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Abstract— Inspired by the so-called “bugs” problem from  pursues the next moduto(i.e., cyclic pursuit) at fixed speed,
mathematics, we propose a cyclic pursuit strategy for multi- the bugs will trace out logarithmic spirals and eventually
vehicle formations. A particular version of this pursuit problem meet at the polygon’s centre [1]. A similar result holds itea

is studied for a system ofn wheeled vehicles, each subject bug’ di i  to the dist bet b =
to a single nonholonomic constraint, towards the achievement ugs speed Is proportional 1o the distance between bugs. Fo

of certain trajectories in the plane. A full stability analysis is @ more complete historical review of cyclic pursuit, see [1]
provided for the special case whenn = 2 and it is revealed and references therein.
how the system’s global behaviour can be shaped through  Consider a variation on this traditional pursuit problem
appropriate controller gain assignments. where each “bug” is additionally subject to a single nonholo
| INTRODUCTION nqmic constrai.nt, or equivaleqtly, mode]led as a kinematic
unicycle. In this case, the unicycles will not generally be
In this paper, we introduce a cyclic pursuit strategy foable to head towards their designated targets at each instan
systems ofn wheeled vehicles whereby each vehicle purinstead, depending on the allowed control energy, each
sues the next modula. Multi-vehicle systems might find vehicle will require some finite time to steer itself towards
application in terrestrial, space, and oceanic explomatioits preassigned leader. What trajectories can be generated?
military surveillance and rescue missions, or even autedhat |In what follows, we introduce this concept of cyclic pursuit
highway systems. Hence, from an engineering standpoifbr multi-vehicle systems, and we study the case when
the question of how to prescribe desirglbbal behaviours each vehicle is subject to a single nonholonomic (rolling)
through the application of only simple afmtal interactions constraint. A version of the described pursuit problem is
is of particular interest. explored, for ahomogeneousystem of unicycles, towards
Indeed, patterns of this sort seem to appear in natutke achievement of certain geometric formations in thegalan
[3], although it is often argued that analysis of even th&@he possible equilibria for a system of interconnected
most simple cases can be an impractical task [2]. Muckehicles are determined, and the special case where is
of multi-agent robotics research has focused on the usaalyzed in full.
of reactive or behaviour-based t.echnlqueg.. However, _the Il. EQUATIONS OF PURSUIT
global outcome of these systems is often difficult to predict
analytically. Thus, corresponding mathematical resutts a Consider the classical “bugs” problem, formalized as fol-
rare, as noted in [10], [12]. Yet, this has not deterred eger lows. Let there bey ordered agents; = (z;,y;) € R? with
in analyzing “nearest-neighbour” strategies, where naibt arbitrary initial conditions, where agemtpursues the next,
simple navigational rules are employed locally to generatet 1, moduld n. Suppose the kinematics of each agent are
desired global formations [7], [8], [11], [13]. Others havedescribed by an integratds = u;, with control inputs
studied aggregate behaviour Swarmsof organisms, where w; = K;(2is1 — 2i) 1)
operational models are analyzed for the purpose of potentia
engineering application (e.g., see [5] and its referen@#d),  for given constant matrice&; € R**2. Thus, by adjusting

many of these ideas have yet to be explored for agents subjét¢ matrices K, ..., K, the group’s behaviour can be
to motion constraints, such as wheeled vehicles. assigned. As a simple example, fet= 2. Controls (1) then
The so-called “bugs” problem refers to what is also variyi€ld errore = 23 — z; dynamicsé¢ = —(K; + Kz)e. In

ously known as the dogs, mice, ants, or beetles problem, aparticular, if —(K; + K>) is stable (resp. unstable) the agents
originally stems from the mathematics mirsuit curvesfirst ~ Will converge (resp. diverge). In the case of marginal sitgpi
studied by French scientist Pierre Bouguer (c. 1732). Irv187the agents in fact travel around a circle.

