2), since a real formation of agents (or subset
U ⊂ R2), not all collocated, can have only a finite set of
symmetries. Given some positive integerm, Cm andDm are
the only finite subgroups ofI(R2) [33]. Thus, cyclic and
dihedral group symmetries inR2 are the only groups we study.

III. A GENTS IN PURSUIT

Agents are viewed as points in the complex plane, denoted
C. Considern > 1 planar agents,z1(t), z2(t), . . . , zn(t) ∈
C, evolving in time t. Suppose that each agent is a simple
integrator; i.e.,żi(t) = ui(t) ∈ C, i = 1, 2, . . . , n, whereui(t)
is the control input. Assume that these kinematic agents have
only relative sensing capabilities (i.e., the agents do not have
information about their own or other agents states in terms of
an absolute coordinate system) and, therefore, that the inputs
ui(t) are of the type

ui(t) =

n
∑

k 6=i

aik (zk(t) − zi(t)) , i = 1, 2, . . . , n. (1)

That is, the aggregate multiagent system is of the form

ż(t) = Az(t), (2)

wherez(t) = (z1(t), . . . , zn(t)) ∈ Cn and A is a weighted
adjacency matrix describing the flow of information between
agents. A direct consequence of the relative sensing limitation
is the property that follows.

Property 1: The adjacency matrixA has zero row-sums
(i.e., A[1 1 . . . 1]⊤ = 0).

Hence, if the agents are all collocated, then there is no
motion.

For the system ofn > 1 agents, the information flow
between agents is directed, so this flow of information can
be represented by adigraph, denotedΓ = (V , E) [34]. The
digraphΓ consists of a finite setV of |V| = n enumerated

vertices, one for each agent, along with a setE of |E| ≥ 0
directed edgeseik = (i, k) ∈ E , wherei, k ∈ V . The existence
of an edgeeik indicates that thei-th agent receives information
about thek-th agent. The adjacenty matrixA associates a
weight to each edge of the digraph: the(i, k) element of
A is the weightaik associated with the edgeeik ∈ E , and
is otherwise zero. Alternatively, given an adjacency matrix
A, one can define an associated digraph, denotedΓ(A). If
aik 6= 0, then there exists a directed edge inΓ(A) from vertex
i to k.

Information about the formation of agents together with
their interconnection topology can be combined into one
graph. At each instantt, we define a set of locationsVt =
{z1(t), z2(t), . . . , zn(t)} and a setEt of edge vectorseik(t) :
Vt × Vt → C such that an edgeeik(t) := zk(t) − zi(t) exists
in Et only if there exists a corresponding edge inE . We refer
to the pair(Vt, Et) =: Γ(A, z(t)) as theformation graph(or
just graph for short). Fig. 1 provides three example formation
graphs.
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Fig. 1. Example formation graphsΓ(A, z(t)).

This paper addresses the following question: What fixed
interconnection topologiesΓ(A) and associated interconnec-
tion weightsA = [aik] preserve rotation and dihedral group
symmetries in multiagent formationsz(t) ∈ Cn for all t ≥ 0?

A. Circulant Interconnections

It will be shown in Sections IV and V that of fundamental
significance to the topic of symmetry is a particular intercon-
nection structure in the sensing topology: namely,circulant
connectivity. By circulant connectivity it is meant that the
adjacency or system matrixA is a circulant matrix [31]; i.e.,
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of the form

A =











a0 a1 · · · an−1

an−1 a0 · · · an−2

...
...

...
a1 a2 · · · a0











=: circ(a0, a1, . . . , an−1).

Each row is merely the row above, shifted one element to
the right (modulon). The matrix is entirely determined by
its first row. Let κ ≥ 0 denote the cardinality of the set
{i ∈ {1, . . . , n − 1} | ai 6= 0}; i.e., κ represents thedegree
of couplingbetween vertices of the circulant digraphΓ(A).
Denote the fundamental permutation matrix of ordern, Πn =
circ(0, 1, 0, . . . , 0). If there exists a relabeling of the agent
indices such thatA is subsequently circulant, then the system
also has circulant connectivity. Further details about relabeling
are provided in Section IV-B.

Following a standard notion, e.g., as in [35], a matrix
A1 is said to have the samestructure as another matrix
A2, of the same dimensions, if for every zero entry ofA1

the corresponding entry inA2 is also zero, and vice versa.
Accordingly, if a square matrixA is such that there exists
a circulant matrixAc of the same order and structure asA,
thenA is calledstructurally circulant. Clearly, the topology of
Γ(A) is identical to that ofΓ(Ac). In particular a graph may
have a circulant connectivity because the adjacency matrixis
structurally circulant, even if it is not circulant. For example,
the graphs in Fig. 1a and Fig. 1b correspond to structurally
circulant adjacency matrices. This raises a question to be
addressed in the sequel: is it sufficient for the adjacency matrix
to be circulant, or structurally circulant, to preserve formation
symmetries?

