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Abstract

Consequent to previously published theoretical work by Marshall, Broucke, and
Francis, this paper summarizes the apparatus and results of multirobot coordina-
tion experiments conducted at the University of Toronto Institute for Aerospace
Studies. These experiments successfully demonstrated the practicality of cyclic pur-
suit as a distributed control strategy for multiple wheeled-robot systems. Moreover,
the pursuit-based coordination algorithm was found to be surprisingly robust in
the presence of unmodelled dynamics and delays due to sensing and information
processing. The findings of this research not only bode well for continuing research
on pursuit-based coordination strategies, but also for other cooperative multirobot
control techniques employing similar local interactions.
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1 Introduction

In [1,2], Marshall et al. introduced the notion of pursuit as a technique for
coordinating the motions of multiple wheeled-robots in the plane. More specif-
ically, cyclic pursuit was studied in a purely theoretical way as a means for
achieving certain regular geometric formations for a system of identical kine-
matic unicycles. This approach is particularly simple to implement in that the
n robots are ordered such that robot i pursues robot i + 1, modulo n.
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The current research on pursuit strategies for multirobot systems is partially
motivated by the prevalence of similar distributed control algorithms found in
nature [3–5]. Moreover, this type of formation strategy might have potential
application in the deployment of distributed sensor arrays, enabling scientists
to collect simultaneous seismological, meteorological, or other pertinent envi-
ronmental data on planetary exploration missions [6]. More generally, multi-
robot systems might find application in terrestrial, space, and oceanic explo-
ration, military surveillance and rescue missions, or even automated highway
systems [7]. Hence, the question of how to prescribe desired global behaviors
through the design of only simple and local interactions is of significant and
practical interest. The relevance of this problem is punctuated by the recent
and growing amount of research in this field; see, for example, [8–10,2,11] and
references therein.

This paper is organized as follows. Section 1.1 provides a brief review of the
relevant background theory on which the experiments described in this paper
are based. Section 1.2 introduces the purpose of our experiments and indi-
cates their significance. An overview of the experimental setup and hardware
is provided in Sec. 2, while Sec. 3 describes the engineering design and imple-
mentation issues. Finally, detailed descriptions of the experiments and ensuing
observations are located in Sec. 4.

1.1 Theoretical Background

Consider a system of n wheeled robots in the plane, each modelled as a kine-
matic unicycle with nonlinear state model
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, i = 1, 2, . . . , n, (1)

where (xi, yi) ∈ R
2 is the i-th robot’s position, θi ∈ (−π, π] is its orientation,

and (vi, ωi) ∈ R
2 are control inputs. Let αi denote the difference between the

i-th robot’s heading and the heading that would take it directly towards its
target, i + 1 (as in Fig. 1). An intuitive pursuit law for Eq. (1) is to assign
robot i’s angular speed ωi in proportion to the heading error, αi. Following
[2], we consider the case when the robots move with the same fixed forward
speed, vR. In particular, we are interested in the distributed control law

vi = vR and ωi = kααi, (2)
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Fig. 1. Relative coordinates, with robot i in pursuit of i + 1

where kα > 0 is constant. Simulation and analysis results have shown that
asymptotically stable circular pursuit trajectories are achievable, as illustrated
for n = 3 in the simulation of Fig. 3. The relative coordinates [ri, αi, βi]

⊤ of
Fig. 1 prove useful, since in steady state these variables become constant.

Let zi ∈ R
2, i = 1, 2, . . . , n, and consider the following definition.

Definition 1 (after [12], p. 93) Let n and d < n be positive integers so

that p := n/d > 1 is a rational number. Let R be the positive rotation in the

plane, about the origin, through angle 2π/p and let z1 6= 0 be a point in the

plane. Then, the points zi+1 = Rzi, i = 1, 2, . . . , n − 1 and edges ei = zi+1−zi,

i = 1, 2, . . . , n, define a generalized regular polygon, which is denoted {p}.

