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Unicycles in Cyclic Pursuit
Joshua A. Marshall, Mireille E. Broucke, and Bruce A. Francis

Abstract— In this paper, we study the geometric formations centre [5]. What happens if our bugs do not start at the
of multi-vehicle systems under a control law based on cyclic vertices of a regulan-polygon? This and other questions
pursuit. The pursuit framework is particularly simple in that, —re|5ting to the bugs problem have been asked and answered
for n ordered and identical wheeled vehicles, vehicle simply . s "
pursues vehiclei +1 modulo n. We show that, for unicycles over time (e.g., [6], [7], [8])- \(arlatlons on the traditiah .
with constant speed, the multi-vehicle system’s equilibrium Problem have also been studied. For example, Bruckstein
formations are generalized regular polygons. We then study et al. [9] investigated both continuous and discrete pursui
the local stability of these equilibrium polygons, revealing as well as both constant and varying speed scenarios.
which formations are stable and which are not. Consider now a particular cyclic pursuit scheme where

. INTRODUCTION each “bug” is modelled as a kinematic unicycle. In this case,

}he unicycles will not generally be able to head towardsthei
designated prey at each instant. What trajectories can be
generateH? In this paper, we generalize the cyclic pursuit
the question of how to achieve desirgtbbal behaviours concept to_ no_nholonor_nic vehicles _and _study its properties
for multi-vehicle systems through the application of onlyas a cpordmauon al_gont.hm for multl—yehlgle systems. ghu
simple andlocal interactions is of particular interest. our primary motlva.tlon IS to f°"°V.V historical developmgnt

There has recently been great interest in this questioﬂnd study the achievable formations for wheeled vehicles

To name only a few results, Justh and Krishnaprasad [ der cyclic pursuit. Alternatively, from a practical view

developed local steering laws for achieving both rectdine omt, cyclic purSL_ut may b? a_fea5|bl_e strategy for_ mult-
vehicle systems since it is distributed (i.e., decentealjno

and circular formations of planar multi-vehicle systems[ d bl 4 simole in that h (i wred
Jadbabaie et al. [2] proved convergence results for a reare§ 2 er)_, scaiable, and simple in that each agent Is reqtare
ense information from only one other agent. We study one

neighbour type problem, guaranteeing that all agents even: s :
tually move in an identical fashion, despite the distrildute particular control law that assumes each unicycle has the

nature of their coordination law. Gazi and Passino [3f2Me constant forward speed, unlike in [10]. We show that

investigated aggregate behaviourswarmsof organisms, hel system sdeqU|I|thr|L(;mtE)rm?tlor:s ?rte)_lgtenerahzed regul
where operational models are analyzed for the purpo?é) ygons and we study their focal stability.

In this paper, we study a reconfiguration strategy fo
multi-vehicle systems based on the notion ayklic pur-
suit from mathematics. From an engineering standpoin

of pptential enginee;ring application. Sepulchre et al. [4] Il. UNICYCLE EQUATIONS OF PURSUIT
studied the connections between phase models of coupled ) . ) )
oscillators and kinematic models of groups of agents. In this section, we briefly review some relevant results

Inspired by the so-called “bugs” problem from mathefrom [10]. Suppose there areordered vehicles, where each
matics, we study the geometric formations of multi-vehicl&/€hicle is a kinematic unicycle with nonlinear state model

systems under cyclic pursuit. The bugs problem refers to %; cosd, 0
what is also known as the dogs, mice, ants, or beetles vi | =1 sine 0 { Vi ] =GO)u, (1)
problem, and originally stems from the mathematicpaf- ) 0 1

suit curvesfirst studied by French scientist Pierre Bouguer

(c. 1732). In 1877, Edouard Lucas asked, what trajectorie®id wherex;,yi]” € R? denotes thé-th vehicle’s position,

would be generated if three dogs, initially placed at th€; € R is the vehicle’s orientation, and = [vi,w]" € R?

vertices of an equilateral triangle, were to run one-afte@re control inputs. In this paper, we allow angles to take

the-other? Three years later, Henri Brocard replied with thvalues in the seR to avoid a discontinuity in our feedback

answer that each dog’s pursuit curve would be a logarithmiew, which depends on angles. Suppose vehigheirsues

spiral and that the dogs would meet at a common pointhe next,i +1, modul@ n.

known now as theBrocard pointof a triangle. Consider  Letr; denote the distance between vehictndi+ 1, and

n ordered bugs that start at the vertices of a regular let a; be the difference between tligh vehicle’s heading

polygon. If each bug pursues the next modulo(i.e., and the heading that would take it directly towards its

cyclic pursuit) at constant speed, the bugs will trace outrey, i+ 1 (see Fig. 1). In the present paper, we fix each

logarithmic spirals and eventually meet at the polygon'sehicle’s forward speed and study the possible equilibrium
formations when vehicl@s angular speedy is assigned in
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i+1

Fig. 1. New coordinates, with vehiclein pursuit ofi + 1.

