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Abstract—Inspired by the so-called “bugs” problem from math-
ematics, we study the geometric formations of multivehicle systems
under cyclic pursuit. First, we introduce the notion of cyclic pur-
suit by examining a system of identical linear agents in the plane.
This idea is then extended to a system of wheeled vehicles, each
subject to a single nonholonomic constraint (i.e., unicycles), which
is the principal focus of this paper. The pursuit framework is par-
ticularly simple in that the identical vehicles are ordered such
that vehicle pursues vehicle +1modulo . In this paper, we as-
sume each vehicle has the same constant forward speed. We show
that the system’s equilibrium formations are generalized regular
polygons and it is exposed how the multivehicle system’s global be-
havior can be shaped through appropriate controller gain assign-
ments. We then study the local stability of these equilibrium poly-
gons, revealing which formations are stable and which are not.

Index Terms—Circulant matrices, cooperative control, multia-
gent systems, pursuit problems.

I. INTRODUCTION

THIS PAPER proposes a reconfiguration strategy for multi-
vehicle systems based on the notion of cyclic pursuit from

mathematics. Multiagent systems might find application in ter-
restrial, space, and oceanic exploration [1], military surveillance
and rescue missions, or even automated highway systems [2],
[3]. Hence, from an engineering standpoint, the question of how
to prescribe desired global behaviors through the application of
only simple and local interactions is of significant and practical
interest.

On this subject, perhaps the most famous artificially created
example is the distributed behavioral model of Reynolds [4].
Reynolds’ so-called boids (or bird-oids) each obey a set of
local interaction rules, which together result in a natural and
appealing steady-state flocking behavior for the group. In fact,
much of the multiagent robotics research has focused on the use
of similar reactive or behavior-based techniques. For example,
Balch and Arkin [5] evaluated reactive behaviors designed to
implement multivehicle formations in combination with rules
for collision avoidance and other navigational goals. Not unlike
Reynolds’ boids, the behavior-based approach is often to mimic
biological systems, where self-organizing or emergent behaviors
result from agents that appear to act autonomously. For a more
complete review, see [1], [6], [7], and the references therein.

However, the global outcome of these behavior-based systems
is often difficult to predict analytically. Thus, corresponding
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mathematical results are rare, as noted in [7] and [8]. Some
have argued that rigorous analysis of even the most simple
cases can be an impractical task [9]. On the other hand, this has
not deterred interest in analyzing “nearest-neighbor” strategies,
where simple navigational rules are employed locally to generate
global formations. For example, Wang [10] proposed a strategy
where agents are instructed to move based on the motions of
their nearest neighbors. Certain formation stability properties
were then analyzed for the case when one agent is provided a
reference trajectory and designated group leader. Early work by
Sugihara and Suzuki [8] investigated a set of heuristic algorithms
for the generation of geometric patterns in the plane (e.g., lines,
circles, or polygons). More recent work has stressed the need for
rigorous proof of the correctness of these types of algorithms
[11]. Very recently, Justh and Krishnaprasad [12], [13] have
developed steering laws for achieving both rectilinear and cir-
cular formations in the plane. In their approach, each vehicle’s
control input, which is based on the pose of all other vehicles in
the group, uses alignment and separation terms to determine the
formation. Jadbabaie et al. [14] proved convergence results for
a nearest-neighbor type problem, guaranteeing that all agents
eventually move in an identical fashion, despite the distributed
nature of the coordination law.

Indeed, patterns of this sort seem to appear in nature. For
example, Bruckstein’s curiosity with regards to the evolution
of ant trails led him to an interesting mathematical discovery
in [15]. Others have studied aggregate behavior in swarms of
organizms (e.g., birds, fish, mammals, and bacteria), where
operational models are analyzed for the purpose of potential
engineering application (e.g., see [16], [17], and the references
therein). Still, many of these distributed coordination ideas have
yet to be explored for agents subject to motion constraints, such
as wheeled vehicles.