By this definition, {p} can be interpreted as a directed graph with vertices zi

(not necessarily distinct) connected by edges ei as determined by the ordering
of points. Since p is rational, the period of R is finite and, when n and d are
coprime, this definition is equivalent to the well-known definition of a regular
polygon as a polygon that is both equilateral and equiangular. Moreover, when
d = 1, {p = n} is an ordinary regular polygon (i.e., its edges do not cross one
another). However, when d > 1 is coprime to n, {p} is a star polygon since
its sides intersect at certain extraneous points, which are not included among
the vertices [12, pp. 93–94]. If n and d have a common factor m > 1, then {p}
has ñ = n/m distinct vertices and ñ edges traversed m times. Note that the
trivial case when d = n has not been included since this corresponds to the
geometrically uninteresting situation where the vertices are all coincident.

Fig. 2 illustrates some example possibilities for {p} when n = 9. In the first
instance, {9/1} is an ordinary polygon. In the second instance, {9/2} is a star
polygon since 9 and 2 are coprime. In the third, the edges of {9/3} traverse a
{3/1} polygon 3 times, because m = 3 is a common factor of both 9 and 3.

Consider the n = 3 robots of Fig. 3. Under the pursuit law Eq. (2), they
converge to a {3/1} generalized regular polygon formation. Indeed, in [2, Sec.
IV] it was revealed that, subject to the inputs Eq. (2), certain generalized
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Fig. 2. Example generalized regular polygons {9/d}, d ∈ {1, 2, 3}
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Fig. 3. Three unicycles subject to control law Eq. (2), with kα = 0.6

regular polygon formations are locally asymptotically stable, while others are
not. Table 1 lists all possible equilibrium formations and gives their stability.

1.2 Experimental Purpose

During recent years, several university-based research groups have developed
testbeds for experimentation in multirobot control. In most cases, these mul-
tivehicle testbeds are designed without a specific set of control experiments
in mind, thus not for the sole purpose of validating a particular theory. Some
examples are the MIT Multivehicle Testbed [13], Caltech’s MVWT-II Mul-

tivehicle Wireless Testbed [14], the Brigham Young Unmanned Air Vehicle

Testbed [15], and the University of Illinois’s HoTDeC, or Hovercraft Testbed

for Decentralized Control [16], to name only a few.
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Table 1
Equilibrium polygons with stable polygons shaded [2]

d = 1 2 3 4 5 6

{2/1} {3/2} {4/3} {5/4} {6/5} {7/6}

{3/1} {4/2} {5/3} {6/4} {7/5} {8/6}
...

...
...

...
...

...

{7/1} {8/2} {9/3} {10/4} {11/5} {12/6}

{8/1} {9/2} {10/3} {11/4} {12/5} {13/6}
...

...
...

...
...

...

{17/1} {18/2} {19/3} {20/4} {21/5} {22/6}

{18/1} {19/2} {20/3} {21/4} {22/5} {23/6}
...

...
...

...
...

...

{49/1} {50/2} {51/3} {52/4} {53/5} {54/6}

{50/1} {51/2} {52/3} {53/4} {54/5} {55/6}
...

...
...

...
...

...

Likewise, a fleet of so-called Argo Rovers (the allusion being to the Greek myth
of Jason, the Argonauts and the Golden Fleece, since names belonging to the
Argonauts have been bestowed on rovers of the fleet) have been constructed
at the Space Robotics Laboratory of the University of Toronto Institute for
Aerospace Studies (UTIAS). The robots were designed to be capable of lengthy
autonomous operation and have each been equipped with a host of sensing,
communication, and actuation devices. For more specific details, see [17].

Since the theoretical results summarized in Sec. 1.1 were based on ideal kine-
matic unicycles, one might naturally question whether the intuitive control
law Eq. (2) has more general applicability (e.g., to real robots, possessing
non-trivial dynamics, such as the Argo Rovers). Also, despite the growing
amount of theoretical research on cooperative control strategies employing
local interaction-based techniques, there are relatively few instances of ex-
perimental research validating their worth and reporting on the challenges of
implementation. Therefore, the purpose of our experiments is twofold:

i. Determine if the theoretical results of [2], obtained for kinematic unicycles,
can be observed in practise using the four-wheeled Argo Rovers;

ii. Investigate the practicality of Eq. (2) as a coordination strategy given real
hardware restrictions (e.g., processing delays, sensor limitations).

