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In this paper, we examine the problem of how to achieve certain geometric for-
mations among a group of identical mobile autonomous agents. Our particular
view is that the subject of cooperative control involves: multiple autonomous
agents, such as wheeled robot vehicles; a locally shared information structure;
a control strategy that is somehow distributed among the agents; and a global
task or desired goal for the group.

Our specific approach is motivated by the historical development of cyclic
pursuit problems in mathematics. We begin by examining a system of identical
linear agents in the plane, a setup that was first proposed circa 1732. The
pursuit strategy is particularly simple in that our n agents are ordered such
that agent ¢ pursues agent ¢ + 1 modulo n. In the case of linear agents, we
characterize the achievable formations and discuss whether collisions might
occur between agents during reconfiguration. Next, we extend this notion to
a system of wheeled vehicles, for which we use the unicycle as an example.

The intention here is to illustrate how these ideas might work through
descriptive arguments and simulation examples, without employing a rigorous
theorem-proof format. For a more mathematically precise view, the reader is
referred to related works by the authors [13, 14, 15, 16].

1 Introduction

In 1987, Reynolds [19] developed his distributed behavioural model, which may
be the most widely recognized artificial example of distributed and appar-
ently self-organizing group behaviour. Reynolds’ boids (after bird-oids) fly
as a coherent flock, each employing only a local control strategy. In fact, it
seems that much of the multiple agent robotics research has concentrated on
the development of similar reactive or behaviour-based techniques. Not unlike
Reynolds’ boids, this behaviour-based approach is often to mimic biological
systems, where emergent behaviours result from the local interaction of indi-
vidual agents that appear to act autonomously.
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From an engineering standpoint, the problem of how to prescribe desired
global behaviours for a system of mobile autonomous agents through the ap-
plication of only simple and local interactions is of real and practical interest.
However, the global outcomes of the above described behaviour-based sys-
tems are often difficult to predict analytically [17]. A recent trend is to study
“nearest-neighbour” type strategies, whereby agents act based on local infor-
mation about/from other agents in their neighbourhood. For example, Wang
[23, 24] proposed a strategy where agents are instructed to move based on
the motions of their nearest neighbours. Certain formation stability proper-
ties were then analyzed for the case when one agent is provided a reference
trajectory and designated group leader. Early work by Sugihara and Suzuki
[21] investigated a set of heuristic algorithms for the generation of geometric
patterns in the plane (e.g., lines, circles, or polygons). In [5], a similar setup
was presented, but collision avoidance and synchronous group motion (e.g., a
matrix formation performing a right turn) were also discussed.

Some have argued that rigorous mathematical analysis of even the most
simple interactions can be an almost impractical task. However, this has in
fact been the goal of some more recent work [22]. Justh and Krishnaprasad [11,
10] have proposed unicycle steering laws for generating both rectilinear and
circular formations in the plane. Their approach uses alignment and separation
terms to determine the formation, which is based on the pose of all other
vehicles in the group. Jadbabaie et al. [9] proved convergence results for a
setup similar to that of Reynolds, guaranteeing that all agents eventually
move in an identical fashion, under certain connectivity assumptions, despite
the distributed nature of their coordination law.

As already mentioned, these types of patterns seem to appear in nature.
One interesting example is Bruckstein’s mathematical model [3] explaining
the evolution of ant trails. Some have studied aggregate behaviour in swarms
of organisms (e.g., birds, fish, mammals, and bacteria), where operational
models are analyzed for the purpose of potential engineering application (e.g.,
see [7, 8] and references therein).

1.1 The History of Pursuit

As has already been mentioned, in this paper we discuss the possibilities for
employing the notion of cyclic pursuit as a distributed coordination strategy
for multiple agent systems. We take our inspiration from the so-called “bugs”
problem, most prominent in the mathematics literature. The bugs problem
refers to what is also variously known as the dogs, mice, ants, or beetles prob-
lem, and originally stems from the mathematics of pursuit curves, first studied
by French scientist Pierre Bouguer (c. 1732). In 1877, Edouard Lucas asked,
what trajectories would be generated if three dogs, initially placed at the ver-
tices of an equilateral triangle, were to run one-after-the-other? Three years
later, Henri Brocard determined that each dog’s pursuit curve would be that
of a logarithmic spiral and that the dogs would meet at what is now known
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as the Brocard point of a triangle. Bernhart [2] reports that Gordon Peterson
extended this problem to n ordered bugs that start at the vertices of a reg-
ular n-polygon, describing his results for the square using four “cannibalistic
spiders.” If each bug pursues the next modulo n (i.e., cyclic pursuit) at fixed
speed, the bugs will trace out logarithmic spirals and eventually meet at the
polygon’s centre. It was in 1969 that Watton and Kydon [25] provided their
own solution to this regular n-bugs problem, also noting that the constant-
speed assumption is not necessary. Interestingly, the bugs problem has been
used for artistic design. For example, plotting the line-of-sight for each bug
at regular intervals while tracing out the pursuit curves (see Fig. 1) generates
intriguing geometric patterns [18].