Inspired by the so-called “bugs” problem from mathematics,
in this paper we study the geometric formations of multivehicle
systems under cyclic pursuit. The bugs problem refers to what is
also variously known as the dogs, mice, ants, or beetles problem,
and originally stems from the mathematics of pursuit curves, first
studied by French scientist Pierre Bouguer (c. 1732). In 1877,
Edouard Lucas asked, what trajectories would be generated if
threedogs, initiallyplacedat theverticesofanequilateral triangle,
were to run one after the other? Three years later, Henri Brocard
repliedwiththeanswerthateachdog’spursuitcurvewouldbethat
of a logarithmic spiral and that the dogs would meet at a common
point, known now as the Brocardpoint ofa triangle. Bernhart [18]
reports that Gordon Peterson extended this problem to ordered
bugs that start at the vertices of a regular -polygon, illustrating
his results for thesquareusingfour“cannibalisticspiders.” Ifeach
bug pursues the next modulo (i.e., cyclic pursuit) at fixed speed,
the bugs will trace out logarithmic spirals and eventually meet at
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the polygon’s centre. In 1969, Watton and Kydon [19] provided
an elegant solution to this regular -bugs problem, further noting
that the constant-speed assumption taken by previous investiga-
tors is not necessary.

What happens if our bugs do not start at the vertices
of a regular -polygon? In 1971, Klamkin and Newman [20]
showed that, for three bugs, so long as the initial triangle formed
by the bugs is not degenerate (i.e., the bugs are not collinear),
they will meet at a point and this meeting will be mutual. For
bugs, this notion was later examined by Behroozi and Gagnon
[21], who proved that “a bug cannot capture a bug which is
not capturing another bug (i.e., mutual capture), except by
head-on collision.” They used this result to show that, for the
general four-bugs problem, the capture is indeed mutual. Quite
recently, Richardson [22] resolved this issue for the general

-bugs problem, showing that “it is possible for bugs to capture
their prey without all bugs simultaneously doing so, even for
noncollinear initial positions.” However, he proved that for ran-
domly chosen initial positions, the probability of a nonmutual
capture is exactly zero. For a more complete historical review
of cyclic pursuit, see [18], [22], and the references therein.

Variations on this traditional cyclic pursuit problem have also
been studied. For example, Bruckstein et al. [23] investigated
both continuous and discrete pursuit problems, as well as both
constant and varying speed scenarios.

Consider now a particular cyclic pursuit scheme where each
“bug” is additionally subject to a single nonholonomic con-
straint, or equivalently, modeled as a kinematic unicycle. In this
case, the unicycles will not generally be able to head toward their
designated prey at each instant. Instead, depending on the al-
lowed control energy, each vehicle will require some finite time
to steer itself toward its preassigned target. What trajectories can
be generated? We first asked this question in [24]. In this paper,
we generalize the cyclic pursuit concept to nonholonomic ve-
hicles and study its properties as a coordination algorithm for
multivehicle systems. Thus, our primary motivation is to follow
historical development and study the achievable formations for
wheeled vehicles under cyclic pursuit. On the other hand, from
a practical viewpoint, cyclic pursuit may turn out to be a feasible
strategy for multivehicle systems since it is distributed (i.e., de-
centralized and there is no leader) and relatively simple in that
each agent is required to sense information from only one other
agent.

A growing number of researchers in the field of multiagent
systems have come to realize that algebraic graph theory might
serve as an effective tool for modeling interagent connectivity
[14], [25]. In the case of cyclic pursuit, it is clear that the graph
representing agent interconnections is cyclic in nature.

Our analysis begins by examining a linear version of the
-bugs problem, mainly as a means for introducing our chosen

mathematical framework. These ideas are then extended to a
system of wheeled vehicles, which is the principal focus of
this paper. We study one particular control law, which assumes
that each vehicle has the same constant forward speed, unlike
in [24]. We show that the multivehicle system’s equilibrium
formations are generalized regular polygons and it is exposed
how the system’s global behavior can be shaped by appropriate
controller gain assignments. Then, we study the local stability

of these equilibrium polygons, revealing which formations are
stable and which are not.

II. MATHEMATICAL PRELIMINARIES

We assume the reader is familiar with certain standard results
from linear and nonlinear systems theory, as well as with some
basic concepts from differential geometry. In this section, we
summarize some results from the theory of circulant matrices,
which are fundamental to our approach. For a detailed treatise,
the reader is referred to the authoritative text by Davis [26].

A. Circulant Matrices

A circulant matrix (or circulant for short) of order is a
square matrix of the form

...
...

...

Each subsequent row is simply the row above shifted one el-
ement to the right (and wrapped around, i.e., modulo ). The
entire matrix is determined by the first row.

Let denote the special permutation matrix

...
...

...
...

...

which plays a fundamental role in the theory of circulants. One
can then “push forward” the matrix to form subsequent per-
mutation matrices; for example

...
...

...
...