A. Transformation to Relative Coordinates

Before beginning our analysis, it is useful to consider
a transformation of coordinates into ones that involve the
variablesr; and aj. We define the variables, a;j, and 3 Fig. 2. Seven vehicles subject to control law (3), whtk- 4.
according to Fig. 1. After some (rather lengthy) algebraic
manipulation, the kinematic equations (1) become

C. Sample Simulation

fi= 1V' COSj — Vi1 COS(0 + Bi) Preliminary computer simulations suggest the possibility
ai = — [vi sinaj + Vi1 Sin(aj + Bi)] — o (2) of achieving circular pursuit trajectories in the planeg.F
) ri shows simulation results for a system of= 7 vehicles,
Bi =0 —wit1. initially positioned at random, under the control law (3)

This system describes the relationship between veliclewith k= 4. Note that the vehicles converge to equally spaced
and the one that it is pursuing;+ 1, wherer; anda; are motion around a circle of fixed radius with a pursuit graph
as previously described. Note that, in these coordinates,that is similar to a regular pentagon.

Is assumed that; > 0. I1l. EQUILIBRIUM POLYGONS

B. Formation Control and Pursuit Graph In order to characterize the possible equilibrium forma-
As previously suggested, we investigate the case whertions for the system (4), we need to adequately describe
the state of our system’s pursuit graph at equilibrium. The
following definition for a regular polygon with coplanar
where k,s > 0 are constant. Substituting these controlsertices has been adapted from [11], and was introduced in
into (2) gives a system af cyclically interconnected and [10], to allow for vertices that are not necessarily distinc
identical nonlinear subsystems of the form and for the directed edges of our pursuit graph.
i = —s[cosa + cog(o -+ Bi)] N De.finition 2 (after [11], p. 93): L_et n gndd < n be pos-
s . itive integers so thap :=n/d > 1 is rational. LetR be a
aj = - [sinaij +sin(aj + Bi)] — kai (4) positive rotation in the plane, about the origin, througglan
0 kl o 21/p andz; # 0 be a point in the plane. The poirts; =
Bi = k(o —0iisy). Rz, i=1....,n—1and edge®y =z,1—2z, i=1,...,n,
At each instant in time, regardless of the control law, thelefine ageneralized regular polygordenoted{ p}.
multi-vehicle system’s geometric configuration in the @an By this definition, {p} can be interpreted as a directed

vi=s and w = kaj, )

can be described by jpursuit graphas follows. graph with verticesz (not necessarily distinct) connected
Definition 1 (Pursuit Graph):A pursuit graph Gcon- by edgesg as determined by the ordering of points.
sists of a pairV,E) such that Since p is rational, the period oR is finite and, when

(i) V is a finite set of verticesV| = n, where each vertex n and d are coprime, this definition is equivalent to the
z = (x,yi) €R? i€ {1,...,n}, represents the position well-known definition of a regular polygon as a polygon
of vehiclei in the plane; and that is bothequilateral and equiangular Moreover, when

(i) E is a finite set of directed edgel§| =n, where each d =1, {p = n} is an ordinary regular polygon (i.e., its
edgeeg :V xV —R?,ic{1,...,n}, is the vector from edges do not cross one another). However, wthenl is
z to its prey,z1. coprime ton, {p} is astar polygon since its sides intersect

In other words,e = 7,1 —z and consequentl§'e =0 at certain extraneous points, which are not included among
for vehicles in cyclic pursuit. Also, note that our coordma the vertices [11, pp. 93-94]. I and d have a common
ri = |lall,. We employ this definition in characterizing thefactor m> 1, then{p} hasri'=n/m distinct vertices and
equilibrium formations of our multi-vehicle system. fi edges traverserh times. Fig. 3 illustrates some example
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the kinematics of each vehicle subsystem (4) more com-
pactly as¢; = f(&;,&i1). Linearizing eack; model about

an equilibrium pointr,a,B]" givesn identical subsystems
of the form¢; = Ag; + BE;1 where