Fig. 1. Pursuit patterns for the regular 3- and 4-bugs problem [18].

Now, suppose our n bugs do not start at the vertices of a regular n-polygon.
Klamkin and Newman [12] showed in 1971 that, for three bugs, so long as the
bugs are not initially arranged so that they are collinear, they will meet at a
common point and this meeting will be mutual. For n bugs, this problem was
later examined by Behroozi and Gagnon [1], who proved that “a bug cannot
capture a bug which is not capturing another bug [i.e., mutual capture], ex-
cept by head-on collision.” They used their result to show that, specifically
for the 4-bugs problem, the terminal capture is indeed mutual. Quite recently,
Richardson [20] resolved this issue for the general n-bugs problem, showing
that “it is possible for bugs to capture their prey without all bugs simultane-
ously doing so, even for non-collinear initial positions.” However, he proved
that, if the initial conditions are chosen at random, then the probability of a
non-mutual capture is zero.

Other variations on the traditional cyclic pursuit problem have also been
investigated. For example, Bruckstein et al. [4] studied both continuous (ants)
and discrete (crickets and frogs) pursuit problems, as well as both constant
and varying speed scenarios.
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1.2 Agents in Pursuit

Suppose we now imagine that each “bug” is instead an autonomous agent in
the plane. In what follows, we generalize the n-bugs problem to autonomous
agents and discuss its properties as a possible coordination framework for
multiple agent systems. Thus, our primary motivation is to follow historical
development and study the achievable formations for agents in cyclic pursuit.
On the other hand, from a practical viewpoint, cyclic pursuit may become
a feasible strategy for multiple agent systems since it is distributed (i.e., de-
centralized and there is no leader) and relatively simple in that each agent is
required to sense information from only one other agent.

Rather than provide a rigorous mathematical treatment of the topic, which
has been done to a certain degree in [13, 14, 15, 16], this contribution attempts
to motivate the cited research through discussion and example simulations.
The intention is to ensure the accessibility of this material to readers from
diverse backgrounds (e.g., engineers and biologists alike).

2 Linear Agents in Cyclic Pursuit

We begin by revisiting the classical n-bugs problem, but formalized just
slightly such that each bug is now an autonomous agent in the plane. Consider
n ordered points in the plane zq, 29, ..., z,, where each point z; represents the
position of a freely mobile agent, i = 1,2, ..., n. Suppose each agent i pursues
the next one i + 1 modulo n (i.e., n + 1 = 1). Henceforth, all agent indices
should be evaluated modulo n. Thus, our chosen model is

Zi =241 — 2, fori=1,2,...,n,

where Z; denotes the velocity of agent i. Therefore, the cyclic pursuit strategy
is particularly simple. The velocity of each agent 7, at each instant, is simply
proportional to the distance to its prey, ¢ + 1. Moreover, each agent is always
heading directly towards its prey. What trajectories are generated?

One strategy for analyzing the collective behaviour of these n intercon-
nected agents is to assemble their individual models into a single aggregate
model, and then attempt to analyze the behavioural properties of this new
n-dimensional model. By doing so, one can verify that for all possible initial
agent locations, the centroid (i.e., the average position of the agents) of the
points z1, 2o, ..., 2, is actually stationary over time and that every z;, with
i=1,2,...,n converges to this centroid [4, 13].

Fig. 2 demonstrates this behaviour for six mobile autonomous agents. In
this case, the six agents were ordered and numbered in the clockwise direction.
As an additional example, Fig. 3 shows the simulated trajectories for ten au-
tonomous agents in the plane. In this case, the ten agents were numbered and
ordered randomly. From this, one might note that, in general, the trajectories
of individual agents may overlap.
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Fig. 2. The trajectories of six ordered agents converging to their centroid.