...

and subsequently , and so on. Note that is it-
self circulant. Let denote the identity ma-
trix. Using the structure of the permutation matrices , with

, every circulant can be represented by

Thus, the polynomial
is called the circulant’s representer, since .

B. Diagonalization of Circulants

Define where and let
, which are the roots of unity. Let

denote the Fourier matrix given via

...
...

...
...
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and note that and so . Also,
(i.e., it is unitary). It is possible to verify the following diago-
nalization formula for .

Theorem 1 [26, Th. 3.2.1]: . Then, we have
the following.

Theorem 2 (After [26, Th. 3.2.2.]): If is an cir-
culant matrix, then it is diagonalizable by the Fourier matrix

. More precisely, the circulant , where
.

Corollary 1: The eigenvalues of are ,
where .

C. Block Circulant Matrices

First, we recall the Kronecker product. Let and be
and matrices, respectively. Then, the Kronecker product
of and is the matrix

...
...

where are the elements of , and
. A useful property of the Kronecker product is that

.
Let be matrices. A block circulant

matrix of type is a matrix1 of the form

...
...

...

Note that is not necessarily circulant (only block circulant).
We designate the set of block circulant matrices of type
by . Similar to circulant matrices, every block circu-
lant can be represented by

Theorem 3 (Adapted From [26, Th. 5.6.4]): If
, then it has the form

where the blocks are given via

...
...

Theorem 3 gives us a way to block diagonalize block circulant
matrices. Using the fact that , we
get that

1Our notation differs slightly from that of Davis [26].

III. LINEAR CYCLIC PURSUIT

We begin by revisiting the classical -bugs problem, but for-
malized using a simple differential equation model for each
agent, as in [23] and [27]. Let there be ordered mobile agents
in the plane, their positions at time denoted

, , where agent pursues
the next modulo2 .

Suppose the agents start with arbitrary initial conditions and
that the kinematics of each agent are described by an integrator

(1)

with control inputs

(2)

for some positive constant . Thus, the velocity of agent is
simply proportional to the vector from agent to its prey, agent

. Since each coordinate of evolves independently, the
planar linear -agent system (1)–(2) decouples into two iden-
tical linear systems of the form

(3)

where and the matrix
is circulant.

Bruckstein et al. [23] proved that for every initial condition,
these agents exponentially converge to a single limit point.
Moreover, they showed that this limit point is computable
from the initial positions of the agents. Another version of the
following theorem can also be found in [27].

Theorem 4: Consider planar agents with kine-
matics(1)–(2). For every initial condition, the centroid of
the agents remains stationary and every
agent , exponentially converges to this
centroid.

As a preview of our extension to kinematic unicycles, we pro-
vide a proof that differs from those of [23], [27]. Our proof may
not be as efficient, but serves to introduce a certain perspective
that will later prove useful.

Proof of Theorem 4: As previously noted, we need only
study the linear system (3). From the circulant structure of ,
this system’s equilibrium point must sat-
isfy . Moreover, due to cyclic pursuit

for all (4)

where the constant is determined by the set of initial locations
via . In other words, the equilibrium point
must be the centroid; that is . The centroid
is also stationary by (4). We can choose without loss of
generality.

Therefore, for every initial condition, system (3) is con-
strained to evolve on the -invariant subspace defined
by . The subspace
is clearly -invariant, since every column of is an element

2Henceforth, all agent/vehicle indices i+ 1 should be evaluated modulo n.
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of . Because is -invariant, there exists an induced linear
transformation in the quotient space
whose eigenvalues do not influence the stability of the point

. Therefore, there exists a change of basis that transforms
into upper triangular form

Consider the change of coordinates such that

which, by explicit computations not shown, gives

. . .
. . .

Therefore, when determining the stability of we can disregard
exactly one zero eigenvalue and conclude stability based on the
remaining eigenvalues of .

The matrix is circulant. Thus, the representer of is
. So, by Corollary 1, the eigenvalues of

must be given by ; that is

with . Thus, for all , always has exactly
one zero eigenvalue, while the remaining eigenvalues lie
strictly in the left-half complex plane.

IV. NONLINEAR EQUATIONS OF PURSUIT

The linear pursuit problem is in itself quite interesting and
it has some beautiful extensions (e.g., see [27]). However, the
focus of this paper is on a nonlinear analog involving wheeled
vehicles, each subject to a single nonholonomic constraint.

Suppose we extend the aforementioned linear cyclic pursuit
scenario to one in which each agent is a kinematic unicycle with
nonlinear state model

(5)

where denotes the -th vehicle’s position,
is the vehicle’s orientation, and are control
inputs. In this paper, we allow angles to take values in the set
to avoid a discontinuity in our feedback law, which depends on
angles.

