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Abstract— In this paper, we study the geometric formations
of multi-vehicle systems under a control law based on cyclic
pursuit. The pursuit framework is particularly simple in that,
for n ordered and identical wheeled vehicles, vehiclei simply
pursues vehiclei + 1 modulo n. We show that, for unicycles
with constant speed, the multi-vehicle system’s equilibrium
formations are generalized regular polygons. We then study
the local stability of these equilibrium polygons, revealing
which formations are stable and which are not.

I. INTRODUCTION

In this paper, we study a reconfiguration strategy for
multi-vehicle systems based on the notion ofcyclic pur-
suit from mathematics. From an engineering standpoint,
the question of how to achieve desiredglobal behaviours
for multi-vehicle systems through the application of only
simple andlocal interactions is of particular interest.

There has recently been great interest in this question.
To name only a few results, Justh and Krishnaprasad [1]
developed local steering laws for achieving both rectilinear
and circular formations of planar multi-vehicle systems.
Jadbabaie et al. [2] proved convergence results for a nearest-
neighbour type problem, guaranteeing that all agents even-
tually move in an identical fashion, despite the distributed
nature of their coordination law. Gazi and Passino [3]
investigated aggregate behaviour inswarmsof organisms,
where operational models are analyzed for the purpose
of potential engineering application. Sepulchre et al. [4]
studied the connections between phase models of coupled
oscillators and kinematic models of groups of agents.

Inspired by the so-called “bugs” problem from mathe-
matics, we study the geometric formations of multi-vehicle
systems under cyclic pursuit. The bugs problem refers to
what is also known as the dogs, mice, ants, or beetles
problem, and originally stems from the mathematics ofpur-
suit curves, first studied by French scientist Pierre Bouguer
(c. 1732). In 1877, Edouard Lucas asked, what trajectories
would be generated if three dogs, initially placed at the
vertices of an equilateral triangle, were to run one-after-
the-other? Three years later, Henri Brocard replied with the
answer that each dog’s pursuit curve would be a logarithmic
spiral and that the dogs would meet at a common point,
known now as theBrocard point of a triangle. Consider
n ordered bugs that start at the vertices of a regularn-
polygon. If each bug pursues the next modulon (i.e.,
cyclic pursuit) at constant speed, the bugs will trace out
logarithmic spirals and eventually meet at the polygon’s
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centre [5]. What happens if ourn bugs do not start at the
vertices of a regularn-polygon? This and other questions
relating to the bugs problem have been asked and answered
over time (e.g., [6], [7], [8]). Variations on the traditional
problem have also been studied. For example, Bruckstein
et al. [9] investigated both continuous and discrete pursuit,
as well as both constant and varying speed scenarios.

Consider now a particular cyclic pursuit scheme where
each “bug” is modelled as a kinematic unicycle. In this case,
the unicycles will not generally be able to head towards their
designated prey at each instant. What trajectories can be
generated1? In this paper, we generalize the cyclic pursuit
concept to nonholonomic vehicles and study its properties
as a coordination algorithm for multi-vehicle systems. Thus,
our primary motivation is to follow historical development
and study the achievable formations for wheeled vehicles
under cyclic pursuit. Alternatively, from a practical view-
point, cyclic pursuit may be a feasible strategy for multi-
vehicle systems since it is distributed (i.e., decentralized; no
leader), scalable, and simple in that each agent is requiredto
sense information from only one other agent. We study one
particular control law that assumes each unicycle has the
same constant forward speed, unlike in [10]. We show that
the system’s equilibrium formations are generalized regular
polygons and we study their local stability.

II. UNICYCLE EQUATIONS OF PURSUIT

In this section, we briefly review some relevant results
from [10]. Suppose there aren ordered vehicles, where each
vehicle is a kinematic unicycle with nonlinear state model
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and where[xi ,yi ]
⊤ ∈ R

2 denotes thei-th vehicle’s position,
θi ∈ R is the vehicle’s orientation, andui = [vi ,ωi ]

⊤ ∈ R
2

are control inputs. In this paper, we allow angles to take
values in the setR to avoid a discontinuity in our feedback
law, which depends on angles. Suppose vehiclei pursues
the next,i +1, modulo2 n.