Edouard Lucas asked, what trajectories would be generatedNow, suppose we extend the abdirear pursuit scenario

if three dogs, initially placed at the vertices of an eqeitat 0 one in which each agent is a kinematic unicycle with
triangle, were to run one-after-the-other? Three yeass,lat honlinear state model

Henri Brocard replied with the answer that each dog would & cost; 0
follow a logarithmic spiral and that the dogs would meet ¥ | = | sin6; 0 {
at a common point, known now as tlBrocard pointof a 0, 0 1
triangle. A modern variant of this problem hagrdered bugs

that start at the vertices of a regulapolygon. If each bug  Henceforth, all vehicle indices+- 1 should be evaluated moduta
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y;. After some (rather tedious) algebraic manipulation, the
kinematic equations become

75 = —v; €08 @ — Vi1 cos(a; + ;)
1
G = — [vi sinay + viqg sin(a; + 6;)] — w; 3)

i

Bi = wi — Wit -

This system describes the relationship between vehialed
the one that it is pursuing, + 1, wherer; and «; are as
Fig. 1. New coordinates, with vehiclein pursuit ofi + 1. previously described. Note that, in these coordinatess it i
assumed that; > 0.

141

where (z;,7;) € R? denotes thei-th vehicle’s Cartesian B. Formation Control and Sample Simulations
position, §; € R is the vehicle’s orientation, and; =

(vi,w;) € R? are control inputs. In this paper, we allow As previously suggested, we investigate the case when

angles to take values iR to avoid a discontinuity in our

feedback law, which depends on angles. v; = kyr; and w; = koo 4)
Let r; denote the distance between vehiclemdi+1, and

let «; be the difference between thigh vehicle’s heading where k,.,k, > 0 are constant gains. Substituting these

and the heading that would take it directly towards vehicleontrols into (3) gives a system afcyclically interconnected

i+ 1 (see Fig. 1). In analogy with the linear controls (1),and identical subsystems

an intuitive control law for (2) is to assign vehiclis linear

speedy; in proportion tor;, while assigning its angular speed 7y = —ky [r; cos o + i1 cos(a; + ;)]

w; in proportion toa;. In the sections that follow, we set out ) ) Tivl .

to study multi-vehicle systems of this sort. Q; = ky |sina; + . sin(a; + 8;)| — kaci  (5)
A. Coordinate Transformation ﬁl = ko(a; — ajy1) -

Before beginning our analysis, it is useful to consider . o o
a transformation of coordinates into ones that involve the At each instant in time, the multi-vehicle system’s geo-

variablesr; anda;. Firstly, for ¢; = (z;,y:, 0;), let metric formation in the plane can be described byuasuit
graph, defined as follows.
Gi = R(0i11) (¢ — qiv1), Definition 1 (Pursuit Graph):A pursuit graphG consists
where R(6) is the rotation matrix of a pair (V, E) such that
cosf  sinf 0 (i) V is a finite set of vertice§V| = n, where each vertex
RO) = | —sind cosf 0 zi = (z4,y:5) € R2%, i € {1,...,n}, represents the
0 0o 1 ’ position of vehiclei in the plane, and,;
(i) FE is a finite set of directed edgeldy| = n, where each
which yields dynamics edgee; : V xV — R?, i € {1,...,n}, is the vector
1 0 Wi 1T from z; t0 z;41.
G=GO0)ui— | 0 0 | uig1+ | —wiprd; | . In other wordsg; = z;11—2; and consequently"" e; = 0
0 1 0 for vehicles in cyclic pursuit. Also, note that our coordma

ri = |leill,. In the next section, we employ this definition
in characterizing the possible equilibrium formations af o
multi-vehicle system.

Preliminary computer simulations suggest the possibility

In these coordinates, vehicleviews itself in a coordinate
frame centred at vehiclet-1 and aligned with vehiclé+1's
heading. Define the variables (see Fig. 1)

ry = /52 4 72 of achieving circular pursuit trajectories in the planeg.R,
Lo Fig. 3, and Fig. 4 show results for a systemmof£ 5 vehicles,
oy = arctan <i> +— 0 initially positioned at random, wherg, = 1 is fixed and
i k, is different in each case. Note that, whén = k£* =

B; = 0; —, 7 csc (Z) in Fig. 2, the vehicles converge to evenly spaced

) N _ o motion around a circle with a pursuit graph that is similar to
with 7 € R™ anda;, J; € R. Whenz; = 0, it is assumed 5 reqylar pentagon. In Fig. 3 and Fig. 4, the vehicles comverg

thatarctan (%) evaluates tat7, depending on the sign of to 3 point and diverge, respectively.
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Fig. 2. Five vehiclesk, = 1, k, = k*.
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Fig. 3. Five vehiclesk, =1, kr < k*.
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Fig. 4. Five vehiclesk, =1, kr > k*.

1. GENERAL EQUILIBRIA

In this section, we analyze the system of interconnected
vehicles (5) to determine the possible equilibrium formasi
under control law (4). Towards achieving this goal, we need
to adequately describe the state of our system’s pursyshgra
at equilibrium. The following definition for a plane polygon
has been adapted from [4] to allow for vertices that are not
necessarily distinct and for directed edges.