A brief description of our experimental procedure, a detailed summary of the
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Fig. 4. An Argo Rover in the MarsDome at UTIAS

results, and a discussion of our observations and their significance follow.

2 Overview of the Rovers

One of the Argo Rovers is shown in Figure 4, posing in UTIAS’s indoor-
outdoor testing facility called MarsDome. Built using the Tamiya TXT-1 4×4
Pick-up chassis, the rovers were designed to be fully autonomous mobile robots
suitable for outdoor use in reasonable environmental conditions.

2.1 Microelectronics and Software

Each rover possesses a 700 MHz Pentiumr III processor-based computer (Cell
Computingr Plug-N-Run) with a 1 GB microdrive, 256 MB of RAM, 2 PCM-
CIA slots, 2 USB ports, and runs the Debian-Linux operating system. All
Linux-based software is capable of accessing the onboard sensors and actua-
tors by way of a Siemens C164 20 MHz 16-bit microcontroller (for processing
low-level hardware routines). All custom software for the rovers is developed
using the C/C++ languages in Linux. Furthermore, the rovers are each fitted
with a wireless Ethernet PCMCIA card used for remote software development,
operation, and potentially for direct communication between the rovers.

6



2.2 Power Delivery System

In order to conserve payload space and to lower the rover’s center of gravity
(i.e., for improved stability), each rover is powered by 1.2 V Saft Nickel-Metal
Hydride (NiMH) VH F battery cells, ten of which are located (in series) inside
each rubber tire. Current is subsequently delivered to the individual rover
systems by way of a custom designed circular slip-ring within each wheel hub.

2.3 Motion Actuators and Encoders

Front and rear wheel steering axis angles are adjustable independently via
servomotor driven mechanisms (Hitec model HS-300) at each wheel axis. Thus,
each wheel axis angle is directly specifiable (in software) through a servomotor
input command uφ ∈ [−1, 1]. For example, if the rear axis is fixed with a zero
steering angle then a servomotor input of uφ ≈ 0 at the front wheel axis would
result in straight-line driving, while uφ > 0 and uφ < 0 would correspond to
right and left car-like steering (in the forward direction), respectively.

Moreover, each rover is propelled at all four wheels by a geared throttle motor
(Alan’s Models part number 1105/7; gear ratio 6 : 1), allowing the rover
to easily move forward or backward. The rovers are capable of traveling at
speeds of not much more than 0.5 m/s with a minimum turning radius of
approximately 0.65 m. The throttle is specifiable (in software) through a motor
input command uf ∈ [−1, 1]. The robot is stopped when uf ≈ 0 and moves
forward and backward for uf > 0 and uf < 0, respectively.

The rovers are all mounted with US Digital Corporation rotary optical en-
coders (generating 512 cycles per shaft turn) in the hub of each wheel.

2.4 Camera-based Vision Systems

Each rover is equipped with two CCD array cameras (Logitechr QuickCamr

Pro 3000) capable of acquiring up to 640 × 480 pixel resolution images at
a frequency of 30 Hz. Furthermore, each camera is fixed to a stereovision
head using custom supports allowing for individual pan and tilt by way of
servomotor mechanisms.
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3 Design and Implementation

This section describes, in detail, the hardware and software engineering designs
used to fulfil the experimental purpose described in Sec. 1.2.

3.1 Rover Dynamics

As a design tool and, perhaps more importantly, to illustrate how significantly
different the Argo Rovers are from ideal kinematic unicycles, a simple model
of the rover dynamics is first developed. In doing so, it is assumed that each
wheel rolls without laterally slipping, thus having similar nonholonomic char-
acteristics to the already studied kinematic unicycles.