Let r i denote the distance between vehiclei andi +1, and
let αi be the difference between thei-th vehicle’s heading
and the heading that would take it directly towards its
prey, i + 1 (see Fig. 1). In the present paper, we fix each
vehicle’s forward speed and study the possible equilibrium
formations when vehiclei’s angular speedωi is assigned in
direct proportion to the heading errorαi .

1We first asked this question in [10].
2Henceforth, all vehicle indices should be evaluated modulon.
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Fig. 1. New coordinates, with vehiclei in pursuit of i +1.

A. Transformation to Relative Coordinates

Before beginning our analysis, it is useful to consider
a transformation of coordinates into ones that involve the
variablesr i and αi . We define the variablesr i , αi , and βi

according to Fig. 1. After some (rather lengthy) algebraic
manipulation, the kinematic equations (1) become

ṙ i = −vi cosαi −vi+1cos(αi +βi)

α̇i =
1
r i

[vi sinαi +vi+1sin(αi +βi)]−ωi

β̇i = ωi −ωi+1 .

(2)

This system describes the relationship between vehiclei
and the one that it is pursuing,i + 1, wherer i and αi are
as previously described. Note that, in these coordinates, it
is assumed thatr i > 0.

B. Formation Control and Pursuit Graph

As previously suggested, we investigate the case when

vi = s and ωi = kαi , (3)

where k,s > 0 are constant. Substituting these controls
into (2) gives a system ofn cyclically interconnected and
identical nonlinear subsystems of the form

ṙ i = −s[cosαi +cos(αi +βi)]

α̇i =
s
r i

[sinαi +sin(αi +βi)]−kαi

β̇i = k(αi −αi+1) .

(4)

At each instant in time, regardless of the control law, the
multi-vehicle system’s geometric configuration in the plane
can be described by apursuit graphas follows.

Definition 1 (Pursuit Graph):A pursuit graph G con-
sists of a pair(V,E) such that
(i) V is a finite set of vertices,|V|= n, where each vertex

zi = (xi ,yi) ∈ R
2, i ∈ {1, . . . ,n}, represents the position

of vehicle i in the plane; and
(ii) E is a finite set of directed edges,|E|= n, where each

edgeei : V×V → R
2, i ∈ {1, . . . ,n}, is the vector from

zi to its prey,zi+1.
In other words,ei = zi+1−zi and consequently∑n

i ei = 0
for vehicles in cyclic pursuit. Also, note that our coordinate
r i ≡ ‖ei‖2. We employ this definition in characterizing the
equilibrium formations of our multi-vehicle system.
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Fig. 2. Seven vehicles subject to control law (3), withk = 4.

C. Sample Simulation

Preliminary computer simulations suggest the possibility
of achieving circular pursuit trajectories in the plane. Fig. 2
shows simulation results for a system ofn = 7 vehicles,
initially positioned at random, under the control law (3)
with k= 4. Note that the vehicles converge to equally spaced
motion around a circle of fixed radius with a pursuit graph
that is similar to a regular pentagon.

III. E QUILIBRIUM POLYGONS

In order to characterize the possible equilibrium forma-
tions for the system (4), we need to adequately describe
the state of our system’s pursuit graph at equilibrium. The
following definition for a regular polygon with coplanar
vertices has been adapted from [11], and was introduced in
[10], to allow for vertices that are not necessarily distinct
and for the directed edges of our pursuit graph.

Definition 2 (after [11], p. 93):Let n andd < n be pos-
itive integers so thatp := n/d > 1 is rational. LetR be a
positive rotation in the plane, about the origin, through angle
2π/p andz1 6= 0 be a point in the plane. The pointszi+1 =
Rzi , i = 1, . . . ,n−1 and edgesei = zi+1 − zi , i = 1, . . . ,n,
define ageneralized regular polygon, denoted{p}.

By this definition,{p} can be interpreted as a directed
graph with verticeszi (not necessarily distinct) connected
by edgesei as determined by the ordering of points.