Definition 2 (after [4], p. 93):Let n andd < n be pos-
itive integers so thap := n/d > 1 is a rational nhumber.
Let T be the positive rotation in the plane, about the origin,
through angle2r/p and letz; # 0 be a point in the plane.
Then, the pointsz;11 = Tz;, i = 1,...,n—1 and edges
e; = ziy1 — %, ¢ = 1,...,n, define ageneralized regular
polygon which is denoted p}.

By this definition, {p} can be interpreted as a directed
graph with verticesz; (not necessarily distinct) connected
by edgese; as determined by the ordering of points.

Sincep is rational, the period of" is finite and, whem
andd are coprime, this definition is equivalent to the well-
known definition of a regular polygon as a polygon that is
both equilateral and equiangular Moreover, whend = 1,

{p = n} is anordinary regular polygon (i.e., its edges do
not cross one another). However, whép- 1 is coprime to

n, {p} is a star polygon since its sides intersect at certain
extraneous points, which are not included among the vertice
[4, pp. 93-94]. Ifn andd have a common facton > 1, then
{p} hasn = n/m distinct vertices and: edges traversed
m times. Note that the trivial case wheh = n has not
been included since this corresponds to the geometrically
uninteresting situation where the vertices are all coiacid
(i.e.,r; = 0 for all 7). In the next section we do consider the
stability of such a point.

Fig. 5 illustrates some example possibilities frt when
n = 9. In the first instance{9/1} is an ordinary polygon. In
the second instanc€9/2} is a star polygon sincg and2 are
coprime. In the third instance, the edges{6f3} traverse a
{3/1} polygon 3 times, because: = 3 is a common factor
of both 9 and3.

Lemma 1 (after [4], p. 94):The internal angleat every
vertex of {p} is given byy = w(1 — 2d/n).

We are now ready to discuss the possible equilibrium
formations for our system of vehicles in cyclic pursuit.

Theorem 1:At equilibrium, the n-vehicle pursuit graph
corresponding to (5) is a generalized regular polydom,
wherep = n/d andd € {1,...,n — 1}. Consequently, the
equilibrium angles in the range-, 7) are

2
o=+ andﬁi:i<w—ﬂ) (6)
n n
forallie {1,...,n}.
Proof. Wheng, =0, (5) yieldsa; = a;+1. Whenr; = 0,
— COS ¢y Ti+1

cos(a; + 3;) - T >0 (7)
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at equilibrium. |

The case whem and d of Theorem 1 are not coprime
is physically undesirable (e.g., as {89/3} of Fig. 5) since
it requires that multiple vehicles occupy the same point in
space. From geometry, it is clear that, for each possible
{n/d} formation,& = +Z¢ corresponds exactly to a relative
heading for each vehicle that points it in a direction that
is tangentto the circle circumscribed by the vertices of the
corresponding polygon.

At equilibrium, (8) simplifies to

¢! ) . . =\1—1
2,5,8 3,6,9 ky/ko = a [smo’z + sin(a + ﬁ)]
-1
Fig. 5. Example generalized regular polygofey/d}, d € {1,2, 3}. — iﬂ_d {sin (iﬂ_d> +sin (iﬂ_d)]
n n n
d d
and wheng; = 0, = % s (L) =:k*(n). 9)
2n n
ko; =k, [sina; — cos o; tan(ay; + 5;)] (8)

In other words, the rati&*(n) must be as defined in order
by substituting (7). The left-hand side of (8) is constargrov that an equilibrium (with > 0) exists. Thus, without loss of

i, thus ; should satisfyg; = ;11 + ma, with a € Z. But  generality, we can choode, = 1 andk, = k*(n) to ensure
since, by assumption, the right-hand side of (7) is strictlyhe existence of regular polygon equilibria. For example, a

positive, its left-hand side cannot change sign, which iespl polygon {5/1} hask* = 75 csc (%), which corresponds to

a is even. Forg; € [, ), 3; = Bi+1. Consequentlyy; =  the critical gain used to generate the results of Fig. 2.
Tit1 SinceTi = Titn.