If the degree of coupling between individuals isκ = 1
and the off-diagonal element of a circulant matrixA is pos-
itive, then (2) becomes the well-knowncyclic pursuit(a.k.a.,
dogs, mice, bugs, or beetles) problem; e.g., agenti “pursues”
agent i + 1, modulo n [36]. Cyclic pursuit has a long and
interesting history in the mathematics and physics literature,
and the interested reader is referred to [37], [36] for historical
accounts. Finally, if the degree of couplingκ = n − 1,
then this corresponds to what is often referred to as “all-to-
all” coupling, since every agent can sense every other agent.
Although not every all-to-all coupled matrixA is circulant,
every all-to-all coupledA is structurally circulant.

IV. SYMMETRIC FORMATIONS AND INVARIANCE

If we consider only the agent positions and ignore the
interagent connections, the configuration of pointsz(t) ∈ Cn

at time t is referred to as a multiagentformation. The focus
of this section is on cyclic group formation symmetries, and
the principal result is Theorem 2, which states that if a system
has circulant connectivity (see Section III-A), then symmetric
formations remain symmetric. Dihedral symmetry is examined
in Section VII.

A. Cyclic Group Formations

Definition 3 (Cm Formation Symmetry):The formation
z(t) ∈ C

n at time t is said to have symmetryCm if there
exists a permutationσ : N → N such that

ej2π/mz(t) = Pσz(t). (3)

That is, by rotating the agentsz(t) ∈ C through angle2π/m
one obtains the same set of points inC, but (generally) with
a different labeling. Henceforth, we will simply say that a
formationz(t) ∈ C

n has symmetryCm “with Pσ” if the vector
z(t) satisfies Definition 3 with associated permutation matrix
Pσ. Following Definition 3, several remarks are in order. Let
n0 ≥ 0 denote the number of agents located at the origin.

Remark 1: If at time t a formation z(t) with n0 = 0
has symmetryCm, then m divides n. This is because, if
one applies the associated constraint (3) in sequence starting
from zi(t) 6= 0, one obtains at then-th iterationzσn(i)(t) =
ej2πn/mzi(t) = zi(t). Hence,m = n or m < n is a factor of
n, implying that the cyclic groupCm is subgroup ofCn.

Remark 2: If a formationz(t) with n0 = 0 has symmetry
Cn, then the associated permutationσ is primitive. For if not
(i.e., σ has a cycle of lengthl < n), then one obtains at the
l-th iteration (as in Remark 1)ej2πl/nz(t) = P l

σz(t) = z(t),
which can only be true forl < n if z(t) ≡ 0.

Remark 3:Suppose a formationz(t) with n0 = 0 has
symmetryCm, wherem < n. If there are collocated agents,
then it is possible that there exists more than one permutation
σ such that (3) is satisfied. For instance, then = 8 agents in
Fig. 1c have symmetryC4 with the primitive permutation

σ :

(

1 2 · · · 7 8
2 3 · · · 8 1

)

,

or, equivalently,σ = (1, 2, . . . , 8). However, the constraint (3)
also holds with

σ :

(

1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5

)

,

which has two factors and can be denotedσ =
(1, 2, 3, 4)(5, 6, 7, 8). Following Remark 1, it is clear from the
geometry of symmetryCm that any factors ofσ must have a
length that is a multiple ofm.

Consequent to Remark 3, it is assumed in this paper that
if a formationz(t) has symmetryCm according to Definition
3 andn0 = 0, then its associated permutationσ is one that
factors into exactlyn/m cycles of lengthm. Let gcd(n, q)
denote the greatest common divisor of the integersn and q.
The following is a useful fact.

Remark 4: If m divides n, then there always exists an
integerq ∈ {1, 2, . . . , n−1} such that gcd(n, q) = n/m since
one can always chooseq = n/m.

B. Canonical Labeling

Before discussing symmetry invariance, this section estab-
lishes a connection between formation symmetryCm and
a canonical labeling of the agents. It is shown that agents
satisfying the formation symmetry constraint (3) can always be
relabeled such that (3) holds withPσ = Πq

n, for an appropriate
choice ofq. Note that the permutation corresponding toPσ =
Πq

n is σ(i) = i + q, i = 1, 2, . . . , n. This choice of labeling
is not new; indeed, some textbooks assume it from the outset
when discussing cyclic group symmetry; e.g., [29], [30].
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Theorem 1:Consider a formatioñz(t) that has no agents at
the origin. Suppose that̃z(t) has symmetryCm at timet and
let q ∈ {1, 2, . . . , n−1} satisfy gcd(n, q) = n/m (cf. Remark
4). Then, there exists a permutationτ of the agent locations
z(t) = Pτ z̃(t) such that (3) holds withPσ = Πq

n.
Example 1:Consider the formation of agents in Fig. 2a,

which has symmetryC5 since the constraint (3) holds with
m = 5 and

Pσ =

































0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

































.

In Fig. 2, the angle between adjacent dotted lines of equal
length is2π/5.

Let q = 4, which satisfies gcd(10, 4) = 10/5 = 2. By
Theorem 1, there exists a permutationτ of the agent locations
such that (3) holds with the permutation matrixΠ4

10, as in Fig.
2b. After this repositioningτ , the new permutatioñσ(i) = i+4
factors as̃σ = (1, 5, 9, 3, 7)(2, 6, 10, 4, 8). ⋄

(a)

1

5

7

9

2

8

3

10

4

6

1

6

9

7

2

3

8

5

4

10

τ

(b)

Fig. 2. A formation ofn = 10 agents withC5 symmetry.