Since p is rational, the period ofR is finite and, when
n and d are coprime, this definition is equivalent to the
well-known definition of a regular polygon as a polygon
that is bothequilateral and equiangular. Moreover, when
d = 1, {p = n} is an ordinary regular polygon (i.e., its
edges do not cross one another). However, whend > 1 is
coprime ton, {p} is a star polygon since its sides intersect
at certain extraneous points, which are not included among
the vertices [11, pp. 93–94]. Ifn and d have a common
factor m> 1, then{p} has ñ = n/m distinct vertices and
ñ edges traversedm times. Fig. 3 illustrates some example
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Fig. 3. Example generalized regular polygons{9/d}, d ∈ {1,2,3}.

possibilities for{p} whenn= 9. In the first instance,{9/1}
is an ordinary polygon. In the second instance,{9/2} is
a star polygon since 9 and 2 are coprime. In the third
instance, the edges of{9/3} traverse a{3/1} polygon 3
times, becausem= 3 is a common factor of both 9 and 3.

Theorem 1:At equilibrium, then-vehicle pursuit graph
corresponding to (4) is a generalized regular polygon{p},
where p = n/d andd ∈ {1, . . . ,n−1}. Moreover,

r i =
2sn
kπd

sin

(

πd
n

)

and the equilibrium angles in the range(−π,π] are αi =
±πd/n andβi = ±π(1−2d/n) for all i ∈ {1, . . . ,n}.

The proof of Theorem 1 is very similar to that of Theorem
1 in [10]. Equilibria withαi = 0 are not feasible for vehicles
in cyclic pursuit. The case whenn and d of Theorem 1
are not coprime is physically undesirable (e.g., as in the
polygon {9/3} of Fig. 3) since it requires that multiple
vehicles occupy the same point in space. From geometry,
it is clear that, for each possible{n/d} formation, the
equilibrium angle ᾱ = ±πd/n corresponds exactly to a
relative heading angle for each vehicle that points it in a
direction that istangentto the circle circumscribed by the
vertices of the corresponding equilibrium polygon.

Corollary 1: At equilibrium, the vehicles traverse a cir-
cle of radiusρ = sn/kπd.

Observe that the possible equilibrium formations depend
only on our choice of gaink and forward speeds; in fact,
only on the ratios: k. Therefore, in what follows we assume
s= 1 without loss of generality. Following Corollary 1, the
radius about which the vehicles travel is determined by the
designable parameterk > 0.

IV. L OCAL STABILITY ANALYSIS

In general, forn≥ 2, which{n/d} equilibrium polygons
are asymptotically stable, and for what values ofk? In this
section, we tackle thelocal stability question by linearizing
about a general{n/d} formation.

To facilitate notation, definẽξi := ξi − [r̄, ᾱ, β̄]⊤ and let
q := p−1 = d/n so that 0< q < 1 and is rational. We write

the kinematics of each vehicle subsystem (4) more com-
pactly asξ̇i = f (ξi ,ξi+1). Linearizing eachξi model about
an equilibrium point[r̄, ᾱ, β̄]⊤ givesn identical subsystems
of the form ˙̃ξi = Aξ̃i +Bξ̃i+1 where

A =





0 2sin(qπ) sin(qπ)
−1

2(kqπ)2csc(qπ) −k −1
2kqπcot(qπ)

0 k 0





B =





0 0 0
0 0 0
0 −k 0



 .

If we view thecompletemulti-vehicle system aṡξ = f̂ (ξ)

then its linearization about̄ξ ∈ R
3n has the form˙̃ξ = Âξ̃

whereÂ = circ[A,B,0, . . . ,0], defined by

circ[A,B,0, . . . ,0] :=















A B 0 0 · · · 0
0 A B 0 · · · 0
...
0 0 · · · 0 A B
B 0 · · · 0 0 A















,

which is a matrix ofblock circulantform (cf. [12]). In the
sections that follow, we study the spectrum ofÂ.

A. Coordinate Constraints

For every initial condition, the systeṁξ = f̂ (ξ) is con-
strained to evolve on an invariant submanifoldM of R

3n. To
see why this is the case, recall that under cyclic pursuit the
system’s pursuit graph at each instant satisfies∑n

i=1ei(t) =
0. By choosing a coordinate frame attached to (say) vehicle
1 and oriented with this vehicle’s heading, this condition
corresponds to the constraint equations

g1(ξ) = r1sinα1 + r2sin(α2 +π−β1)+ · · ·
· · ·+ rnsin(αn +(n−1)π−β1−β2−·· ·−βn−1) = 0

g2(ξ) = r1cosα1 + r2cos(α2 +π−β1)+ · · ·
· · ·+ rncos(αn +(n−1)π−β1−β2−·· ·−βn−1) = 0.

