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Abstract— This paper presents results on the global
structure of the time optimal trajectories of the planar
pendulum on a cart. Relying on the geometric theory
of time optimal synthesis, we provide a discontinuous
feedback giving optimal solutions for any initial data.

I. INTRODUCTION

This paper concerns the global structure of the time
optimal trajectories to swing up a planar pendulum on
a cart. We consider only the dynamics of the pendulum
and take the acceleration of the cart as the control input.
Global stabilization of the pendulum system has been
studied as a benchmark for nonlinear control by many
researchers, for instance, [10] and [2], to name a few.
Time optimal synthesis has been studied recently in [3]
and [14]. These papers are focused on computing exact
switching times for an open loop control starting from
the down equilibrium. In contrast, we are interested
in computing a globally defined feedback control. In
particular, some results concerning the problem of
swinging up the pendulum via feedback in minimum
time from any initial condition, have been recently
obtained in [9].

Our approach is that of geometric time optimal
control. For the general theory, the first results are
probably those of Baitman [4], [5]. Next, a series of
works of Sussmann dealt with the analytic case [12],
[13]. Finally, the genericC∞ case was treated in [7],
[8]. A general account of these results, together with
a complete analysis of singularities and the minimum
time function, can be found in [6].

II. A NALYSIS OF THE PENDULUM SYSTEM

We consider the time optimal synthesis of the pen-
dulum with equations of motion given by

ẋ = F (x) + G(x)u (1)
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wherex ∈ S × R, |u| ≤ 1, F (x) =
( x2

sinx1

)

and

G(x) =
( 0

− cos x1

)

.

Problem. For every (x̄1, x̄2) ∈ S × R find a
trajectory-control pair(γ(·), u(·)) defined on[0, T ] and
such thatγ is time optimal betweenγ(0) = (x̄1, x̄2)
and γ(T ) = 0.

This problem is meaningful since the system (1) is
globally stabilizable to the origin, as it can be proven
by applying classical results on global controllability.
Moreover, for every initial datum(x̄1, x̄2), the existence
of a time optimal trajectory reaching the origin can be
derived, whenu(·) belongs to the class of measurable
functions with |u| ≤ 1, from Filippov Theorem (see
[1], Corollary 10.7, p. 143).

Now we apply the general theory of [6]. We define,
for everycovectorλ ∈ R

2, the Hamiltonianas

H(x, λ, u)=λ·(F (x)+uG(x))=λ1x2+λ2(sin x1−u cosx1) .

Then the Pontryagin Maximum Principle (PMP) says
that if (γ, u) is a time optimal trajectory-control pair,
then there exists a nontrivial field of covectorsλ along
γ and a constantλ0 ≤ 0 such that for a.e.t ∈ [0, T ]
(i) λ satisfiesλ̇ = −∂H

∂x
(γ(t), λ(t), u(t)) ,

(ii) H(γ(t), λ(t), u(t)) + λ0 = 0 ,
(iii) H(γ(t), λ(t), u(t))=maxu′∈[−1,1]H(γ(t), λ(t), u′).
A trajectory that satisfies the PMP is called anextremal
trajectory. In particular condition (i) translates into the
following differential equation

λ̇1 = −λ2(cos x1 + u sin x1)

λ̇2 = −λ1 , (2)

while from (iii) one easily derives the optimal control
u∗(t) = sgn(φ(t)), whereφ =−λ2 cos x1 is called the
switching function. From this we deduce that switch-
ings occur only ifλ2 = 0 or if x1 = π

2 + kπ, k ∈ Z.
Note that pendulum system does not satisfy all

the generic conditions in ([6], p. 48). Nevertheless,
the analyticity of (1) allows to exclude pathological
behaviours [13], such as the Fuller phenomenon, so
that we will be able to construct an optimal synthesis.



A. Extremal trajectories

In this section we identify properties of the extremal
trajectories. We assume w.l.o.g. that extremal trajecto-
ries reach the origin att = 0; thus, time is negative
and increasing. First, it can be verified that there are
no optimal trajectories containing singular arcs. Next,
we consider the bold, black curves in Figure 1 called
γ+ andγ−.