Leta = o; and 3 = 3; at equilibrium. Sincer; = i1, IV. STABILITY ANALYSIS FOR n =2
the system's pursuit grapt is equilateral (i.e.[eifl, = In general, a full stability analysis of the multi-vehicle
leit1lly). Let ¢; be the internal angle at vertexof the  system (5) is not a trivial task. However, when= 2 the
pursmt_grap_h. The pursuit graph_|s equiangular (nze.,:_ analysis is simplified in that; = 72, az = a1 + 31, and
¥i41) since it can be checked using the geometry of Fig. 1, — »,+ 3, (see Fig. 6). Consequently, by choosing= 1
that the internal angle at each vertex is given by andk, = k € R*, system (5) reduces to

- 8 fora>0 .

Y=y = { 3 fora<o 71 = —kry [cos ag + cos(ay + (1)) (10a)
at equilibrium. Therefore, by Definition 2, the pursuit gnap o= kifsina +sin(on + B1)] — o (10b)
must correspond to a generalized regular polygph pr =5 (10c)

Equation (7) simplifies teos @ = — cos(a+ 3). For fixed Ty = —kry [cos ag 4 cos(ag + 32)]

a, it can be checked that = {r,7 — 2a}. However, by
Lemma 1, the internal angles ¢p} must sum to

- 2d
m/}nﬂ'(l—) < nm,
n
sinced > 0. Thus, 3 = = is not feasible for vehicles in

cyclic pursuit, and sqﬁ_: m — 2a. Again, using Lemma 1,
the internal angle) =  at each vertex gives

Go = k[sinag + sin(ag + B2)] — ag
Bo=—Ps.

Since the vehicle equations are decoupled, we drop the
indices to simplify notation and proceed by analyzing (10).
The behaviour of this two-vehicle system depends on
the choice of gaink. However, observe that whef(0) =
—2a(0), subsystems (10b) and (10c) respectively reduce to

B=n (1 _ ﬁ) & = —aand g = —p for all t > 0, independent of any
n particular choice foik.

which, together with3 = = — 2a, implies that Theorem 2:Considern = 2 vehicles in cyclic pursuit,
rd each with kinematics (10). Led = {£ = (o,03) : 5 =
a=—. —2a} and k* = 7 after (9). Then, (i) if0 < & < k* or

~ _ noo if £(0) € M and0 < k < 57, the vehicles converge to
However, whem < 0, ¢ = —/3 implies that a common point; (i) ifk* < k < 3% and £(0) ¢ M, the
_ —nd _ 2d vehicles diverge, or; (iii) ifk = k* and £(0) ¢ M, the

= and § = - <1 + Z) vehicles converge to equally spaced motion around a circle.
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definite functionV, : R? — R, Vio(€) = 2a? + 142, which
has the derivative along (10b,c) given by

) 32
Vo = agle) —a* -
1 1
<=5 (@ +8%) + 59%(9)
1
: < = llgll; + % <0
52/‘)’ T2 for all ||£]|, > v/2k, whereg(&) = k[sin a +sin(a+ 3)]. Let
Q= {¢ e€R?: Vy < c} with ¢ > k%, which corresponds
Fig. 6. Coordinates for. = 2 vehicles. to a ball of radiusp > v/2c¢ so thatQ) defines a compact,

positively invariant set with respect to (10b,c). Since we ¢
takep — oo, it follows that solutions tax = f,(c, 5(t)) are
Whenk > %’r the analysis is further complicated by morebounded for allt > 0 and for all«(0) € S.
equilibria, as will become clear in the proof. Having satisfied the conditions of Theorem 10.3.1 from
In proving Theorem 2, we employ Theorem 10.3.1 of [6[6], we conclude thatim; ., a(t) = 0 for all «(0) € R,
p. 15], which is not reproduced here due to space restrictiorwhich implies that the origin of the full system (10b,c) is
Proof of Theorem 2 Since (10b) and (10c) do not dependGAS* when0 < k < 3. In a neighbourhood of the origin,
on r, they can be viewed as an autonomous systei4n [cos « + cos(a + ()] > 0, which by (10a) implies that, after
(o, B). Let (@, 3 = 0) denote an equilibrium point of (10b,c). some finite timet* > 0, » — 0 ast — oo (i.e., the vehicles

From (10b),a must satisfy converge to a common point).
Case ll(3 < k < k*): In the cases that remain, the origin
2ksina—a=0 (11) of (10b,c) is a saddle point and two equilibrium solutions to
o o (11) exist, namely+ |a|. It can be checked that/ = {¢ :
at equilibrium. Ifk < 3, (10b,c) has only one equilibrium 5 _ —2a} is invariant, making it a stable manifold of the

point, namely(0,0), sincea = 0 is the only solution t0  qgin Thys, following the conclusion of Case |, for every

(11). However, when the gaih is increased to. < k < £(0) € M, r — 0 ast — oo for all k.

v . k .
1+ a bifurcation occurs so that the system acquires two cgnsider a change of coordinates frdm, 3) to (x, ),

equilibrium points (locations dependent éhin addition to wherex = 2a + § and x = fy (x, 3) with
the one at the origin. In general, the following cases exist.