Let τ denote the permutation of Theorem 1 that relabels the
agents. Notice that by substituting̃z(t) = P⊤

τ z(t) into (3), one
obtains

ej2π/mz(t) = PτPσP⊤
τ z(t) = Πq

nz(t).

Remark 5: If a formation z(t) has symmetryCm, then
any permutation that relabels the agent indices does not
change the symmetry; it changes only the permutationσ with
which (3) holds. However,repositioningthe agents (generally)
constitutes a change in the initial formation. For example,
swapping the locations of agents 2 and 3 in Fig. 1b will change
the group’s transient behavior. Instead, if one simultaneously
permutes the rows and columns ofA by PτAP⊤

τ , one can now
view this change as merely a transformation of coordinates
given byPτ or, equivalently, simply arelabelingof the agents.

Henceforth, we will simply say that a formationz(t) ∈ Cn

has symmetryCm “with Pσ = Πq
n” if the vectorz(t) satisfies

Definition 3 with Pσ = Πq
n for someq ∈ {1, 2, . . . , n − 1}

satisfying gcd(n, q) = n/m.

Finally, agents at the origin play no role in symmetry;
they merely complicate the labeling. Hence, for the sake of
simplicity, it is assumed thatn0 = 0 throughout the remainder
of this paper.

C. Symmetry Invariance

The focus of this paper is on identifying certain interconnec-
tion structures that inherently result in invariance of formation
symmetries. Following Section IV-B, this naturally leads to
the next definition.

Definition 4 (Cm Formation Symmetry Invariance):Let m
be a divisor ofn. Formation symmetryCm is said to be
invariantunder the dynamics (2) if for everyq ∈ {1, 2, . . . , n−
1} such that gcd(n, q) = n/m and for every initial formation
z(0) ∈ Cn having symmetryCm with Pσ = Πq

n, the formation
z(t) has formation symmetryCm with Pσ = Πq

n for all t ≥ 0.
The next result shows that givenn properly labeled agents,

every possible cyclic group symmetry of a formation is invari-
ant when the dynamics are circulant.

Theorem 2:If A is a circulant matrix, then formation
symmetryCm is invariant under the dynamics (2) for every
m that dividesn.

Proof: For everym that dividesn, associated with the
constraint (3) at timet = 0 is a complex linear subspace
M = {z ∈ Cn : Mz = 0} ⊂ Cn, whereM = Πq

n−ej2π/mIn.
SinceA is a circulant matrix, it commutes withΠn [31, p. 68].
Thus,

MA =
(

Πq
n − ej2π/mIn

)

A = A
(

Πq − ej2π/mIn

)

= AM .

This impliesM is invariant under the dynamics (2), implying
the constraint (3) holds withPσ = Πq

n for all t ≥ 0.
Example 2:Consider then = 8 agents depicted in Fig.

3a. This formationz(0) has symmetryC4 with associated
permutationσ = (1, 3, 5, 7)(2, 4, 6, 8). Let

A = circ(−1,−1, 0, 0, 0, 0, 2, 0) (4)

be the corresponding multiagent system matrix. Thus, every
agenti ∈ V is repelled from agenti + 1, but doubly attracted
to agenti + 6. Fig. 2b shows the evolution of the formation
starting atz(0) under the dynamics (2) with (4). The fact
that the agents converge to the origin is not of interest here.
Rather, the dashed and dotted lines connecting the agents
{1, 3, 5, 7} and {2, 4, 6, 8}, respectively, form a square at
regular intervals during the simulation, highlighting that C4

symmetry is preserved. ⋄
Corollary 1: Given a permutationσ, let τ be such that

PτPσP⊤
τ = Πq

n (cf. Theorem 1). Letm be any divisor ofn
and supposez(0) ∈ C

n has symmetryCm with permutation
matrix Pσ. If PτAP⊤

τ is a circulant matrix, then the formation
z(t) has symmetryCm with Pσ for all t ≥ 0.

Proof: If z(0) has symmetryCm with Pσ, Theorem 1
says that there always exists a relabeling of the agentsz̃(0) =
Pτz(0) such that

ej2π/mz̃(0) = Πq
nz̃(0), (5)

where q ∈ {1, 2, . . . , n − 1} satisfies gcd(n, q) = n/m.
Viewing z̃(t) = Pτz(t) as a transformation of coordinates
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(b) Simulation demonstrating symmetry invariance.

Fig. 3. Initial formation graph and simulation results for Example 2.

implies that (2) becomes

˙̃z(t) = PτAP⊤
τ z̃(t). (6)

If the new system matrixPτAP⊤
τ is circulant, then (5) and (6)

satisfy the conditions of Theorem 2. Therefore, the formation
z̃(t) has symmetryCm with permutationΠq

n for all t ≥ 0. If
z̃(t) has symmetryCm for all t ≥ 0, thenz(t) = P⊤

τ z̃(t) also
has symmetryCm (with Pσ) for all t ≥ 0. This is because the
change of coordinates given byτ is merely a permutation of
the agent locations, which does not alter the symmetry of the
formation (cf. Remark 5).