Definition 1: Let γ+ (resp.γ−) be the trajectory of
(1) defined on(−∞, 0] that reaches the origin with
u = 1 (resp.u = −1) at time t = 0 and such that the
control switches occur exactly atx1 = π

2 +kπ, k ∈ Z.
The controls corresponding toγ+ and γ− are a.e.
u(t) = sgn(cos x1(t)) and u(t) = − sgn(cos x1(t)),
respectively.

The following result exhibits the main properties
of the extremal trajectories for the pendulum system,
and it provides our main guide for determining the
switching curves.

Proposition 1: Consider a bang-bang trajectory of
(1), x(·) = (x1(·), x2(·)) : [t1, t2] → R, with x2(t) 6= 0
on (t1, t2) and letS be the set of switching times ofx(·)
and K = {t ∈ (t1, t2) : x1(t) = π

2 + kπ , ∃k ∈ Z}.
Thenx(·) is extremal if and only if one of the following
three possibilities is satisfied:
(i) K = S,
(ii) there exists̄t ∈ (t1, t2) \K such thatS = K ∪ {t̄}
and u(t) = − sgn(x2) sgn(cos x1(t)) a.e. on(t1, t̄),
while u(t) = sgn(x2) sgn(cos x1(t)) a.e. on(t̄, t2)
(iii) there exists̄t ∈ K such thatS = K \ {t̄} and
u(t) = − sgn(x2) sgn(cos x1(t)) a.e. on(t1, t̄), while
u(t) = sgn(x2) sgn(cos x1(t)) a.e. on(t̄, t2).

Proof: Let x(·) be an extremal trajectory which
does not intersect thex1 axis. Then we haveu(t) =
sgn(φ(t)) = − sgn(λ2(t)) sgn(cos x1(t)). Therefore
(i) is equivalent tosgn(λ2(t)) = ε a.e (where ε ∈
{−1, 1}), while one among the cases(ii) and (iii)
holds if and only if sgn(λ2(t)) = sgn(x2(t)) a.e on
(t1, t̄) and sgn(λ2(t)) = − sgn(x2(t)) a.e on(t̄, t2).
Assume thatx(·) does not satisfy(i), then in particular
there exists̄t such thatλ2(t̄) = 0. Then, using the fact
that H = λ1(t̄)x2(t̄) > 0, we obtainsgn(λ1(t̄)) =
sgn(x2(t̄)). From this equality and sincėλ2 = −λ1,
we find thatsgn(λ2(t)) = sgn(x2(t̄)) on (t̄ − ǫ, t̄) and
sgn(λ2(t)) = −sgn(x2(t̄)) on (t̄, t̄ + ǫ). To prove that
x(·) satisfies either(ii) or (iii) it is enough to see that,
if the sign ofx2 is fixed, then there is only one timēt
with λ2(t̄) = 0. Assume by contradiction that̄t1 < t̄2
are such thatλ2(t̄1) = λ2(t̄2) = 0 and λ2(·) 6= 0
on (t̄1, t̄2). Then, sincesgn(λ2(t)) = −sgn(x2) on

(t̄1, t̄1+ǫ) andsgn(λ2(t)) = sgn(x2) on (t̄2−ǫ, t̄2) the
continuous functionλ2(·) must be zero somewhere on
(t̄1, t̄2) and we find a contradiction. We have therefore
proved that every extremal trajectory withx2(·) 6= 0
satisfies one among(i), (ii) and (iii). Conversely, it
is clear from the previous arguments that every bang-
bang trajectoryx(·) satisfying (ii) or (iii) satisfies
the PMP withλ(t̄) = (sgn(x2), 0). When (i) holds
the PMP is satisfied withλ(t1) = (sgn(x2), 0) if
u(·) = sgn(x2) sgn(cos x1(·)) or λ(t2) = (sgn(x2), 0)
if u(·) = −sgn(x2) sgn(cos x1(·)).
The following is a straightforward consequence of
Proposition 1.

Corollary 1: The trajectoryγ+ (resp. γ−) is ex-
tremal on any interval[t̄, 0], t̄ < 0, and for every point
p of γ+ (resp.γ−), there exists an extremal trajectory
that reachesγ+ (resp.γ−) for the first time atp and
then followsγ+ (resp.γ−) until it touches the origin.