Case 1(0 < k < 3): In this case,(0,0) is the sole £ (. B) = 2k sin (K) cos <ﬁ) _x=f
equilibrium point. System (10b,c) can be viewed as a pair of 2 2 2
cascade connected subsystems (cf. Theorem 10.3.1 of [6])et § = {X : X > 0} C R. Define the functiorl’ : R — R

by V(¥) = L (¢ — 2]a|)® which has a derivative along the

v = 2
O.[ = Jal@ ) solutions ofy = f(x,0) given by
B = fs(6), . .
V(x) = (x —2lal) <2ksin <_> _ _> )
where 3 is an input to (10b). We show that the origin of N ~ B) 9
& = fa(a,0) 12) (+4)

Note that(x) < 0 for all ¥ < 2|a| and (x) > 0 for all
is globally asymptotically stable (GAS). L&t : R — R be X > 2|a|, whereyx € S. Moreover, fory € S
the continuously differentiable functiov(a) = 3« which % X
has the derivative along (12) given By(a) = —a(a — (##) < 0 <= 2ksin <§) <3
2ksina). Buta > 0 = o > 2ksina = V < 0 anda <
0= a < 2ksina = V < 0. SinceV(0) = 0,V(a) >0 . _
in R — {0}, V(a) is radially unbounded, anif (o) < 0 in X/2 @]
R — {0}, the origin of (12) must be GAS by the Barbashin- JON x> 2lal .
Krasovskii theorem (cf. Theorem 4.2 of [9]). ChodSe- R.

It is clear that the origin oﬁ = - is GAS.

Next, we show that trajectories of = f, (o, 3(t)) are
bounded for allt > 0 and for everya(0) € S by showing
that trajectories of the full system (10b,c) are bounded for 2nerestingly, whenk = 1 the linearization of system (10b,c) cannot
all trajectories starting a§(0) € R2. Consider the positive determine the stability of0, 0).

o sin (¥/2 o
é} sin (x/2) _ sin|@|

The equivalence (a) comes from (11) and the equivalence
(b) follows from the fact thata| < = for k < 2% and the
functionsin x/x is strictly positive and monotone decreasing
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on [0, 7). It follows that (+x) > 0 for x < 2|a| wheny € S.
SinceV(0) =0, V(x) > 0in S—{2|al}, andV( ) <0 |n
S —{2]al}, the equilibrium pointy = 2 |a| of x = f,(X,0
is asymptotically stable (AS) by Lyapunov’s stability tInem
(cf. Theorem 4.1 of [9]). Moreover, it can be checked (using
the same argument given fgk«) above) that the sef is
invariant with respect toy = f,(x,0), which implies that
lim; o X(t) = 2|a| for every trajectory starting it$.
It remains to show that trajectories gf= f, (x, 3(t)) that
start in S, remain inS for all ¢ > 0. Suppose the converse introduced a pursuit strategy for multi-vehicle systemat th
is true and that for somg(0) € S it happens thak(t1) =0 is in essence a nonlinear version of the so-called “bugs”
at some timet; > 0. Then¢(¢;) € M. Since it has already problem from mathematics. A particular version of this
been established thaf is itself an invariant set, it must have pursuit problem has been studied for a system of unicycles,
been thaty(t) = 0 for all future and past times. But this is atowards the achievement of certain circular trajectories i
contradiction. Hence, trajectories 9f= f, (x,3(t)) starting  the plane. A full stability analysis has been provided fa th
in .S must remain inS for all ¢ > 0. special case when = 2 and it was shown that changes can
Therefore, the conditions of Theorem 10.3.1 from [6be made to the system’s global behaviour through apprepriat
have been satisfied and $mn;_. x(t) = 2|a| for every controller gain assignments.
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we do not study gains equal to or exceedi&@. Again,
following the technique of Case I, for evegyf0) ¢ M, the

V. CONCLUSION

Over the last century, several pursuit problems have ap-
peared in the mathematical literature. In this paper, wes hav
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