The following example illustrates the previous corollary.
Example 3:Consider a system (2) ofn = 4 agents with

A =









−2 2 1 −1
2 −2 −1 1

−1 1 −2 2
1 −1 2 −2









,

which is not circulant. Suppose the graphΓ(A, z(0)) is the
same as in Fig. 4a, but with agents2 and3 having swapped

positions. Hence, the relabeling that takesPσ into the form
Πn is given by

Pτ =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









. (7)

Moreover, the relabeling yieldsPτAP⊤
τ = circ(−2, 1, 2,−1).

Therefore, following Corollary 1, the formationz(t) has
symmetryC4 for all t ≥ 0. ⋄

2

13

4

(a)

2

6

8

7 3

4
5 1

(b)

Fig. 4. Circulant formation graphsΓ(A, z(t)).

In conclusion, if the multiagent system (2) has an underlying
circulant structure (possibly after a change of coordinates;
a.k.a., a relabeling), then every cyclic group symmetry, ofany
initial formation, is invariant under the system’s dynamics.

D. Decomposition of the Dynamics

Before moving on to necessity, this section briefly explores
the complex linear subspace that corresponds to formation
symmetryCm in the proof of Theorem 2.

It was shown in the previous section that, given a canonical
labeling, circulant systems preserve cyclic group symmetries
(Theorem 2). The complex linear subspaceM = {z ∈
Cn : Mz = 0} ⊂ Cn, where M = Πq

n − ej2π/mIn and
which characterizes cyclic group symmetries, correspondsto
n − n/m independent complex constraints on the motion of
the multiagent system (2). In other words, dimKerM = n/m.
One way to see this is graphically. For example, consider the
n = 10 agents with symmetryC5 in Fig. 2b. The associated
permutation factors into two disjoint cycles; namely,σ =
(1, 5, 8, 3, 7)(2, 6, 10, 4, 8). By selecting only two agents, one
from each cycle, one can determine the locations of all the
remaining agents by performing rotations through2π/5. More
generally, one can always write out the cycles generated by a
givenCm formation of agents1, 2, . . . , n/m. These cycles are
the disjoint factors ofσ(i) = i + q, where gcd(n, q) = n/m.
Since we are allowed to independently specify the locationsof
the firstn/m agents, we have exactlyn/m complex degrees
of freedom. Hence, there existn−n/m independent complex
constraints on the system.

Let p := n/m and definew(t) := (z1(t), z2(t), . . . , zp(t)).
For everyz(t) ∈ M, z(t) can be written as

z(t) =
[

w⊤(t) ej2π/mw⊤(t) · · ·
(

ej2π/m
)m−1

w⊤(t)
]⊤

.
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Observe that if the system matrixA is circulant and of order
n = p · m, it can be partitioned into preciselym2 blocks,
each of orderp. This partitioning causesA to become a
block circulantmatrix, denotedA = circ(A0, A1, . . . , Am−1),
where the blocksA0, A1, . . . , Am−1 are of orderp; see [31,
Section 5.6]. This partitioning allows one to write then/m-
dimensional dynamics onM as

ẇ(t) =
[

A0 A1 · · · Am−1

]

z(t) (8)

=
m−1
∑

i=0

(

ej2π/m
)i

Aiw(t). (9)

Example 4:Consider the special case of cyclic pursuit (see
Section III-A), withA = circ(−1, 1, 0, . . . , 0). Supposez(t) ∈
Cn has symmetryCn with Pσ = Πn. Hence, the dimension
of the complex dynamics onM is simply 1 (i.e., there are
n − 1 complex constraints). Letw(t) = z1(t), yielding the
dynamics onM,

ẇ(t) =
(

ej2π/n − 1
)

w(t).

Next, consider the agents in Fig. 1a. The formationz(t) of
n = 6 agents has symmetryC2 with Pσ = Π3

n. Suppose the
agents are in cyclic pursuit withA = circ(−1, 1, 0, . . . , 0),
which is consistent with the graphΓ(A, z(t)) in the figure. In
this case,w(t) = (z1(t), z2(t), z3(t)). The dynamics onM
have dimension6/2 = 3, and are given by

ẇ(t) =





−1 1 0
0 −1 1

−1 0 1



 w(t).

Using (8), the3× 3 matrix in the above equation isA0 −A1,
whereA0 is the upper-left3 × 3 block of A and A1 is the
upper-right3 × 3 block of A. ⋄

V. CIRCULANT NECESSITY

Thus far, it has been proved that circulant multiagent
systems preserve cyclic group symmetries. The question that
is addressed in this section is: To what extent is circulant
connectivity also necessary? It is revealed in Theorem 3, which
follows, that circulant connectivity is necessary if symmetry
Cm is to be invariant under the multiagent system’s dynamics
for everym that dividesn.

A. Counterexample

For any singlem dividing n, the condition of Theorem 2
that A be circulant is not, in general, necessary for symmetry
invariance. The following example illustrates this fact.

Example 5:Consider a system (2) ofn = 4 agents, where
the inputs (1) are chosen such that the corresponding system
matrix A is the non-circulant matrix

A =









−1 1 0 0
−1 0 0 1

0 0 −1 1
1 0 0 −1









. (10)

Consider the initial formationz(0) and graphΓ(A, z(0)) given
in Fig. 5. The formationz(0) has symmetryC4 with Pσ = Π4.