The results so far on extremal trajectories permit a
partition of the cylinder into regions in which the be-
haviour of extremal trajectories has common qualitative
properties.

Referring to Figure 1, we describe boundaries of
these regions by identifying particular trajectories. No-
tice in the following descriptions that we make no
distinction between a trajectory and its support. Letξ+ :
[0,+∞) → S×R be the trajectory of (1) corresponding
to u = sgn(cos x1(t)) , such that lim

t→+∞
ξ+(t)= (π

4 , 0) ,

ξ+
2 (0) = 0 and ξ+

2 (t) < 0 , ∀t > 0. Let χ+ :
R → S × R be the trajectory of (1) corresponding to
u = sgn(cos x1(t)) , such that lim

t→+∞
χ+(t)= (π

4 , 0) ,

χ+
1 (0) = 0 and χ+

1 (t) 6= 0 , ∀t > 0. Let η+ :
(−∞, 0] → S×R be the trajectory of (1) corresponding
to u = sgn(cos x1(t)) , such that lim

t→−∞
η+(t)= (π

4 , 0) ,

and η+ ∩ γ− = η+(0). Let t+ < 0 be the largest
negative time such that thex1 component ofγ+(t+)
vanishes.

RegionsA, B, C, D, A′, B′, C′, D′ are then defined
by means of the previous trajectories as in Figure 1.

Now we give a brief description of the trajectories
of (1) satisfying the conditions given by Proposition 1
inside the regionsA, B, C, andD, until they reach their
corresponding boundaries.
• If the initial condition for the minimization problem
is inside A then it is easy to see that the trajectories
corresponding tou = − sgn(cos x1(t)) must reach the
boundary ofA at some point ofγ+. On the other hand
all the trajectories corresponding tou = sgn(cos x1(t))
reach the boundary ofD, D′ or C′.
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• If the initial condition is insideB then all the
trajectories reach the boundary in a point ofγ+ or of
the segment connectingχ+(0) andγ+(t+).
• If the initial condition is insideC then the trajectories
corresponding tou = sgn(cos x1(t)) stay in C until
they reachγ−, while every trajectory corresponding to
u = − sgn(cos x1(t)) must crossχ+.
• All the trajectories that start insideD must cross the
x1 axis.
The descriptions of the trajectories starting from the
regionsA′, B′, C′ andD′ are analogous.

B. Switching curves

Collecting the results of the previous section, we find
that every extremal trajectory reaching the origin and
belonging to the upper or lower half plane can switch
only on γ± or if x1 = π

2 + kπ for some k ∈ Z.
Therefore, in order to detect other nontrivial switching
curves, we need to look for extremal trajectories reach-
ing the origin and crossing thex1 axis. These switching
curves are identified with the regular submanifold of
points such thatλ2 = 0.

The following observations will facilitate our analy-
sis both of switching curves and of overlap curves. For
a fixed value ofu, the system (1) admits a first integral

h(x) =
1

2
x2

2 + cos x1 + u sin x1 . (3)

Moreover we know that along an extremal trajectory
the value of the Hamiltonian is a constant, which we
call H. Using these two facts, we would like to obtain
an explicit formula forλ2 in order to find the switching
curves. We have−λ̇2x2 + λ2(sin x1 − u cos x1) = H
so λ̇2 = λ2

x2
(sin x1 − u cos x1) − H

x2
. If x2 6= 0 and

ẋ2 6= 0 we can locally viewλ2 as a function ofx2 and

we obtain

λ̇2

ẋ2

=
dλ2

dx2

=
λ2

x2

− H

x2(sin x1 − u cosx1)
. (4)

The right-hand side of this equation can be written in
terms ofx2 only by usingh(x). If u = ±1 we have
sin x1 − u cos x1 =

√
2 sin(x1 − uπ

4 ). while h(x) =
1
2x2

2 +
√

2 cos(x1 − uπ
4 ). Combining this information

we obtain
dλ2

dx2

=
λ2

x2

− ε
H

x2

√

2 − (h − 1

2
x2

2
)2

(5)

where ε = sgn(sin x1 − u cos x1) is the only term
depending onx1. The explicit solution to this equation,
with initial condition λ2(x

0
2) = λ0

2, is:

λ2(x2) = x2

(

λ0

2

x0

2

− εH

∫

x2

x
0
2

dy

y2

√

2 − (h − 1

2
y2)2

)

. (6)

This integral cannot be solved exactly, but it can be
written in terms of elliptic integrals, and therefore it
can be easily computed numerically.