Let denote the distance between vehicle and , and
let be the difference between the th vehicle’s heading and
the heading that would take it directly toward its prey, (see

Fig. 1. New coordinates with vehicle i in pursuit of i + 1.

Fig. 1). In analogy with the linear controls (2), and as we pro-
posed in [24], an intuitive pursuit law for (5) is to assign vehicle
’s forward speed in proportion to the distance error , while

assigning its angular speed in proportion to the heading error
. In this paper, we fix each vehicle’s forward speed and study

the possible equilibrium formations for multivehicle systems of
this sort.

A. Transformation to Relative Coordinates

In addition to and , define the angle as in Fig. 1.
After some (rather tedious) algebraic manipulation, the kine-
matic equations become

(6a)

(6b)

(6c)

This system describes the relationship between vehicle and
the one that it is pursuing, . Note that, in these coordi-
nates, it is assumed that . One might also observe that the
transformation from into is not invertible,
which is not surprising since we have removed any reference to
a global coordinate frame. This transformation to relative co-
ordinates implies the existence of constraints on the system, as
described in the next subsection.

B. Formation Control and Pursuit Graph

As previously suggested, we investigate the case when

and (7)

where are constant. Substituting these controls into
(6) gives a system of cyclically interconnected and identical
nonlinear subsystems of the form

(8a)

(8b)

(8c)

At each instant in time, regardless of the control law, the mul-
tivehicle system’s geometric configuration in the plane can be
described by a pursuit graph as follows.

Definition 1 (Pursuit Graph): A pursuit graph consists of
a pair such that

1) is a finite set of vertices, , where each vertex
, , represents the

position of vehicle in the plane;
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Fig. 2. Depiction of coordinates for vehicles 1 and 2.

2) is a finite set of directed edges, , where each
edge , , is the vector
from to its prey, .

Although not stated explicitly in the previous definition, for
the purposes of this paper we view two pursuit graphs as being
equivalent if there exists a rotation and/or translation such that
vertices are mapped to vertices and edges mapped to edges with
the sense of directions preserved.

This definition is employed in characterizing the equilib-
rium formations of our multivehicle system. Note that the
coordinate . Moreover, for vehicles in cyclic pur-
suit, and consequently . Let

. Then, by choosing a coordinate frame
attached to (say) vehicle 1 and oriented with this vehicle’s
heading, this condition corresponds to constraints on the
system described by the equations

For vehicles numbered 1 and 2, Fig. 2 helps to illustrate how
these constraint equations arise.

Also, due to cyclic pursuit

for all

where the constant by our definition for , which
provides a final constraint

These constraints are essential to our equilibrium and stability
analyses, which follow in Sections V and VI, respectively.

C. Sample Simulation

Preliminary computer simulations suggest the possibility of
achieving circular pursuit trajectories in the plane. Fig. 3 shows
simulation results for a system of vehicles, initially po-
sitioned at random, under the control law (7) with . Note

Fig. 3. Five vehicles subject to control law (7), with k = 3.

that the vehicles converge to equally spaced motion around a
circle of fixed radius with a pursuit graph that is similar to a
regular pentagon.

V. GENERAL EQUILIBRIA

In order to characterize the possible equilibrium formations
for our multivehicle system (8), we need to adequately describe
the state of our system’s pursuit graph at equilibrium. The fol-
lowing definition for a regular polygon with coplanar vertices
has been adapted from [28] to allow for vertices that are not nec-
essarily distinct and for the directed edges of our pursuit graph.

Definition 2 (After [28, p. 93]): Let and be positive
integers so that is a rational number. Let be the
positiverotation in theplane,about theorigin, throughangle
andlet beapoint intheplane.Then, thepoints ,

and edges , ,
define a generalized regular polygon, which is denoted .

By this definition, can be interpreted as a directed graph
withvertices (notnecessarilydistinct) connectedbyedges as
determined by the orderingof points. We say that ispositively
oriented if or negatively oriented if .

Since is rational, the period of is finite and, when and
are coprime, this definition is equivalent to the well-known def-
inition of a regular polygon as a polygon that is both equilateral
and equiangular. Moreover, when , is an ordi-
nary regular polygon (i.e., its edges do not cross one another).
However, when is coprime to , is a star polygon
since its sides intersect at certain extraneous points, which are
not included among the vertices [28, pp. 93–94]. If and have
a common factor , then has distinct ver-
tices and edges traversed times. Note that the trivial case
when has not been included since this corresponds to the
geometrically uninteresting situation where the vertices are all
coincident.