For vehicles 1 and 2, Fig. 4 helps to illustrate how these
constraint equations arise.

Also due to cyclic pursuit∑n
i=1 β̇i(t) = 0=⇒ ∑n

i=1 βi(t)≡
c for all t ≥ 0, where the constantc=−nπ by our definition
for βi , which provides the final constraintg3(ξ) = ∑n

i=1 βi +
nπ = 0. Thus, letg(ξ) = [g1(ξ),g2(ξ),g3(ξ)]⊤. Then it can
be checked thatM =

{

ξ ∈ R
3n : g(ξ) = 0

}

⊂ R
3n defines a

submanifold ofR3n. For brevity’s sake, the following are
given without proof.

Lemma 1:The submanifoldM is invariant underf̂ .
Corollary 2: SinceM is invariant underf̂ , the tangent

space Tξ̄M at any given equilibrium pointξ̄ ∈ M is
invariant underÂ.

Therefore, by Corollary 2 and standard results from
linear algebra, there exists a change of basis forR

3n that
transformsÂ into upper-triangular form

[

ÂTξ̄M
∗

03×(3n−3) Â⋆
Tξ̄M

]

.
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Fig. 4. Depiction of coordinates for vehicles 1 and 2.

Lemma 2: In the quotient spaceR3n/Tξ̄M , the induced
linear transformationÂ⋆

Tξ̄M
: R

3n/Tξ̄M → R
3n/Tξ̄M has

(imaginary axis) eigenvaluesλ1 = 0 andλ2,3 = ± jkπd/n.
Proof (sketch): Let ϕ = Φ(ξ) be the coordinates change

ϕ1 = r1,ϕ2 = α1, . . . ,ϕ3n−3 = βn−1,ϕ3n−2 = g1(ξ),

ϕ3n−1 = g2(ξ),ϕ3n = g3(ξ) .

Partition these new coordinates intoϕ = [ϕ⊤
I ,ϕ⊤

II ]
⊤ where

ϕI = [ϕ1,ϕ2, . . . ,ϕ3n−3]
⊤ and ϕII = [ϕ3n−2,ϕ3n−1,ϕ3n]

⊤.
Thus, by computing the linearization about the equilibrium
ϕ̄ = Φ(ξ̄), in the new coordinates we get (details not shown)

ϕ̇I =
[

I3n−3 0(3n−3)×3
]

Âϕ

ϕ̇II =





0 · · · 0 0 −kᾱ −1
0 · · · 0 kᾱ 0 0
0 · · · 0 0 0 0



ϕ

=
[

03×(3n−3) Â⋆
Tξ̄M

]

ϕ .

The blockÂ⋆
Tξ̄M

has eigenvaluesλ1,2,3 = 0,± jkᾱ, with ᾱ =

±πd/n from Theorem 1. �

Therefore, when determining the stability of a given
{n/d} polygon formation we can disregard these three
imaginary axis eigenvalues of̂A, and determine stability
based on its remaining 3n−3 eigenvalues.

B. Spectral Analysis of̂A

In this section, we exploit the block circulant structure
of Â to isolate its eigenvalues. Letωi−1 := e2(i−1)π j/n ∈ C

denote thei-th of n roots of unity, wherej =
√
−1.

Lemma 3:The matrixÂ can be block diagonalized into
diag(D1,D2, . . . ,Dn), whereDi = A+ωi−1B, i = 1,2, . . . ,n.

The proof of Lemma 3 follows from Theorem 5.6.4 of
[12]. Therefore, each diagonal block has the same form,
whereDi = A+ωi−1B is given by

Di =





0 2sin(qπ) sin(qπ)
−1
2 (kqπ)2csc(qπ) −k −1

2 kqπcot(qπ)
0 k(1−ωi−1) 0



 .