It can be verified by simulation that, under the dynamics (2)
with (10), the formationz(t) has symmetryC4 for all t ≥ 0.
However, it can also be verified that there exists an initial
formation having symmetryC2 (a subgroup ofC4) with Pσ =
Π2

4 such that symmetryC2 is not preserved for allt ≥ 0. In
particular, if we select the initial conditionz1(0) = z3(0) and
z2(0) = z4(0), then the agents remain colinear for allt, but
for sufficient smallt > 0, agents 1 and 3 pursue 2 and 4,
while agent 2 moves away from 1 and 3 and agent 4 moves
toward 2 and 3. Thus,C2 symmetry is instantaneously broken
after t = 0.

⋄

3 1

4

2

Fig. 5. Non-circulant figureΓ(A, z(0)) for Example 5

B. A Special Class of Formations

In studying the necessity of circulant connectivity, it is
helpful to employ a special class of formationsz(t); namely,
those given by the constraint

ωqz(t) = Πnz(t), (11)

for some q ∈ {1, 2, . . . , n − 1} and whereω := ej2π/n.
Notice that the locationszi(t), i = 1, 2, . . . , n, generated by
the constraint (11) all have the same magnitude, and hence
lie on a common circle. The following lemma associates a
formation satisfying (11) with its symmetry.

Lemma 1:Supposeωqz(t) = Πnz(t) holds for someq ∈
{1, 2, . . . , n−1} andz(t) ∈ Cn. Then, the formationz(t) has
symmetryCm, wherem = n/gcd(n, q).

Proof: Let p := gcd(n, q) and definem := n/p and
kq := q/p. To show that the formation has symmetryCm, we
must show there exists a permutation matrixPσ such that (3)
holds. From (11),

(

ej2π/n
)q

z(t) =
(

ej2π/m
)kq

z(t) = Πnz(t). (12)

By Bézout’s identity1, there exist integerslq and lm such that
1 = gcd(kq, m) = lqkq + lmm. This fact together with (12)
yields

ej2π/mz(t) =
(

ej2π/m
)lqkq

z(t) = Πlq
n z(t). (13)

By letting Pσ = Π
lq
n , one obtains the desired result.

Notice that the proof of Lemma 1 also reveals how forma-
tions satisfying the special constraint (11) have symmetryCm

1Given two nonzero integersa andb, Bézout’s identity says that there exist
integersc and d such that gcd(a, b) = ac + bd [38, Section 1.2, Theorem
1.7].
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with the canonical labeling introduced in Section IV-B; i.e.,
(3) holds withPσ = Π

lq
n .

Example 6:Consider the example graphsΓ(A, z(0)) with
ωqz(0) = Πnz(0) given in Fig. 6, wheren = 6. In Fig.
6a, q = 1 and the formation has symmetryC6 since m =
6/gcd(6, 1) = 6/1 = 6. In Fig. 6b,q = 2 and the formation
has symmetryC3 sincem = 6/gcd(6, 2) = 6/2 = 3. ⋄

5

4

3 2

1

6

(a) q = 1

3,6

1,4

2,5

(b) q = 2

Fig. 6. Example graphsΓ(A, z(0)) with ωqz(0) = Π6z(0).

Let vq := (1, ωq, ω2q, . . . , ω(n−1)q), which happens to be
the (q + 1)-th column of

√
nF ∗

n , whereFn denotes the well
known Fourier matrix [31, p. 32].

Lemma 2:For everyq ∈ {1, 2, . . . , n−1}, z ∈ Cn satisfies
ωqz = Πnz if and only if z = vqz1.

Proof: The statementωqz = Πnz is equivalent to

z2 = ωqz1

z3 = ωqz2 = ω2qz1

...

zn = ω(n−1)qz1,

with ωnqz1 = z1. Equivalently,z = vqz1.

C. Necessary Conditions for Invariance

Theorem 3:If formation symmetryCm is invariant under
the dynamics (2) for everym that dividesn, then A is a
circulant matrix.

Proof: Theorem 3.1.1 of [31] says that ann×n matrix A
is circulant if and only if it commutes with the fundamental
permutation matrix,Πn. Therefore, it suffices to show that
ΠnA − AΠn = 0.

If formation symmetryCm is invariant for everym that
divides n it must be that, in particular, initially symmetric
formations satisfying (11) are symmetric for allt ≥ 0, after
Lemma 1. Letq ∈ {1, 2, . . . , n − 1} be arbitrary and pick
an initial formationz(0) = vqz1(0), wherez1(0) 6= 0. By
Lemma 2,z(0) satisfiesωqz(0) = Πnz(0). By Lemma 1,z(0)
has symmetryCm with m = n/gcd(n, q). By assumption,
the formation z(t) has symmetryCm for all t ≥ 0. By
differentiating the formation constraintωqz(t) = Πnz(t) with
respect to time, one obtains

ωqAz(t) = ΠnAz(t)
(11)⇐⇒ (ΠnA − AΠn) z(t) = 0

⇐⇒ (ΠnA − AΠn) vqz1(t) = 0,

for all t ≥ 0, using Lemma 2 again in the last step. In
particular, sincez1(0) 6= 0, (ΠnA − AΠn)vq = 0.