Fig. 4 illustrates some example possibilities for when
. In the first instance, is an ordinary polygon. In

the second instance, is a star polygon since 9 and 2 are
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coprime. In the third instance, the edges of traverse a
polygon three times, because is a common factor

of both 9 and 3.
Lemma 1 (After [28, p. 94]): The internal angle at every

vertex of is given by .
Note that the sign of determines whether is positively

or negatively oriented.
We are now ready to discuss the possible equilibrium forma-

tions for our system of unicycles in cyclic pursuit.
Theorem 5: The -dimensional system (8) has

equilibrium points, described as follows: The are all equal,
; likewise, and for all .

The values of , , and are given by

Finally, at each equilibrium point, the related pursuit graph is a
generalized regular polygon , .

Proof: For , (8c) yields . Let
at equilibrium. From the equilibrium condition of (8a),

, which implies that either or
. However, at equilibrium (8b) yields when

, implying that for all . Let at
equilibrium. Again, from the condition of (8b)

for all
(9)

Therefore, . Let at equilibrium.
For vehicles in cyclic pursuit, the system’s pursuit graph

has . In particular, the constraint

(10)

of Section IV-B must hold. However, when , (8b) implies
that , which subsequently implies that the left-hand side
of (10) equals . Thus, (with ) is not feasible
for vehicles in cyclic pursuit.

Suppose . Since , the system’s pursuit graph
is equilateral (i.e., ). Let be the internal

angle at each vertex of the pursuit graph. The pursuit graph is
equiangular (i.e., ) since it can be checked using
the geometry of Fig. 2 that the internal angle at each vertex is
given by at equilibrium.
Therefore, by Definition 2, the pursuit graph must correspond
to a generalized regular polygon . By Lemma 1, the internal
angle at each vertex of the polygon gives

, which together with implies that
, where .

Repetition of the aforementioned argument for the case when
yields the remaining equilibrium points. By Defi-

nition 2, these equilibrium points must satisfy the co-
ordinate constraints of Section IV-B.

To clarify why there are equilibria and only
pursuit graphs, note that and correspond to

Fig. 4. Example generalized regular polygons f9=dg, d 2 f1; 2; 3g.

counterclockwise and clockwise rotation of the system’s pursuit
graph at equilibrium, respectively. Also, notice that there are
only distinct values of , since is an even function.

The case when and of Theorem 5 are not coprime is phys-
ically undesirable (e.g., as in the polygon of Fig. 4) since
it requires that multiple vehicles occupy the same point in space.
From geometry, it is clear that, for each possible forma-
tion, the equilibrium angle corresponds exactly to
a relative heading angle for each vehicle that points it in a direc-
tion that is tangent to the circle circumscribed by the vertices of
the corresponding equilibrium polygon.

Corollary 2: At equilibrium, the vehicles traverse a circle of
radius .

This can be shown by using Lemma 1, and the fact that, by el-
ementary geometry [28, pp. 3, 94], . By solving
for , we get the stated result.

Observe that the possible equilibrium formations depend only
on our choice of gain and forward speed ; in fact, only on the
ratio . Therefore, in what follows we assume without
loss of generality. Following Corollary 2, the radius about which
the vehicles travel is determined by the designable parameter

.

VI. LOCAL STABILITY ANALYSIS

In general, for a given number of vehicles , which
equilibrium polygons are asymptotically stable, and for

what values of ? In this section, we tackle the local stability
question by linearizing about a general formation. Our
solution then follows a procedure that is similar to the proof
of Theorem 4 concerning linear agents, although the details are
significantly more involved.

To facilitate notation, define and let
so that and is rational. We write

the kinematics of each vehicle subsystem (8) more compactly as
. Linearizing each model about an equilib-

rium point gives identical subsystems of the form

where
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If we view the complete multivehicle system as

(11)

then its linearization about has the form where
. In what follows, we aim to

determine the stability properties of .

A. Coordinate Constraints

As in the linear agents problem, for every initial condition,
(11) is constrained to evolve on a -invariant submanifold of

. To see why this is the case, recall that under cyclic pursuit
the system’s pursuit graph at each instant satisfies

, resulting in the constraints of Section IV-B. These are essen-
tial with regards to understanding how the spectrum of relates
to the stability of a given equilibrium polygon.