Fig. 3. The trajectories of ten randomly placed agents converging to their centroid.
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Convergence to a common location is an instance of an agreement problem:
the agents, which are not assumed initially to share a common reference frame,
eventually come to agree on a common point, which can thereafter serve as an
origin. Besides being of interest in its own right, if convergence to a point is
achievable, then other formations are achievable by a simple modification, as
we now show. Consider a strategy whereby each agent pursues a displacement
of the next agent. In other words, the new model is

2';1-:(22‘4_14—62')—2’2', fOI"L':1727...7Tl.

Suppose that the centroid of the fixed points ¢, co, ..., ¢, is the origin. Then,
by using what we know from above, it can be shown that the centroid of the
points z1, 22, . . ., 2, remains stationary and that every z;, with ¢ =1,2,...,n,
converges to this point displaced by d;, where d; = d; 1 + ¢; [13].

Fig. 4 shows a simulation of this modified control strategy for six au-
tonomous agents. The initial locations of the six agents were randomly gen-
erated and the chosen ¢;’s were

(7575\/3)5 (7575\/§)a (1070)3 (1070)3 (*5775\/3% (75775\/5)'

In Fig. 5, the agents converge to a line formation, employing the same control
strategy, but where the chosen c¢;’s were instead

(10,0), (10,0), (10,0), (10,0), (10,0), (—50,0).

Fig. 4. Six autonomous agents achieving an equilateral triangle formation.

2.1 Collisions among Agents

We now turn our attention to the issue of collisions. A collision occurs if
zi(t) = z;(t) for some time ¢t > 0 and i # j. Of course this setup is very ideal-
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Fig. 5. Six autonomous agents achieving a line formation.

ized, since the agents are modelled as points and collisions must therefore be
very rare events indeed. Our discussion is actually more general and concerns
how the arrangement of agents evolves.

Let’s start by defining some terminology. Consider n distinct points
21,29, -,2n, DOt all collinear; see Fig. 6. Let zy denote their centroid and
let r; be the distance between z; and the centroid. Let ,rz; denote the di-
rected line segment from a point z; to another point z;. Suppose «; is the
counterclockwise angle from line zyz; to line Zgz;;1. Then, we say that the n
points are arranged in a counterclockwise star formation if r; > 0, «; > 0, for
alli =1,2,...,n,and ). a; = 2m. They are said to be arranged in a clockwise
star formation if r; > 0, a; <0, for all i =1,2,...,n, and Z? o = —2m.

With this in mind, one can prove that if n > 2 distinct agents begin in
a star formation, then these agents must, in fact, remain in a star formation
[13]. In particular, they can never collide, which is a desirable result for groups
of multiple autonomous agents. The simulation results of Fig. 2 illustrate the
case when six agents start in a clockwise star formation.

3 Unicycles in Cyclic Pursuit

Suppose we now extend the above linear cyclic pursuit scenario to one in
which each agent is a wheeled vehicle; for simplicity, we choose a unicycle.
In this case, just as most automobiles cannot “turn on a dime,” depending
on the prescribed control signals, each unicycle ¢ will require some finite time
to steer itself towards its preassigned prey, ¢ + 1. Once again we ask, what
trajectories can be generated?
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.
Fig. 6. A counterclockwise star formation.

In this section, let r; denote the distance between vehicle ¢+ and 7 + 1, and
let a; be the difference between the i-th vehicle’s heading and the heading
that would take it directly towards its prey, i + 1 (see Fig. 7). In analogy
with the linear pursuit scheme of the previous section, and as we proposed in
[15], an intuitive pursuit law for our system of unicycles is to assign vehicle i’s

forward speed (call it v;) in proportion to the distance error r;, while assigning
its angular speed (call it w;) in proportion to the heading error «;. For now,
let’s fix each vehicle’s forward speed, as in [14, 16], and study the possible

steady-state formations for multiple agent systems of this sort.

- /:}\ Bi

1+1
Fig. 7. New coordinates, with vehicle 4 in pursuit of ¢ + 1
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3.1 Constant Forward Speed

As suggested, we investigate the case when v; = s and w; = ko, where k, s > 0
are constants. Preliminary computer simulations suggest the possibility of
achieving circular pursuit trajectories in the plane. Fig. 8 shows simulation
results for a system of n = 5 vehicles, initially positioned at random, under
our chosen control law with k = 3. Note that the vehicles converge to equally
spaced motion around a circle of fixed radius.

Fig. 8. Five vehicles subject to our chosen control law, with k = 3.