Owing to limited workspace in the laboratory environment, the rovers were
operated with their front and rear wheel axes locked for tightest turning. Let
φf and φr denote the front and rear wheel axis angles. In practise, locking
of the wheel axes was accomplished by assigning the appropriate servomotor
inputs uφf

and uφr
so that φf = −φr =: φ. Therefore, in this case, each rover’s

configuration can be described by the vector of coordinates q = [x, y, θ, φ]⊤.
If the front and rear wheel-axis pairs are each modelled as just a single wheel
(see Fig. 5), then one can use the nonholonomic constraints, which act at each
wheel to prevent it from slipping laterally, to develop the kinematic model
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where the rover is driven by a forward velocity input vf acting at the front
wheel-axis point pf (or at the axis-point pr — since the wheels are locked it
does not matter) in the direction of the wheel and is steered by an angular
steering velocity input ωφ. The length l is approximately 0.3 m.

The kinematic model Eq. (3) constitutes a first step in describing the rover
as a mechanical system. In reality, the rovers have mass, and thus dynamics.
One can extend the above kinematic model to include dynamic effects due to
translation and rotation of the rover’s body mass. Let m denote the rover’s
mass (approximately 15 kg), Ip its body moment of inertia about the point
(x, y) in Fig. 5, and Is the effective inertia that needs to be overcome by the
steering actuator (assumed constant). Suppose one ignores friction and the
(minor) inertial effects due to rotation of the wheels. Then, the dynamical
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Fig. 5. Body centred axis model with wheel-axes locked

equations of motion are

ẋ = vf cos φ cos θ (4a)

ẏ = vf cos φ sin θ (4b)

θ̇ = vf
1

l
sin φ (4c)

φ̇ = ωφ (4d)

v̇f =
(

m cos2 φ + 1

l2
Ip sin2 φ

)−1 [

vfωφ(m − 1

l2
Ip) cos φ sin φ + f

]

(4e)

ω̇φ = τ/Is, (4f)

where f is the throttle force input, divided evenly between the front and
rear wheels, acting in the direction of the wheels, and τ is the representative
steering torque input. Since, on the real rovers, the steering angle φ is directly
specifiable by way of the steering servomotor inputs, the steering torque τ of
Eq. (4f) is not actually an available input. Instead, the real steering mechanism
dynamics are a function of the unmodelled servomotor characteristics, making
f and φ the assignable inputs (through uf and uφ, respectfully).

3.2 Speed Regulation

To approximate the control law Eq. (2), it was necessary to equalize the rover
speeds. Therefore, a basic speed regulator was designed for each rover using
feedback from its four wheel encoders. The actual rolling speed vf was esti-
mated by numerically differentiating position data acquired from the encoders
every T = 0.1 s (or 10 Hz). The estimated wheel-speeds were averaged to gen-
erate v̂f (kT ), k = 0, 1, 2, . . ., at each time step. Because of significant noise
in the speed estimates, the differentiated encoder data was low-pass filtered
(−3 dB at 1.35 Hz). Based on our knowledge of the model in Sec. 3.1, a PI
compensator was implemented digitally using finite-difference approximations
and the estimated speed error ev(kT ) := vR − v̂f (kT ). Thus, for the servomo-
tor input command uv ∈ [−1, 1], the employed discrete-time PI controller was
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Fig. 6. Example speed regulator response with changing reference speeds

uv(kT ) = kP ev(kT ) + uI(kT ), where

uI(kT ) = uI(kT − T ) + kI

T

2
[ev(kT ) + ev(kT − T )] ,

with uI(0) = 0. Through online tuning experiments, gains of kP = 1.5 and
kI = 2.5 were found to work well. An example of the speed regulator response
is provided in Fig. 6, as estimated using encoder data. Due to particularities
of the transmission (significant play), of the chassis (significant sway), and
of the wheels (placement of the batteries), small fluctuations in speed were
always present and could be audibly discerned while the rovers were running,
even during open-loop driving.