0 2singm) sin(gm)
A= | —3(kgm?csqqm) —k  —3kqrtcot(qm)
I 0 k 0
[0 0 O
B=|0 0 O0]f.
|0 —k O

If we view thecompletemulti-vehicle system aéf 1e3)

)
369 then its linearization abow§ € R has the formé = AE

€
2,58

Fig. 3. Example generalized regular polygoi®/d}, d € {1,2,3}. whereA = circ[A,B,0,...,0], defined by
A B O O - O
possibilities for{ p} whenn= 9. In the first instance{9/1} _ O A B O 0
is an ordinary polygon. In the second instan¢8/2} is circ/A,B,0,...,0]:= | : ;
a star polygon since 9 and 2 are coprime. In the third 0 0 0O A B
instance, the edges d®/3} traverse a{3/1} polygon 3 B O 0 0 A

times, becausen= 3 is a common factor of both 9 and 3.
Theorem 1:At equilibrium, then-vehicle pursuit graph
corresponding to (4) is a generalized regular polygomh,

which is a matrix ofblock circulantform (cf. [12]). In the
sections that follow, we study the spectrum/Aof

wherep=n/d andd € {1,...,n—1}. Moreover,

r-—@sin E
" kmd n

and the equilibrium angles in the ranger 1 are a; =
+md/n andfi = £m(1—2d/n) for all i € {1,...,n}.

A. Coordinate Constraints

For every initial condition, the systed= f(&) is con-
strained to evolve on an invariant submanifoldof R®". To
see why this is the case, recall that under cyclic pursuit the
system’s pursuit graph at each instant satisfiBs e(t) =
0. By choosing a coordinate frame attached to (say) vehicle

The proof of Theorem 1 is very similar to that of Theoremi and oriented with this vehicle’s heading, this condition
1in [10]. Equilibria witha; = 0 are not feasible for vehicles corresponds to the constraint equations
in cyclic pursuit. The case when andd of Theorem 1 . .
are not coprime is physically undesirable (e.g., as in 3 (&) :rlslntaltl+r25|n(a2+n— Bo)+-
polygon {9/3} of Fig. 3) since it requires that multiple <+ rsin(n+(N—1)m—B1— P2~ —Pn-1) =0
vehicles occupy the same point in space. From geometny;(§) = ricoso1 +racog0z 41— P1) + -
it is .cle.,-ar that, for each possiblén/d} formation, the co 4 rhcog0n+ (N—1)TT— B1—Ba— - — Pn_1) = O.
equilibrium anglea = +md/n corresponds exactly to a ) _ )
relative heading angle for each vehicle that points it in &§0F vehicles 1 and 2, Fig. 4 helps to illustrate how these
direction that istangentto the circle circumscribed by the constraint equations arise.
vertices of the corresponding equilibrium polygon. Also due to cyclic pursuif L Bi(t) =0= 3L, Bi(t) =
Corollary 1: At equilibrium, the vehicles traverse a cir- ¢ for all t > 0, where the constawt= —nrtby our definition
cle of radiusp = sn/kr. for Bi, which provides the final constraigs(&) = zi”:l_ Bi+
Observe that the possible equilibrium formations depen@ft= 0. Thus, letg(§) = [01(8),92(8),93(8)] - Then tcan
only on our choice of gaitk and forward speeg; in fact, P€ checked that/ = {&€ Rsnf g(§) =0} CR*" defines a
only on the ratics: k. Therefore, in what follows we assume Submanifold of R*". For brevity's sake, the following are
s= 1 without loss of generality. Following Corollary 1, the 9iven without proof.

radius about which the vehicles travel is determined by the L€Mma 1: The submanifoldy is invariant underf.
designable parametérs 0. Corollary 2: Since# is invariant underf, the tangent

space Ty at any given equilibrium point € a7 is
V. LOCAL STABILITY ANALYSIS invariant underA.