From Lemma 3, we observe two facts. The first is that
the eigenvalues ofD1 = A+ B are among the eigenvalues
of Â for every n. The characteristic polynomial ofD1 is
pD1(λ) = λ

(

λ2 +kλ+(kqπ)2
)

. As predicted by Lemma
2, we have discovered one zero eigenvalue, while the
remaining eigenvalues have Re(λ2,3) < 0 for every 0< q< 1
and k > 0. The second fact is that, when the number of
vehiclesn is even, the eigenvalues of the matrixDi∗ = A−B,
with i∗ := n

2 + 1, are among the eigenvalues ofÂ. The
characteristic polynomial ofDi∗ is pDi∗ (λ) = λ3 + kλ2 +
k2

[

(qπ)2 +qπcot(qπ)
]

λ +k3(qπ)2, for which we may use
the Routh-Hurwitz criterion to determine that, for stability,
we would need cot(qπ) > 0, or equivalently 0< q < 1

2.
Moreover, in the special case whenq= 1

2 the characteristic
polynomial factors as

pDi∗ (λ) =

(

λ+ j
kπ
2

)(

λ− j
kπ
2

)

(λ+k), (5)

which yields one stable and two imaginary axis eigenvalues.
Lemma 4:The stability ofÂ is independent ofk > 0.

Proof: Suppose we have block diagonalized̂A into n
diagonal blocksDi = A+ωi−1B according to Lemma 3. The
claim of Lemma 4 is then obvious when each blockDi is
factored asDi = kTD̃iT−1, whereT = diag[1

k sin(qπ),1,1]
(recall 0< q < 1) and

D̃i =





0 2 1
−1

2(qπ)2 −1 −1
2qπcot(qπ)

0 1−ωi−1 0





so thatσ(Di) = kσ(D̃i), whereσ(·) denotes the spectrum of
a matrix. Sincek > 0, the stability of the matrix̃Di implies
the stability ofDi . �

Thus, whether a specific{n/d} polygon is stable or not
is independent ofk> 0, and we can proceed by studying the
blocks D̃i . In other words, for a givenn, only the density
d influences the spectrum of̂A.

C. Stable Equilibrium Polygons

Unfortunately, the blocks̃Di are, in general,complexma-
trices. To be explicit about this fact, we can write then roots
of unity ωi−1 = wi + jzi ∈ C, wherewi = cos(2π i−1

n ) and
zi = sin

(

2π i−1
n

)

. In this general case, the characteristic poly-
nomial of D̃i is pD̃i

(λ) = λ3+λ2+(a2+ jb2)λ+(a3+ jb3)

with coefficientsa2 = (qπ)2 + 1
2qπ(1− wi)cot(qπ), b2 =

−1
2qπzi cot(qπ), a3 = 1

2(1−wi)(qπ)2, andb3 = −1
2zi(qπ)2.

Theorem 2 (after Theorem 3.16 of [13, p. 180]):
Consider a complex polynomialp(λ)= λ3+c1λ2+c2λ+c3,
wherec1,c2,c3 ∈ C. Define the hermitian matrix

H =





c1 + c̄1 c2− c̄2 c3 + c̄3

−c2 + c̄2 c̄2 +c2− c̄3−c3 c3− c̄3

c3 + c̄3 −c3 + c̄3 c2c̄3 + c̄2c3



 .

The polynomialp(λ) is asymptotically stable if and only if
H is positive definite.

Here,c̄ denotes the complex conjugate ofc. A hermitian
matrix H is positive definite if and only if its leading
principal minors, denotedh1, h2, andh3, are positive.
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Suppose we apply Theorem 2 to the characteristic poly-
nomial of D̃i . Computing the leading principal minors of
the correspondingH gives h1 = 2, h2 = 4(a2 − a3 − b2

2),
andh3 = 8(a2

2a3+a2b2b3−2a2a2
3−3a3b2b3−b2

3−a3b2
2a2−

b3
2b3+a3

3). Clearlyh1 > 0. Stability of a givenD̃i matrix is
therefore dependent on the signs ofh2 andh3. For stability,
substituting the coefficients above and usingz2

i = 1−w2
i ,

we would need that

h2(q,wi) = 2(1+wi)qπ+2(1−wi)cot(qπ)

− (1−w2
i )qπcot2(qπ) > 0

(6)

for the second leading principal minor, and

h3(q,wi) = (1+wi −w2
i −w3

i )[(qπ)2 +qπcot(qπ)]

− (1−wi −w2
i +w3

i )[(qπ)2cot2(qπ)+qπcot3(qπ)]

+2(1−2wi +w2
i )cot2(qπ)−2(1−w2

i ) > 0

for the third leading principal minor. The decision to write
h2 andh3 as functions of the real componentwi rather than
the imaginary componentzi was arbitrary. In what follows,
we will use these functionsh2 and h3 to determine which
{n/d} equilibrium polygons are stable, and which are not.