It can be shown [14, 16] that every possible steady-state formation for
our system of n unicycles can be described as a generalized reqular polygon,
denoted {n/d} (after [6]), where n is the number of vehicles and 0 < d < n
is the polygon density. When d = 1, {n/1} is an ordinary regular polygon.
However, when d > 1 is coprime to n, {n/d} is a star polygon since its
sides intersect at certain extraneous points, which are not included among
the vertices [6, pp. 93-94]. If n and d have a common factor m > 1, then
{n/d} has n = n/m distinct vertices and n edges traversed m times.

Fig. 9 illustrates some example possibilities for {n/d} when n =9. In the
first instance, {9/1} is an ordinary polygon. In the second, {9/2} is a star
polygon since 9 and 2 are coprime. In the third, the edges of {9/3} traverse a
{3/1} polygon 3 times, because m = 3 is a common factor of both 9 and 3.
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Fig. 9. Example generalized regular polygons {9/d}, d € {1,2,3}.

Moreover, it can be proven that the size of the equilibrium polygon (i.e.,
the distance between vehicles) is dependent on the ratio s : k. Thus, for some
fixed speed s, the gain k can be used to prescribe a given diameter of pursuit.

The question that remains is, which polygons are asymptotically stable and
which are not? Surprisingly, the answer is not entirely intuitive and requires
some interesting mathematical tools; the interested reader may refer to [14,
16], where we present details and the results of a full local stability analysis.
Table 1 lists all possible equilibrium polygons and gives their stability.

Table 1. Possible equilibrium polygons, with stable polygons shown {n/d}* [14, 16].

d=1 2 3 4 5 6

{2/1}" {3/2y {4/3} {5/4} {6/5} ({7/6} ---
{3/1" {472} {5/3y {6/4} {7/5} {8/6} ---

(7/1y {8/2)° {9/3} {10/4} {11/5} {12/6} ---
{8/1}° {92} {10/3}" {11/4} {12/5} {13/6} ---

(17/1}" {18/2)" {19/3}" {20/4} {21/5} {22/6} - -
{18/1}* {19/2}* {20/3}* {21/4}* {22/5} {23/6} ---

{49/1}" {50/2)" {51/3}" {52/4}" {53/5} {54/6} - -
{50/1}* {51/2}" {52/3}" {53/4}" {54/5}" {556} - -

Fig. 10 and Fig. 11 provide simulation results for n = 7 vehicles, where in
each case the forward speed s = 1 and gain k = 4. However, due to differing
initial conditions, the vehicles of Fig. 10 form a {7/1} polygon at equilibrium,
whereas the vehicles of Fig. 11 converge to a {7/2} equilibrium formation.
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A5

Fig. 10. Fixed forward speed pursuit generating a {7/1} formation.

3.2 Proportional Forward Speed

As was previously suggested, consider now an alternate possibility, where v; =
krr; and w; = kqoy with k., k, > 0 constant gains. In this case, preliminary
simulations show that the system’s behaviour is dependent on our choices for
k, and ko . In fact, it can be verified that only the ratio k,./k, has significance
[15, Theorem 1]. Therefore, without loss of generality, we may fix k,, and study
the system’s behaviour as k, is varied.

Fig. 12, Fig. 13, and Fig. 14 show simulation results for a system of n =
5 vehicles, initially positioned at random, where k, = 1 is fixed and k, is
different in each case. In Fig. 12, k, = k* := {jcsc (%) and the vehicles
converge to evenly spaced motion around a circle, similar to our previous
results for unicycles with constant forward speed. However, in Fig. 13 with
k, < k* the vehicles converge to a common point. Finally, in Fig. 14 with k, >
k* the vehicles diverge, and they appear to do so equally spaced. Preliminary
details regarding the results of this section may be found in [15].

4 Conclusion
Our particular approach to the problem of how to achieve certain geometric

formations among a group of identical mobile autonomous agents has been
inspired by the advancement of cyclic pursuit problems, which have appeared
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Fig. 11. Fixed forward speed pursuit generating a {7/2} formation.

throughout the last century, in the mathematical literature. Nevertheless, fol-
lowing historical developments, we have attempted to further these ideas for
possible use in the coordination of multiple autonomous agents.

In order to reflect the multidisciplinary nature of cooperative control, we
have presented ideas and results in a way that is accessible to researchers from
varied backgrounds. For those interested in a more thorough mathematical
perspective, we have provided the appropriate references.
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