In general, fom > 2, which {n/d} equilibrium polygons Therefore, by Corollary 2 and standard results from
are asymptotically stable, and for what valuek®fin this linear algebra, there exists a change of basisR&t that
section, we tackle thiocal stability question by linearizing transformsA into upper-triangular form
about a genera{n/d} formation. _ A N

To facilitate notation, defing; := & —[r,a,B]" and let T ~ .
q:=p t=d/nso that 0< g< 1 and is rational. We write O35(3n-3) ATgM
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m—a1—f1 From Lemma 3, we observe two facts. The first is that
the eigenvalues ob; = A+ B are among the eigenvalues

/ of A for every n. The characteristic polynomial dd; is
= po,(A) = A (A2 + KA+ (kqm)?). As predicted by Lemma
2, we have discovered one zero eigenvalue, while the
\ul remaining eigenvalues have Re3) < 0 for every 0< q< 1

and k > 0. The second fact is that, when the number of

vehiclesnis even, the eigenvalues of the matx = A—B,

with i* := J +1, are among the eigenvalues Af The

/ characteristic polynomial oDj is pp. (A) = A3 +k\? +

/T k? [(qr)? + grcot(qr)| A + k3(qm)?, for which we may use

. ’ the Routh-Hurwitz criterion to determine that, for stetlijli

, we would need cdgm) > 0, or equivalently 0< g < %
Moreover, in the special case whga= % the characteristic

1 polynomial factors as

Fig. 4. Depiction of coordinates for vehicles 1 and 2. kTt kTt
ot o .= (A1) (-1 )+, @

Lemma 2:In the quotient spacR?’“/TgM, the induced Which yields one stable and two imaginary axis eigenvalues.

- A oan e 3 Lemma 4: The stability ofA is independent ok > 0.
I|.near. transfo-rmatllonATE_M REY/Tert = R /TEM has Proof: Suppose we have block diagonalizédinto n
(imaginary axis) eigenvalues, = 0 andAz3 = +jkmd/n.  giagonal blockD; = A+ w !B according to Lemma 3. The
Proof (sketch) Let ¢ = ®(&) be the coordinates change  cjaim of Lemma 4 is then obvious when each bldzkis

b1=r1,02=01,...,930-3 = Bn-1,P30-2 = R (¥), factor”eg asD; :1 kT[?;T*l, whereT = diag(§ sin(qr), 1,1]
Ban-1=02(§), Pan = 93(§) - (recall 0<q < );m X .
Partition these new coordinates ino= [¢,",¢,;]" where Bi=| —i@uz -1  —lqucotqn)
i =
O = [01.92,....030-3]" and ¢y = [d3n_2,P3n-1,P3n] " 20 1— -1 2 0

Thus, by computing the linearization about the equilibrium .
§ = ®(%), in the new coordinates we get (details not showngo thata(D;) = ka(D;), wherea(-) denotes the spectrum of
a matrix. Sincek > 0, the stability of the matridD; implies

o1 =[lsn-s Oan-gxs |AP the stability ofD;. O
0 - 0/ 0 —ka -1 Thus, whether a specifign/d} polygon is stable or not
ébu={0 -~ Olka O 0 |¢ is independent o > 0, and we can proceed by studying the
0O - 0|0 0 0 blocks D;. In other words, for a givem, only the density
_ { 03, (an_3) A%M }4). d influences the spectrum &%

C. Stable Equilibrium Polygons

Unfortunately, the block®; are, in generalcomplexma-
+md/n from Theorem 1. N [ trices. To be explicit about this fact, we can write theoots
Therefore, when determining the stability of a givenyf ynity w1 =w, + jz € C, wherew; = COS(ZTTFTl) and
{n/d} polygon formation we can disregard these threg _ gjn(2ri=1). In this general case, the characteristic poly-
imaginary axis eigenvalues ok, and determine stability nomial of D is P, (A) = A3+ A2+ (ap+ jbo)A + (as+ jb3)
based on its remainingn3- 3 eigenvalues. with coefficientsa, = (qm)2 + %qn(l—wi)cot(qn), by =
B. Spectral Analysis oA —1qmg cot(qm), az = 1(1—wi)(qm)?, andbs = — 3z (qm)2.
In this section, we exploit the block circulant structure_ 1 neorem 2 (after Theorem 3.16 °f3[13' by 180]):
of A to isolate its eigenvalues. Lei ! := i-1m/n ¢ ¢ Consider a complex polynomig@lA) = A°+ciA“+ CoA +C3,

The bIockA}gM has eigenvaluek; >3 = 0, + jka, with a =

denote the-th of n roots of unity, wherej = v/—1. wherecy, ¢y, c3 € C. Define the hermitian matrix
Lemma 3:The matrixA can be block diagonalized into Cc1+C1 ) C3+C3

diag(D1,D>,...,Dp), whereD; = A+ & 1B, i=1,2,....n H=| —co+C Co+C—C3—C3 C3—C3
The proof of Lemma 3 follows from Theorem 5.6.4 of C3-+C3 —C3+C3 CoC3+ CoC3

[12]. Therefore, each diagonal block has the same for

whereD; — A+ 1B is given by Mhe polynomialp(A) is asymptotically stable if and only if

H is positive definite.