3.3 Multirobot Pursuit using Vision

As described in Sec. 2.3, each rover’s steering angle φ is directly specifiable by
way of its steering servomotors, thus the torque input τ of Eq. (4f) is not ac-
tually an available input. Therefore, the actual steering mechanism dynamics
were ignored and φ was itself computed so as to emulate θ̇ = kαα. In other
words, using Eq. (4c), one obtains

vfi
(kT ) = vR and φi(kT ) = arcsin (lkααi(kT )/vR) , (5)
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Fig. 7. Camera image plane geometry

for i = 1, 2, . . . , n, as an intuitive pursuit law for rovers, which mimics Eq. (2).

The right camera on each rover (although, it matters not which one) was
used to acquire 160 × 120 pixel (low resolution) images, which were then
used to estimate the heading error α(kT ). The rovers were each suited with a
cylinder of different colored cardboard so that ordering of the robots could be
accomplished by simply ordering the colors. Target localization was done by
scanning the pixels in an acquired image and comparing each pixel’s hue value
with a preset nominal target value. Those pixels within a specified tolerance of
the nominal were recorded and their horizontal positions averaged to compute
an estimate of the target’s location in the image.

By using knowledge of the camera’s focal length and orientation, the heading
error α(kT ) was estimated as follows. The location of pixels within the speci-
fied tolerance of hue value units were recorded and their horizontal positions
averaged to compute the horizontal centroid of the cylinder of desired colour in
the image (see the distance ∆ in Fig. 7, measured in pixels). Let β denote the
angle from the camera’s optic axis to the point that is ∆ pixels from the optic
axis (note that ∆ changes sign if the target switches sides of the optic axis)
such that β = arctan (∆/f), where f ≈ 200 pixels is the focal length of the
camera. Let γ denote the angle between the camera’s optic axis and the rover’s
heading θ, from Eq. (4). Therefore, the overall heading error was approximated
at each time step t = kT using the formula α(kT ) = γ(kT ) + β(kT ).
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Because the horizontal field-of-view (FOV) of the onboard cameras is relatively
low (approximately 34 degrees), in our initial experiments the rovers lost track
of their targets very easily. To augment the FOV, its panning servomotor was
employed, increasing the FOV to approximately 150 degrees. This was done by
adjusting the angle γ(kT ) in Fig. 7 so as to actively centre the target cylinder
in the image plane. Similar to what was done for speed regulation in Sec. 3.2,
a PI compensator was used to track the angle β = 0.

Notice how computation of the control law Eq. (5) for each rover was based
on sensing and data processing carried out locally, thus in a completely decen-
tralized fashion (i.e., no global positioning techniques were used). This differs,
for example, from the overhead camera global positioning system used in [14].

4 Experiments and Observations

A variety of experiments were conducted using teams of two, three, and four
rovers. Despite the significant physical differences between ideal kinematic
unicycles and the Argo Rover systems, which is a natural conclusion of Sec.
3, the outcome was surprisingly positive. Preliminary experiments were done
using two rovers. In this case, the only theoretically possible formation is the
{2/1} polygon (i.e., two robots diametrically opposite each other on a circular
path). To ensure the two rovers were within each other’s FOV, it was necessary
to rotate their stereovision heads by 90 degrees (e.g., see the rovers in Fig. 8).
This rotation was accounted for in software by adding (for rotation left) or
subtracting (for rotation right) π/2 to the angle γ in Fig. 7. The inside body-
centred camera was always used to compute α. It was found that, so long
as no rover lost the other from its view, the robots always converged to a
{2/1}-polygon formation.

4.1 Stability of the {3/1}-polygon Formation

In theory, the possible equilibrium formations for three robots are the {3/1}
and {3/2} polygons. Although both resemble equilateral triangles, it is the
robots’ ordering on the circle circumscribed by each polygon that is different.
As per Definition 1, a {3/1} formation corresponds to the case when the i-th
robot’s target, i+1, lies at a heading error of αi = ±π/3. Conversely, a {3/2}
formation corresponds to αi = ±2π/3. Follwing Table 1, of the two possible
equilibria only the {3/1}-polygon formation is locally asymptotically stable.