For a given number of vehiclesn, define the set ofwi by
W n =

{

wi = Re(ωi−1) : i = 1,2, . . . ,n
}

.
Lemma 5:Every {n/d} equilibrium polygon with n

2 <
d < n is unstable.
Proof: Whenn is even, we have already seen that the eigen-
values ofA−B (a real matrix) are among the eigenvalues of
Â (i.e., if i∗ := n

2 +1, wi∗ =−1 is always a root of unity) and
we have previously concluded thatDi∗ = A−B is unstable
when 1

2 < d
n < 1, or equivalentlyn

2 < d < n. Whenn is odd,
look at h2 and consider the set of points that arenot stable
H 2 = {(µ,w) : h2(µ,w) ≤ 0,µ∈ (0,1),w∈ (−1,1)}, which
is illustrated by regionU of Fig. 5a. Note that we are taking
µ and w on a continuum, whereas the arguments ofh2 in
(6), q and wi ∈ W n, take on rational and discrete values,
respectively. Let intH 2 denote the interior ofH 2. It is a fact
that the pair(µ,cos(2πµ)) ∈ intH 2 for every µ∈ (1

2, 2
3], as

illustrated by the dotted line in Fig. 5a. This fact, which
is most easily checked numerically, will be useful in what
follows. Let d∗ := n+1

2 , the smallest integer satisfying the
condition n

2 < d < n of the lemma. Leti∗ := d∗ +1, which

giveswi∗ = Re(ωd∗) = cos(2π d∗
n )∈W n. Note that12 < d∗

n ≤
2
3 for every n ≥ 3, which (by the previously stated fact)
implies that for everyn≥ 3 there exists awi∗ ∈W n such that
(d∗

n ,wi∗) ∈ intH 2, i.e., every{n/d∗} polygon is unstable.
It is left to show that the remaining densitiesd∗ < d < n
satisfying the conditionn

2 < d < n of the lemma are also
unstable. Sinced

∗
n < d

n < 1, the point(d
n ,wi∗) ∈ intH 2 also

lives in the regionU . This is because it lies directly to
the right of the unstable point(d∗

n ,wi∗) ∈ intH 2 in Fig. 5a,
which concludes the proof. �

Before stating our main result, consider the set of points
that arenot stableH 3 = {(µ,w) : h3(µ,w)≤ 0,µ∈ (0, 1

2],w∈
(−1,1)}, which is illustrated by the regionU of Fig. 5b.
Define the following functions

w(µ) :=
2tan(µπ)

µπ[1+µπ tan(µπ)]
−1

w(µ) := cos(2πµ),

which describe the upper and lower boundaries of the region
U in Fig. 5b. These functions were obtained by solving the
equationh3(µ,w) = 0 on the relevant domainµ= (0, 1

2] and
w ∈ (−1,1) and numerically checking that the regionU
indeed corresponds to the setH 3. As a result, the definition
given above forH 3 is equivalent toH 3 = {(µ,w) : µ ∈
(0, 1

2],w∈ [w(µ),w(µ)]}.
Theorem 3 (Main Stability Result):An {n/d} equilib-

rium polygon is locally asymptotically stable if and only
if 0 < d ≤ n

2 andw
(

d−1
n

)

> w
(

d
n

)

.
Proof: According to the proof of Lemma 5,h2 < 0 for
every {n/d} polygon with n

2 < d < n. Thus, a necessary
condition for stability is that 0< d ≤ n

2.
Notice thath2 > 0 for every 0< d < n

2 (see Fig. 5a).
Let’s proceed by assuming that this condition holds for
the given {n/d} polygon. We will consider the special
case whend = n