Let . Then

(12)

defines a submanifold of .
Lemma 2: The submanifold is invariant under .
See the Appendix for the proof.
Corollary 3: Since the submanifold is invariant under ,

the tangent space at every equilibrium point is
invariant under .

See the Appendix for the proof.
Therefore, by Corollary 3, there exists a change of basis for

that transforms into upper-triangular form

Lemma 3: In the quotient space , the induced
linear transformation has
(solely imaginary axis) eigenvalues

and

Proof: Let be the change of coordinates

Partition these new coordinates into where
and .

Notice that the set of coordinates in are precisely the func-
tions that define . Thus, in the new coordinates

Moreover, the equilibrium is equal to , except that
the last three components are instead zero. By computing the
linearization about this equilibrium, we get

where the lengthy derivation of equivalence has been
omitted for brevity. The 3 3 block has eigenvalues

, with from Theorem 5.
Therefore, just as in the linear agents problem, when deter-

mining the stability of a given formation we can disre-
gard these three imaginary axis eigenvalues of , and determine
stability based on its remaining eigenvalues.

B. Spectral Analysis of

Recall that is a block circulant matrix of the form

In what follows, we exploit this fact and our knowledge of block
circulant matrices from Section II-C to further isolate the eigen-
values of .

Lemma 4: The eigenvalues of are the collection of all
eigenvalues of

...

where is the th of roots of unity.
Proof: By Theorem 3, since is block circulant it can be

diagonalized using the Fourier matrix ; specifically

where the diagonal blocks are given by

...
...
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with , , and for .
Expanding this for each block , we get

...

as the diagonal blocks for diagonalized . This implies that the
eigenvalues of must be the collection of all eigenvalues of

, .
Therefore, each diagonal block has the same form

, , given by

From Lemma 4, we observe two facts. The first is that the
eigenvalues of are among the eigenvalues of for
every . The characteristic polynomial of is

so the eigenvalues of are

(13)

As predicted by Lemma 3, we have discovered one zero eigen-
value, while the remaining eigenvalues have for
every and .

The second fact is that, when the number of vehicles is
even, the eigenvalues of the matrix , with

, are among the eigenvalues of . The characteristic
polynomial of is

for which we can construct the Routh array

(14)

By the Routh–Hurwitz criterion, for stability we would need
that (due to the element of the first column)
or, equivalently, . Moreover, in the special case
when the characteristic polynomial factors as

(15)

which yields two imaginary axis eigenvalues, as predicted by
Lemma 3, and one stable eigenvalue. Let us consider the sim-
plest case, when .

Proposition 1: The equilibrium polygon is locally
asymptotically stable.

Proof: When the matrix has the form

By Lemma 4, the eigenvalues (13) of must be
among those of . Moreover, and so the eigenvalues of

, which are the roots of (15), must be the remaining
eigenvalues of . We disregard the imaginary axis eigenvalues
according to Lemma 3 and conclude that the polygon is
locally asymptotically stable.

We now continue investigating the general case .
Lemma 5: The stability of is independent of .

Proof: Suppose we have block diagonalized into diag-
onalblocks accordingtoLemma4.Theclaimof
Lemma 5 is then obvious when each block is factored as

,where (recall
) and

so that , where denotes the spectrum of a
matrix. Since , the stability of the matrix implies the
stability of .

Therefore, whether a specific polygon is stable or not
is independent of the chosen gain , and we can proceed by
studying the transformed blocks . In other words, for a given

, only the density influences the stability of .

C. Stable Equilibrium Polygons

Let us briefly recapitulate. About a given equilibrium
polygon,our linearizedmultivehiclesystemhastheform ,
where isablockcirculantmatrix.Wehaveseen(throughLemma
3 ) that has exactly three imaginary axis eigenvalues that do not
influencethestabilityofagiven formation.Capitalizingon
the block circulant structure of , we block diagonalized into

blocks, . We then showed (through Lemma 5) that the
stability of each matrix , and hence the stability of , is inde-
pendent of , leaving that stability is dependent only on for
a given via the 3 3 transformed matrices .

Unfortunately, the blocks are, in general, complex ma-
trices. To be explicit about this fact, we can write the roots
of unity , where

and

In this general case, the characteristic polynomial of is

(16)

with coefficients

(17)
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Theorem 6 (After [29, Th. 3.16, p. 180]): Consider a complex
polynomial of the third degree

where . Define the Hermitian matrix

The polynomial is asymptotically stable if and only if
is positive definite.