0 2sin(gm) sin(gm) Here,c denotes the complex conjugate®fA hermitian
D= ‘Tl(kqn)zcsc(qn) -k %kqncot(qn) matrix H is positive definite if and only if its leading
0 k(1- ™) 0 principal minors, denotetl;, hy, andhg, are positive.
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Fig. 5. Parametew as a function ofu for the leading principal minors

(a) hz, and (b)hs of H. In (a), U denotes the closed set of points wherethat arenot stablesz = {(u’

hy <0; in (b), U denotes the closed set of points whage< 0.

Suppose we apply Theorem 2 to the characteristic poly-

nomial of D;. Computing the leading principal minors of
the corresponding—| givesh; =2, hy = (az —ag—bj),
andhz = (a2a3+a2b2b3 2&263 3a3b2b3—b —a3b2a2—
b3b3+a3) Clearlyh; > 0. Stability of a g|verDI matrix is
therefore dependent on the signshefandhs. For stability,
substituting the coefficients above and usigfg= 1 — w2,
we would need that

ha(a,wi) = 2(1+w)grt+ 2(1—w;) cot(qr)
— (1—w?)grcof(qm) > 0
for the second leading principal minor, and
ha(g,wi) = (14w —wf —w?)[(qm)® + grecot(qr)]
— (L= wi —wf +wp)[(am)? cof’(qm) + grrcot’(qr)]
+2(1— 2w +w?) cof(qm) — 2(1—w?) > 0

(6)

giveswi- = Re(w") = cog2n ) € wy. Note that} < 4 <
% for every n > 3, which (by the previously stated fact)
implies that for everyr > 3 there exists &~ € Wy, such that
(L, wi-) € intssy, i.e., every{n/d*} polygon is unstable.
It is left to show that the remaining densitie$ < d < n
satisfying the conditiong < d < n of the lemma are also
unstable. Smcé‘— <d 5 <1, the p0|nt( ,Wi+) € int#H> also
lives in the reglonU This is because it lies directly to
the right of the unstable poir{t%,wi*) €int#> in Fig. 5a,
which concludes the proof. |
Before stating our main result, consider the set of points
w) thg(mw) <0,ue (0,3],we
(—=1,1)}, which is illustrated by the regiob of Flg 5b.
Define the following functions

_ 2tan(um)
W = w1+ prttan(urm)]
W(H) := cog(2m),

which describe the upper and lower boundaries of the region
U in Fig. 5b. These functions were obtained by solving the
equationhz(,w) = 0 on the relevant domaip= (0, %] and

€ (—1,1) and numerically checking that the regith
indeed corresponds to the s&. As a result, the definition
given above for#s is equivalent to#s = {(LL,wW) : L €
(0,3, we W), w(u]}.

Theorem 3 (Main Stability Resultjn {n/d} equilib-
rium polygon is locally asymptotically stable if and only
if0<d<3andw(%1) >w(9).

Proof: According to the proof of Lemma ), < 0 for
every {n/d} polygon with 5 < d < n. Thus, a necessary

for the third leading principal minor. The decision to writecondition for stability is that G<d < 5.

h, andhs as functions of the real componeni rather than
the imaginary componerzt was arbitrary. In what follows,
we will use these functionk, and hs to determine which

{n/d} equilibrium polygons are stable, and which are notcase whend =

For a given number of vehicles define the set ofy; by
Wn={W=Rew1):i=12...,n

Lemma 5:Every {n/d} equilibrium polygon with§ <
d < nis unstable.