By Property 1,A has zero row-sums. Thus,Av0 = 0.
Also, becausev0 is an eigenvector ofΠn with corresponding
eigenvectorλ = 1, Πnv0 = v0 [31, pp. 72–73]. Therefore,
one finds

(ΠnA − AΠn) v0 = ΠnAv0 − AΠnv0 = −Av0 = 0.

Recall that, [v0 v1 · · · vn−1] =
√

nF ∗
n , where Fn is the

Fourier matrix [31, p.32]. Therefore, we have shown that
(ΠnA−AΠn)F ∗

n = 0. SinceF ∗
n is invertible,ΠnA−AΠn =

0. Therefore,A is circulant.
The following example highlights the significance of the

assumption that not only is symmetryCn invariant, but also
all of its subgroups are invariant under the system’s dynamics
(further to Example 5).

Example 7:Consider n = 6 agents initially configured
such thatωz(0) = Π6z(0). Suppose the graphΓ(A, z(0))
is coupled in an all-to-all fashion, as in Fig. 6a. LetÃ =
circ(−5, 1, 1, 1, 1, 1) and letA be the matrixÃ but with its
second row replaced by(1/2,−4, 1/2, 1/2, 2, 1/2). For the
initial formation ωz(0) = Π6z(0), Fig. 7a shows how the
cyclic groupC6 is invariant under the dynamics (2), despite the
fact thatA is not circulant. In Fig. 7a, the dashed lines connect
agents{1, 2, 3, 4, 5, 6}, in sequence, at regular intervals during
the simulation.

However, consider a different initial formationω2z(0) =
Π6z(0), which has symmetryC3 (since gcd(6, 2) = 2,
implying that m = 6/2 = 3). C3 is a subgroup ofC6.
The associated formation graph is given in Fig. 6b. Formation
symmetryC3 is not invariant under the dynamics (2), as one
can see from the simulation results of Fig. 7b, where the
dashed lines connect agents{1, 2, 3}. As time evolves, the
initially equilateral formation becomes only isosceles. ⋄

VI. GRAPH SYMMETRY AND INVARIANCE

We have shown that multiagent systems with circulant con-
nectivity have the attractive property that formation symmetry
Cn and all of its subgroups are invariant under the system’s
evolution. Moreover, circulant connectivity among the agents
is also necessary to obtain this invariance property. Although
Theorems 2 and 3 make no mention of graph symmetry,
the condition thatA is circulant implies the graph is also
symmetric. This result is offered in Proposition 1, but a
definition and example are helpful first.

Definition 5 (Graph Symmetry):The graphΓ(A, z(t)) =
(Vt, Et) is said to have the symmetry groupG at time t
if it has the property that for every elementg ∈ G, if
v(t) ∈ Vt, thengv(t) ∈ Vt, and if e(t) ∈ Et, thenge(t) ∈ Et.
Moreover, the induced mapsv(t) 7→ gv(t) and e(t) 7→ ge(t)
are permutations.

Note that Definition 5 is consistent with the standard notion
of symmetry introduced in Section II-B, which is that every
elementg ∈ G leaves the set of points in question unchanged.
Here, we have only been more explicit about the fact that
vertices map only to vertices, and edges to edges. It should
also be emphasized that this definition applies equally to both
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(a) C6 symmetry preserved.
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(b) C3 symmetry not preserved.

Fig. 7. Simulations for Example 7.

symmetryCm and Dm. The requirement that the maps in
Definition 5 be permutations (hence, bijections) guarantees
that two agents (respectively, edges), possibly collocated,
cannot be mapped to the same agent (respectively, edge).
Notice that graph symmetryCm (Definition 5) implies forma-
tion symmetryCm (Definition 3), but not the converse. For
instance, the formationz(t) in Fig. 1b has formation symmetry
C4 (the constraint (3) holds withσ = (1, 4, 2, 3)), but the
graphΓ(A, z(t)) has only symmetryC1.

Example 8:Consider the graphsΓ(A, z(t)) of Fig. 1. Fig.
1a has symmetryC2, but notC4 because a rotation through
π/2 does not map vertices to vertices. Similarly, Fig. 1b has

the dihedral groupD1 but notD2 because a reflection about
the line through the center with angle3π/4 reverses the edge
directions. Fig. 1c has symmetryC1, but not C2 because a
rotation throughπ changes the edge directions. ⋄

Proposition 1: Supposez(t) has symmetryCm with Pσ =
Πq

n. If A is a structurally circulant matrix, then the graph
Γ(A, z(t)) has symmetryCm.

Proof: As per Definition 5, it is enough to show that the
map induced by a generator of the cyclic groupCm maps
vertices inVt (respectively, edge vectors inEt) to vertices in
Vt (respectively, edge vectors inEt) by a bijection. Rotation
through2π/m is a generator of the cyclic groupCm (cf. Def-
inition 1). Constraint (3) implies the mapz(t) 7→ ej2π/mz(t)
is a bijection onVt, which means that verticeszi(t) ∈ Vt are
mapped to vertices inVt by a bijection. Consider the rotation
of an arbitrary edge vectoreik(t) ∈ Et through angle2π/m,
yielding

ej2π/meik(t) = ej2π/m (zk(t) − zi(t))

= zk+q(t) − zi+q(t) = ei+q,k+q(t).