Here, denotes the complex conjugate of . Also, this the-
orem is equivalent to a variation of the Routh–Hurwitz criterion
for complex polynomials [29, p. 179]. Recall that a Hermitian
matrix is positive definite if and only if its leading principal
minors, which we denote , , and , are positive. Suppose
we apply Theorem 6 to the characteristic polynomial (16) of .
Computing the leading principal minors of the corresponding
gives

Clearly, . Stability of a given matrix is therefore
dependent on the signs of and . For stability, substituting
(17) and using , we would need that

(18)

for the second leading principal minor, and

(19)

for the third leading principal minor. The decision to write
and as functions of the real component rather than the
imaginary component was arbitrary. In what follows, we will
use these functions and to determine which equi-
librium polygons are stable and which are not.

For a given , define the set of by

Lemma 6: Every equilibrium polygon with
is unstable.

Proof: When is even, we have already seen that the
eigenvalues of (a real matrix) are among the eigenvalues
of (i.e., if , is always a root of
unity). By the Routh array (14), is unstable when

, or equivalently .
When is odd, look at and consider the set of points that

are not stable

which is illustrated by region of Fig. 5(a). Note that we are
taking and on a continuum, whereas the arguments of

Fig. 5. Parameter w as a function of � for the leading principal minors (a) h
and (b) h of H . In (a), U denotes the closed set of points where h � 0. In
(b), U denotes the closed set of points where h � 0.

in (18), and , take on rational and discrete values,
respectively.

Let denote the interior of . It is a fact that the pair
for every , as illustrated

by the dotted line in Fig. 5(a). This fact, which is most easily
checked numerically, will be useful in what follows.

Let , the smallest integer satisfying the con-
dition of the lemma. Let , which
gives

Note that for every , which (by the
previously stated fact) implies that for every there exists
a such that , i.e., every
polygon is unstable.

It is left to show that the remaining densities
satisfying the condition of the lemma are also
unstable. Since , the point
also lives in the region . This is because it lies directly to the
right of the unstable point in Fig. 5(a),
which concludes the proof.

Before stating our main result, consider the set of points that
are not stable

(20)
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which is illustrated by the region of Fig. 5(b). Define the
following functions:

which describe the upper and lower boundaries of the region
in Fig. 5(b). These functions were obtained by solving3 the

equation on the relevant domain
and and numerically checking that the region
indeed corresponds to the set . As a result, the definition (20)
is equivalent to

Theorem 7 (Main Stability Result): A given equilib-
rium polygon is locally asymptotically stable if and only if

and

(21)

Proof: According to the proof of Lemma 6, for
every polygon with . Thus, a necessary
condition for stability is that . Notice that
for every [see Fig. 5(a)]. Let’s proceed by as-
suming that this condition holds for the given polygon.
We will consider the special case when separately.
Moreover, observe that every matrix has a complex conju-
gate matrix , hence the spectrum of and that of its
conjugate are also complex conjugates.

Define so that .
Thus, the point lies exactly on the lower boundary
of in Fig. 5(b). Together, the matrix and its conjugate

have two imaginary axis eigenvalues (one each) of the
form , while the remaining eigenvalues have

. These facts were verified with the assistance of
computer algebra software. The eigenvalues with
cannot be unstable, otherwise the point would not
lie on the boundary of . According to Lemma 3, we can dis-
regard the two imaginary axis eigenvalues, and also the zero
eigenvalue of , since they have no connection to the stability
of the given polygon. Since the point lies on
the lower boundary of , all points , with

lie outside the unstable set . Thus, we turn our at-
tention to the points , with .

Define the index , corresponding to
, that is closest to . This new value is given

by . If
, then the point for all ,

. Therefore, by Theorem 6, stability is equivalent to
.

In the special case when , the matrix is real and
has eigenvalues according to the roots of (15). Therefore, one is
stable and the remaining two imaginary axis eigenvalues should
be ignored according to Lemma 3. The rest of the proof follows
as for .

3This solution was obtained with the aid of computer algebra software.

Fig. 6. Function w(� � (�=d)) shown for d 2 f2; 3; 4; 5; 6g (dotted),
superimposed on Fig. 5(b). Circles indicate intersection with w(�).

In the following sequence of corollaries, we employ this main
result to explicitly disclose which equilibrium polygons
are stable and which are not.

Corollary 4: Every polygon is locally asymptotically
stable.