Notice thath, > 0 for every 0< d < 5 (see Fig. 5a).
Let's proceed by assuming that this condition holds for
the given {n/d} polygon. We will consider the special

5 separately. Observe that every matrix
D; has a complex conjugate matri®, j,», hence the
spectra oDI and its conjugate are also complex conjugates.
Definei* := d+1 so thatw;» = cog2nd) = w(%). Thus,
the pomt( wi«) lies exactly on the lower boundary of

Proof: Whenn s even, we have already seen that the eiger3 in Fig. 5b. Together, the matril;« and its conjugate
values ofA— B (areal matrix) are among the eigenvalues ofD,,_j«,» have two imaginary axis eigenvalues (one each) of

Aie., ifi*:= 2+1,w;- = —1is always a root of unity) and
we have previously concluded thBt- = A— B is unstable
When% < % <1, or equivalently; <d < n. Whenn is odd,
look ath, and consider the set of points that awat stable
Hy = {(K,w) : ha(p,w) <O,pe (0,1),we (—1,1)}, which

is illustrated by regiotJ of Fig. 5a. Note that we are taking
pandw on a continuum, whereas the argumentshgfin
(6), g andw; € Wy, take on rational and discrete values
respectively. Let int/> denote the interior off». It is a fact
that the pair(p, cog2rq)) € int#, for everyp e (2, 3] as

the formA = ijkn%, while the remaining eigenvalues have
Re(A) # 0. These facts were verified with the assistance of
computer algebra software. The eigenvalues witt\Re 0
cannot be unstable, otherwise the pcﬂﬁtwi*) would not

lie on the boundary ofx3. According to Lemma 2, we
can disregard the two imaginary axis eigenvalues, and also
the zero eigenvalue dbi, since they have no connection

to the stability of the give{n/d} polygon. Since the point

(4, w;-) lies on the lower boundary ofs, all points(4,w),
Wi € Wn with wi < wi+ lie outside the unstable set;. Thus,

illustrated by the dotted line in Fig. 5a. This fact, whichwe turn our attention to the pom(% W), Wi € Wy with

is most easily checked numerically, will be useful in whatv; > w;+. Define the index’ :=i*

follows. Letd* := ™1,

condition g < d < n of the lemma. Lef* :=d*+1, which

—1=d, corresponding to

the smallest integer satisfying thew;s € wp, Wy > w;« that isclosestto w;-. This new value is

given by wy = cog2nd=1) = w(%1). If wy > w(Y), then
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TABLE |

EQUILIBRIUM POLYGONS WITH STABLE POLYGONS SHADED

d=1 2 3 4 5 6

2/ {3721 {4731 {541 {6/5] {7/6} _
{81} {420 {5/3 {6/4 {7/5 {8/6} i
{7/ {8/2} {9/3} {10/4} {11/5} {12/6}

{8/1} {9/2} {10/3} {11/4} {125} {136}

W7 (82 (193 (2004 (205 {2206} -
{18/1} {19/2} {20/3} {214} {22/5} {23/6}

{49/1} {50/2} {51/3} {52/4} {53/5} {54/6}

{50/1}  {51/2} {52/3} {53/4} {54/5} {55/6}

the point(%wi) ¢ 73 for all wy € Wy, w; > wi-. Therefore,
by Theorem 2, stability is equivalent w(%-1) > w(2).
Now, in the special case wheh= g the matrixDj+ is
real and has eigenvalues according to the roots of (5), as

shown on page 4. Therefore, one is stable and the remainin¢|

two imaginary axis eigenvalues should be ignored according

to Lemma 2. The rest follows as forfd < 3. O
The following of corollary (given without proof) employs

this main result to explicitly disclose whicfn/d} equilib- Fig. 6. Unicycles in cyclic pursuit generating{&/2} formation.
rium polygons are stable and which are not.
Corollary 3: Following Theorem 3: (i) every{n/1}
[2] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination obgws

polygon is locally asymptotically stable; (ii) evedyn/2}
polygon with n > 4 is locally asymptotically stable; (iii)

every{n/d} polygon withd > 6 is unstable; (iv) for gn/d}  [3]
polygon with d € {3,4,5}, let i be the unique solution
to w(p—§) =w(p); then{n/d} is locally asymptotically (4
stable if and only ifd < pn.

Thus, we find that polygo#10/3} is stable, while{9/3}
is not. Similarly,{21/4} is stable, while{20/4} is not, and  [g]

finally {54/5} is stable, while{53/5} is not. Table I lists
all possible equilibrium polygons with <4 d < 6 and gives [6]
their local stability.
[71
. : . : (8]
Fig. 2 and Fig. 6 show computer simulation results for
n = 7 vehicles, where in each case the forward speed’
s=1 and gaink = 4. However, due to differing initial
conditions, the vehicles of Fig. 2 form £7/1} polygon [10]
at equilibrium, whereas the vehicles of Fig. 6 converge to
a {7/2} equilibrium formation.

D. Sample Simulations

[11]
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