Sinceeik ∈ E , aik 6= 0. But, sinceA is structurally circulant,
ai+q,k+q 6= 0, implying that ei+q,k+q ∈ E . Hence, by the
constraint (3), edge vectorseik(t) ∈ Et are mapped to edge
vectors inEt by a bijection2.

Example 9:Fig. 4 gives two more example graphs, each
with a (structurally) circulant interconnection topologybe-
tween agents. In each case, one can compare formation sym-
metry with graph symmetry. Both the formation and graph
in Fig. 4a have symmetryC4. In this case, the associated
permutation isσ(i) = i+1, which is primitive. In the case of
Fig. 4b, the formationz(t) has symmetryC4, but the graph
has only symmetryC2. In this case, the permutation associated
with C2 symmetry isσ(i) = i + 4 andσ can be factored into
exactly four distinct cyclesσ = (1, 5)(2, 6)(3, 7)(4, 8). ⋄

The following important example illustrates the fact that
graph symmetry is not sufficient to preserve cyclic group
symmetries. It also highlights, once again, the importanceof
the canonical agent labeling described in Section IV-B.

Example 10:Consider a system (2) ofn = 4 agents with
A = circ(−2, 1, 2,−1). The information flow between agents
together with their locations at timet = 0 is illustrated by
Γ(A, z(0)) in Fig. 4a. Notice thatΓ(A, z(0)) has symme-
try C4. Clearly, (3) is satisfied withPσ = Πn. Following
Theorem 2, this formation’s symmetry is invariant under the
dynamics (2). But, consider a new initial formation, given
by a permutation of the original one,̃z(0) = Pτz(0), where
Pτ is given by (7). Note that this is a repositioning, not a
relabeling (cf. Remark 5). Since the coupling is all-to-all, the
new graphΓ(A, z̃(0)) still has symmetryC4 (any permutation
of the agent locations leaves the graph unchanged). However,
(3) does not hold withPσ = Πq

n for any q, since

PτΠnP⊤
τ =









0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0









2Let σ : N → N be a bijection and defineτ : N ×N → N × N such
that τ(i, j) 7→ (σ(i), σ(j)), i, j ∈ N . Then,τ is also a bijection.
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is not of the formΠq
n. It can be shown by simulation that

symmetryC4 in the formation starting at̃z(0) is not invariant
under the dynamicṡ̃z(t) = Az̃(t), despite the fact that
Γ(A, z̃(0)) has symmetryC4. ⋄

VII. D IHEDRAL GROUP FORMATIONS

By building on the work presented thus far, this last sec-
tion of the paper considers the invariance of dihedral group
formation symmetries. Letz(t) denote the complex conjugate
of z(t).

Definition 6 (Dm Formation Symmetry):The multiagent
formationz(t) ∈ Cn at time t is said to have symmetryDm

if there existm lines of symmetry

Lk =
{

z ∈ C : z = rejθk , r ∈ R
}

⊂ C, k = 1, 2, . . . , m,

with θk+1 = θk + π/m, andm permutationsσk : N → N
such that

ej2θkz(t) = Pσk
z(t), k = 1, 2, . . . , m. (14)

Fig. 8 helps to illustrate how these constraints relate to
reflection about a given line passing through the origin in the
complex plane. If this definition ofDm formation symmetry
is to be consistent with the fact thatCm ⊂ Dm (see Section
II-B), it must be that everyz(t) satisfying (14) also satisfies
(3).

θ + α

Im

α

α

Re

z

z̄

θ

α + θ + θ − α = 2θ

e
j2θ

z̄

L

Fig. 8. The reflection ofz ∈ C aboutL ⊂ C.

Lemma 3: If z(t) ∈ Cn satisfies (14), thenz(t) also
satisfies (3).

Proof: It is well known the product of two reflections
yields a rotation [29, p. 35]. Letσk be the permutation of
agent indices that corresponds to reflection aboutLk, where
k ∈ {1, 2, . . . , m}. Then σk and the formationz(t) satisfy
(14). Now, if we reflectz(t) aboutLk followed byLk+1 we
obtain

ej2θk+1ej2θkz(t) = ej2(θk+1−θk)z(t) = Pσk+1
Pσk

z(t). (15)

Let Pσ := Pσk+1
Pσk

. Sinceθk+1 − θk = π/m, the desired
constraint (3) is obtained.

A. Counterexample

We have already seen that circulant connectivity is sufficient
to preserve formation symmetryCm for everym that divides
n. Therefore, does a similar result hold for dihedral group
symmetries? The following counterexample illustrates that the
answer is, in general, no.