As previously noted, Fig. 3 shows three unit-speed unicycles, subject to Eq.
(2), converging to a {3/1} formation (the simulation ends after 45 s). On
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(a) At t = 0 s (initial condition) (b) At t = 2 s

(c) At t = 4 s (d) At t = 6 s

(e) At t = 8 s (f) At t = 10 s

Fig. 8. Generating a {3/1} formation with kα = 0.2

the other hand, Fig. 8 presents a sequence of captured images of three Argo
Rovers in cyclic pursuit, subject to Eq. (5). Fig. 9 shows the heading errors,
αi, i = 1, 2, 3, as a function of time for each of the simulated unicycles in
Fig. 3 (dotted lines) and for the actual rovers of Fig. 8 (solid lines). The
time axis in Fig. 9 corresponds almost exactly to the times noted for each
image frame in Fig. 8. The actual rover heading errors were recorded only
every second, although they were computed every 0.1 s. Clearly, owing to
their physical differences, the unicycle and rover trajectories should not be
expected to match in the transient. However, Fig. 9 shows that their steady-
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Fig. 9. Kinematic unicycle (dotted lines, cf. Fig. 3) together with actual rover (solid
lines, cf. Fig. 8) target heading errors; in both cases, the errors converge to approx-
imately αi = −π/3

state behaviors both tend to equally spaced motion around a stationary circle
of fixed radius. Convergence of the real rovers to a stable {3/1} formation,
with αi = −π/3, is clear from Fig. 8.

Additional experiments were performed where the rovers were first allowed to
achieve a steady-state {3/1} formation. Subsequently, one of the rovers was
deliberately perturbed from this equilibrium by either altering its heading,
halting it temporarily, or slightly changing its location. So long as the rovers
were able to maintain their targets within view, the group always returned to
a {3/1}-polygon configuration, demonstrating its stability as a formation.

4.2 Formation Radius and the {4/1}-polygon

Results equivalent to those described above for the {3/1} formation were also
found using four robots. Fig. 10 shows four rovers maintaining a {4/1}-polygon
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formation. Furthermore, in [2, Corollary 2] it was proved that the kinematic
unicycles traverse a circle of radius ρ = vRn/kαπd at equilibrium, where {n/d}
is the formation. Therefore, by increasing (resp. decreasing) the gain kα we
should have expected to observe a proportional decrease (resp. increase) in
the radius traversed by the rovers, which was indeed the case. Fig. 10 shows
four rovers in cyclic pursuit, each with gain kα = 0.3, after having stabilized
to a {4/1}-polygon configuration. At approximately t = 7 s, the gain kα was
decreased from 0.3 to 0.1 on all the rovers. The sequence of images shows
how the rovers continued to maintain a {4/1} formation while, at the same
time, the polygon’s radius effectively tripled in size. Identical results were also
observed for groups of two and three rovers.

4.3 The {3/2}-polygon Formation

In theory, the {3/2} formation for unicycles is unstable (see Table 1). However,
computer simulations suggest that, while maintaining the ordering of robots,
almost-circular trajectories are achievable for lengthy time periods. Fig. 11a
shows a simulation of three unit-speed unicycles that start roughly in the {3/2}
configuration (the simulation ends after 45 s). Despite the fact that they do not
converge to a {3/2} polygon, their motion appears to almost maintain a {3/2}
formation. Interestingly, among the six important eigenvalues associated with
the system’s linearization about the {3/2} polygon (in relative coordinates; see
[2] for details), there is only one complex-conjugate pair of unstable eigenvalues
and these eigenvalues lie particularly close to the imaginary axis (λ ≈ 0.0419±
j1.5303). If the simulation of Fig. 11a is continued for more than 250 s, the
unicycles eventually break their pattern of motion and rearrange themselves
into a stable {3/1} formation, as illustrated by Fig. 11b.