Proof: Let and . Then, and
for every , from Fig. 5(b), so that

the conditions of Theorem 7 are satisfied.
Recall that the variable is intended to represent . Thus,

with reference to Fig. 5(b), for some fixed density the condition
for stability (21) is equivalent to

(22)

The graphs of versus for are
illustrated by the dotted curves of Fig. 6. Notice that only when

does intersect the curve on
the real interval .

Corollary 5: Every polygon with is locally
asymptotically stable.

Proof: When , the necessary condition
of Theorem 7 dictates that . Moreover, from Fig. 6,

inequality (21) is satisfied for every .
Corollary 6: Every polygon with is unstable.

Proof: When , from Fig. 6, (21) is never satisfied;
i.e., for every .

Using Theorem 7 and Fig. 6, we can now determine the sta-
bility of the remaining polygons , by re-
placing (22) with an equality.

Corollary 7: For a polygon with , let
be the unique solution to . Then,
is locally asymptotically stable if and only if .

Proof: For the graphs of
and intersect exactly once in the domain
(see Fig. 6). Let be this point of intersection and note that

results in stability, while gives instability, per
Theorem 7.

These points of intersection (computed numerically) are
given by the pairs (3, 0.331 868), (4, 0.199 945), and (5,
0.094 211), and shown as circles in Fig. 6. Employing these
values, we find that polygon {10/3} is stable, while {9/3} is
not. Similarly, {21/4} is stable, while {20/4} is not, and finally
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TABLE I
EQUILIBRIUM POLYGONS WITH STABLE POLYGONS SHADED

Fig. 7. Fixed forward speed pursuit generating a f7=1g formation.

{54/5} is stable, while {53/5} is not. Table I lists all possible
equilibrium polygons and gives their stability.

D. Sample Simulations

Figs. 7 and 8 show computer simulation results for
vehicles, where in each case the forward speed and

gain . However, due to differing initial conditions, the ve-
hicles of Fig. 7 form a polygon, whereas the vehicles of
Fig. 8 converge to a equilibrium formation.

VII. CONCLUSION

Overthelastcentury,severalpursuitproblemshaveappearedin
the mathematical literature. In this paper, our motivation has been
to follow historical development and at the same time advance
theseideasforpotentialengineeringusebyproposingacyclicpur-
suit strategyformultivehiclesystemsthat is inessenceanonlinear
(unicycle) version of the so-called “bugs” problem from math-
ematics. The current research is further motivated by the preva-
lenceofsimilardistributedcontrol algorithmsfound in nature [4],
[30]. Moreover, the notion of local interaction laws for formation
control is, fromanengineeringstandpoint,clearlyveryappealing.

To summarize, we have studied one particularly intuitive
control law that achieves circular pursuit patterns in the plane. It

Fig. 8. Fixed forward speed pursuit generating a f7=2g formation.

was shown that, under this control law, the multivehicle system’s
equilibrium formations are generalized regular polygons and that
the system’s global behavior can be changed through appropriate
controller gain assignments. This type of formation strategy
might have, for example, potential application in the deploy-
ment of distributed sensor arrays, enabling scientists to collect
simultaneous seismological, meteorological, or other pertinent
environmental data on planetary exploration missions [31]. A
local stability analysis, which exploited the system’s inherent
circulant structure, revealed exactly which equilibrium forma-
tions are asymptotically stable, the result of which is surprisingly
nonintuitive. Of course, the current study has assumed identical
kinematic unicycles, ideal sensing conditions, and has not con-
sidered the problem of collisions, issues that would have to be
dealt with prior to implementation as useful distributed control
strategy. In conclusion, it is hoped that this work might serve as
a basis for continuing research on the subject of pursuit and its
applicability to the distributed control of multiagent systems.

APPENDIX

PROOF OF LEMMA 2 AND COROLLARY 3

The proof of Lemma 2 follows as a consequence of the lemma
given here.

Lemma 7: The submanifold of is invariant under
if and only if

for every (23)

Proof: At every point we can define a three-di-
mensional plane that is orthogonal to the -dimensional
tangent plane by [32, App. A.5]

Therefore, the inner product

for every

is equivalent to

for every
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Hence, is tangent to everywhere on is in-
variant under .

Equivalence from the proof of Lemma 3 provides the nec-
essary and sufficient condition (23) of Lemma 7, from which
Lemma 2 directly follows.

Differentiating (23) gives

for

At every equilibrium point , , which implies

In other words, at , the columns of must lie in the
tangent space , so must be an -invariant subspace
of , which proves Corollary 3.
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