Example 11:Consider two squares of different side-lengths
centred at the origin (hence,n = 8), as shown att = 0 in
Fig. 3b. This initial formationz(0) has symmetryD4. Let
A = circ(−1,−1, 0, 0, 0, 0, 2, 0). Simulation results demon-
strate that symmetryC4 is preserved (i.e., the squares remain
squares), but that the two squares (shown as dashed versus
dotted lines, at regular intervals, in Fig. 3b) rotate at different
rates. Hence, the formation symmetryD4 present att = 0 is
broken. ⋄

B. Dihedral Invariance

Despite the aforementioned counterexample, a circulant
system matrix does preserve dihedral group symmetries for
the special class of formations introduced in Section V-B. The
following lemma extends Lemma 1 to symmetryDm.

Lemma 4:Supposeωqz(t) = Πnz(t) holds for someq ∈
{1, 2, . . . , n−1} andz(t) ∈ Cn. Then, the formationz(t) has
symmetryDm, wherem = n/gcd(n, q).

Proof: Following Definition 6, we need to show that there
existm lines of symmetry andm corresponding permutations
that satisfy (14). The proof is by construction. Pickθ1 :=
Arg(z1(t)), which is the principal argument ofz1(t) ∈ C.
Therefore,θk+1 = θk + π/m, k = 1, 2, . . . , m − 1.

First, we show that (14) holds whenk = 1 for some
permutationσ1 : N → N . By applying the left-hand side
of (14) to z1(t), one obtains

ej2θ1z1(t) = z1(t). (16)

By doing the same forzi(t), wherei ∈ N is arbitrary, one
obtains

ej2θ1zi(t) = ej2θ1ω(i−1)qz1(t) = ej2θ1ω(1−i)qz1(t)
(16)
= ω(1−i)qz1(t) = zn−i+2(t). (17)

Therefore, the permutation associated with reflection about L1

is σ1(i) = n − i + 2, i = 1, 2, . . . , n.
By definition θk = θ1 + π(k − 1)/m, k = 1, 2, . . . , m.

Therefore, by applying the left-hand side of (14) toz1(t), one
obtains

ej2θkz1(t) = ej2θ1ej2π(k−1)/mz1(t)
(16)
= ej2π(k−1)/mz1. (18)

But, from the proof of Lemma 1 we know that formations sat-
isfying ωqz(t) = Πnz(t) also satisfyej2π/mz(t) = Π

lq
n z(t),

where lq satisfies 1 = lqkq + lmm, kq = q/gcd(n, q),
lq, lm ∈ Z. This implies that (18) is equivalent to

ej2θkz1(t) = ej2π(k−1)/mz1(t) = z1+lq(k−1)(t).

Hence, doing the same forzi(t), where i ∈ N is arbitrary,
yields

ej2θkzi(t) = ej2θ1ej2π(k−1)/mzi(t)
(17)
= ej2π(k−1)/mzn−i+2(t) = zn−i+2+lq(k−1)(t).
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Therefore, the permutation associated with a reflection about
Lk is σk(i) = n − i + 2 + lq(k − 1), i = 1, 2, . . . , n, k =
1, 2, . . . , m, concluding the proof.

Therefore, Lemma 4 and Lemma 3 together yield the fol-
lowing corollary to our principal sufficiency theorem, Theorem
2.

Corollary 2: SupposeA is a circulant matrix and the for-
mationz(0) ∈ Cn has symmetryDm with ωqz(0) = Πnz(0)
for someq ∈ {1, 2, . . . , n − 1} satisfying gcd(n, q) = n/m.
Then z(t) has symmetryDm with ωqz(t) = Πnz(t) for all
t ≥ 0.

Proof: Since z(0) has symmetryDm at t = 0 with
ωqz(0) = Πnz(0), by definitionz(0) has symmetryCm with
Pσ = Π

lq
n as in (13) in the proof of Lemma 1. By Theorem

2, z(t) has symmetryCm with Pσ = Π
lq
n ; equivalently

ωqz(t) = Πnz(t), for all t ≥ 0. However, by Lemma 4, this
implies thatz(t) has symmetryDm with ωqz(t) = Πnz(t)
for all t ≥ 0, concluding the proof.

VIII. C ONCLUSION

By combining the sufficiency result of Theorem 2 and the
necessity result of Theorem 3, we have shown that for a
multiagent system of the form (1)–(2), formation symmetry
Cm is invariant under the system’s dynamics for everym that
dividesn if and only if the system has circulant connectivity.
Moreover, we have observed that although graph symmetry
is not sufficient, it does play a necessary role in symmetry
invariance. Finally, dihedral group formations are generally
not preserved under circulant connectivity.

A few open questions exist, in light of our results. Firstly,
one might naturally wonder about the necessity of the canoni-
cal labeling introduced in Sec. IV-B and assumed in Definition
3. Is this labeling assumption without loss of generality?
Do there exist other classes of labeling for which there is
symmetry invariance if and only if the system matrix is
circulant? Secondly, to what extent are the presented results
specific to the simple integrator model (1)–(2)? And finally,
multiagent systems design is often presented as the problem
of synthesizing local control strategies that generate desired
global behaviors. Instead, the contributions of this paper
emphasize the importance of structure. It seems reasonable
that structure could be exploited towards design. Given a
set of fixed agent behaviors, can we control a multiagent
system’s function (e.g., its steady-state and transient behaviors)
by intelligently switching the agent interconnection topology?
At present, these questions remain as future work.
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