Fig. 12 presents a sequence of captured images of three rovers in cyclic pursuit
(using the same pursuit order as the rovers in Fig. 8). Both the unicycles of
Fig. 11 and the rovers of Fig. 12 started close to a {3/2} formation. Conse-
quently, their resulting trajectories appear qualitatively similar, maintaining
the ordering of a {3/2} polygon yet never actually converging to a stable for-
mation. If allowed to run for long enough, the rover formation was also seen
to “wobble,” as in Fig. 11a. However, even after several minutes, evolution of
the rovers into a {3/1}-polygon formation was never observed 1 , unlike what
happens in simulation for unicycles (cf. Fig. 11b). Nevertheless, it is clear
from Fig. 12 that the {3/2} polygon is not asymptotically stable for rovers,
as predicted by the theory for unicycles.

1 On the other hand, this type of maneuver was likely not even possible given
the limited field-of-view of the cameras and the fact that a protocol for collision
avoidance was not (yet) implemented.
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(a) At t = 5 s (b) At t = 7 s (kα is changed)

(c) At t = 9 s (d) At t = 11 s

(e) At t = 13 s (f) At t = 15 s

Fig. 10. A {4/1} formation after kα is changed from 0.3 to 0.1

Similar to Fig. 9, in Fig. 13 the heading errors αi, i = 1, 2, 3, have been
plotted as a function of time for each of the simulated unicycles in Fig. 11
(dotted lines) and for the actual rovers of Fig. 12. The time axis in Fig. 13
corresponds almost exactly to the times noted for each image frame in Fig. 12.
Again, owing to their physical differences, the unicycle and rover trajectories
should not be expected to match. However, Fig. 13 shows how their behaviors
are qualitatively the same, with oscillations appearing in the heading errors
of both the unicycles and the rovers.
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(b) After 300 s

Fig. 11. Unicycles demonstrating a {3/2} almost-stable formation with kα = 0.2;
the initial conditions are the same for both (a) and (b)
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(a) At t = 9 s (b) At t = 11 s

(c) At t = 13 s (d) At t = 15 s

(e) At t = 17 s (f) At t = 19 s

Fig. 12. A {3/2} semi-stable formation with kα = 0.1

5 Conclusions

In this paper, details concerning the apparatus and results of multirobot pur-
suit experiments have been presented. By adapting the hardware and develop-
ing software for the existing Argo Rovers, experiments were conducted using
groups of two, three, and four rovers, the purpose of which was to determine
whether the theoretical results obtained in [2] could be applied in practise to
real systems distinct from ideal kinematic unicycles. Given the physical dif-
ferences between unicycles and the Argo Rovers, and that there were delays
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Fig. 13. Kinematic unicycle (cf. Fig. 11a, dotted lines) together with actual rover
(cf. Fig. 12, solid lines) heading errors; note how their behaviors are qualitatively
consistent in that similar oscillations appear in both cases

in the system due to sensing and information processing not accounted for in
[2], the presented results are very encouraging.

However, success is not to say there were not limitations. Firstly, owing to
the difficulties in bringing multiple rovers into working order (i.e., free of
hardware difficulties), experiments were limited to n = 4 rovers. Although
it is likely that the reported results extend to n > 4 rovers, no experiments
were conducted to confirm this. Secondly, the rovers were severely limited by
the FOV of their cameras. Even with the inclusion of camera servoing, for
certain initial conditions the rovers inevitably lost their target, thus limiting
the range of experiments that could be tried. On the other hand, computation
of the control law was based solely on sensing and data processing carried out
locally (i.e., without any explicit communication, nor the use of an overhead
camera system or other GPS). Finally, experiments were further restricted by
the fact that no method of collision avoidance was employed, a practical issue
not considered in this research.
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In conclusion, the cyclic pursuit strategy developed for unicycles in [2] was
found to be practical from the point-of-view of robustness to unmodelled dy-
namics, disturbances in the robot velocities, and delays in the system due to
sensing and information processing. These experimental findings not only bode
well for continuing research on cooperative control strategies based on the no-
tion of pursuit, but also for other cooperative control techniques employing
similar local interactions among autonomous agents.
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