2 separately. Observe that every matrix
Di has a complex conjugate matrixDn−i+2, hence the
spectra ofDi and its conjugate are also complex conjugates.
Define i∗ := d + 1 so thatwi∗ = cos(2π d

n) ≡ w(d
n). Thus,

the point (d
n ,wi∗) lies exactly on the lower boundary of

H 3 in Fig. 5b. Together, the matrixDi∗ and its conjugate
Dn−i∗+2 have two imaginary axis eigenvalues (one each) of
the formλ =± jkπ d

n , while the remaining eigenvalues have
Re(λ) 6= 0. These facts were verified with the assistance of
computer algebra software. The eigenvalues with Re(λ) 6= 0
cannot be unstable, otherwise the point(d

n ,wi∗) would not
lie on the boundary ofH 3. According to Lemma 2, we
can disregard the two imaginary axis eigenvalues, and also
the zero eigenvalue ofD1, since they have no connection
to the stability of the given{n/d} polygon. Since the point
(d

n ,wi∗) lies on the lower boundary ofH 3, all points(d
n ,wi),

wi ∈W n with wi < wi∗ lie outside the unstable setH 3. Thus,
we turn our attention to the points(d

n ,wi), wi ∈ W n with
wi > wi∗ . Define the indexi′ := i∗−1= d, corresponding to
wi′ ∈W n, wi′ > wi∗ that isclosestto wi∗ . This new value is
given by wi′ = cos(2π d−1

n ) ≡ w(d−1
n ). If wi′ > w(d

n), then



TABLE I

EQUILIBRIUM POLYGONS WITH STABLE POLYGONS SHADED.

d = 1 2 3 4 5 6
{2/1} {3/2} {4/3} {5/4} {6/5} {7/6}
{3/1} {4/2} {5/3} {6/4} {7/5} {8/6}

...
...

...
...

...
...

{7/1} {8/2} {9/3} {10/4} {11/5} {12/6}
{8/1} {9/2} {10/3} {11/4} {12/5} {13/6}

...
...

...
...

...
...

{17/1} {18/2} {19/3} {20/4} {21/5} {22/6}
{18/1} {19/2} {20/3} {21/4} {22/5} {23/6}

...
...

...
...

...
...

{49/1} {50/2} {51/3} {52/4} {53/5} {54/6}
{50/1} {51/2} {52/3} {53/4} {54/5} {55/6}

...
...

...
...

...
...

the point(d
n ,wi) /∈ H 3 for all wi ∈W n, wi > wi∗ . Therefore,

by Theorem 2, stability is equivalent tow(d−1
n ) > w(d

n).
Now, in the special case whend = n

2, the matrixDi∗ is
real and has eigenvalues according to the roots of (5), as
shown on page 4. Therefore, one is stable and the remaining
two imaginary axis eigenvalues should be ignored according
to Lemma 2. The rest follows as for 0< d < n

2. �

The following of corollary (given without proof) employs
this main result to explicitly disclose which{n/d} equilib-
rium polygons are stable and which are not.

Corollary 3: Following Theorem 3: (i) every{n/1}
polygon is locally asymptotically stable; (ii) every{n/2}
polygon with n ≥ 4 is locally asymptotically stable; (iii)
every{n/d} polygon withd≥6 is unstable; (iv) for a{n/d}
polygon with d ∈ {3,4,5}, let µ̄ be the unique solution
to w

(

µ− µ
d

)

= w(µ); then {n/d} is locally asymptotically
stable if and only ifd < µ̄n.

Thus, we find that polygon{10/3} is stable, while{9/3}
is not. Similarly,{21/4} is stable, while{20/4} is not, and
finally {54/5} is stable, while{53/5} is not. Table I lists
all possible equilibrium polygons with 1≤ d ≤ 6 and gives
their local stability.

D. Sample Simulations

Fig. 2 and Fig. 6 show computer simulation results for
n = 7 vehicles, where in each case the forward speed
s = 1 and gaink = 4. However, due to differing initial
conditions, the vehicles of Fig. 2 form a{7/1} polygon
at equilibrium, whereas the vehicles of Fig. 6 converge to
a {7/2} equilibrium formation.
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