The formula (6) forλ2 is applied on intervals where
ε andu are constant. At switching points, the value of
h must be updated by using the previous value ofh and
the value ofx at the switching point. In this manner
the formula (6) can be used to derive an equation for
a particular switching curveλ2(x2) = 0.

The above observations are also useful for determin-
ing overlap curves, so we briefly outline the technique
here, though it will be applied later in Section II-
C. Overlap curves occur where two or more extremal
trajectories reach the origin in minimum time. In order
to compute them, we would like to derive an explicit
formula for the time elapsed for an extremal trajectory
to reach the origin. From above we know that

ẋ1 = x2 = sgn(x2)

√

2
(

h(x) −
√

2 cos(x1 − u
π

4
)
)

(7)

and, similarly

ẋ2 = sgn
(

sin
(

x1 − u
π

4

)

)

√

2 −
(

h(x) − x2

2

2

)2

. (8)

Using equation (8) we obtain a formula forT (x0, x1),
the time elapsed along a extremal trajectory starting
from x0 and ending atx1, as a function ofx2

T (x0, x1) =

∫

x
1
2

x
0
2

dy
√

2 −
(

h(x) − y2

2

)2

. (9)

This formula must be used on segments of an extremal
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trajectory where the control does not switch and where
sgn

(

sin
(

x1 − uπ
4

))

is constant.

1) Switching curveC: In this section we consider
the family of extremal trajectories that cross, withu =
−1, the segment of thex1 axis betweenD′ andA′ with
x1 < 3π

2 , then switch fromu = −1 to u = 1 on the line
x1 = π

2 , and finally, switch at a pointx0 on γ−, and
follow γ− until reaching the origin. See Figure 2. Let
C be (if it exists) the set of points belonging to these
trajectories and corresponding toλ2 = 0. We want to
determine an equation that describesC. To do this we
follow backwards the extremal trajectories that reach
the origin, integrating by quadratures the equation (6).

Take an extremal trajectorỹγ as described above,
and assume that the last switching before reaching the
origin is at x0 = (x0

1, x
0
2) ∈ γ−, with x0

1 < π/4 and
with λ0

2 = 0. (We will comment on the casex0
1 ≥ π/4

below). Also, let x̄ = (x̄1, x̄2) be a point ofγ̃ with
x̄1 > 3π/4 andx̄2 < 0. Recall thatH is a fixed positive
real number along̃γ, and we can rescaleλ1(x

0
2) such

thatH = 1. We must determine the value ofh(·) along
each bang arc of̃γ. Using (3) we have thath(·) = 1
alongγ−; h(·) = h1 := 1+2 sin x0

1 for the bang arc of
γ̃ whenx1 ∈ [x0

1,
π
2 ]; andh(·) = h2 := −1 + 2 sin x0

1

for the bang arc of̃γ whenx1 ∈ [π2 , x̄1]. Also, referring
to Figure 2, the segments on which̃γ is monotone in
x2 are x1 ∈ [x0

1,
π
4 ], x1 ∈ [π4 , 3π

4 ], andx1 ∈ [3π
4 , x̄1].

Also, ε = −1 whenx1 ∈ [x0
1,

π
4 ], ε = +1 whenx1 ∈

[π4 , 3π
4 ], and ε = −1 when x1 ∈ [3π

4 , x̄1], whereε =
sgn(sin x1−u cos x1). Combining this information with
(6) we obtain

λ2(x̄2) = Hx̄2

„ Z

x2(x1= π

4
)

x
0
2

dy

y2
q

2 − (h1 − 1
2

y2)2

−

Z

x2(x1= π

2
)

x2(x1= π

4
)

dy

y2
q

2 − (h1 − 1
2

y2)2
−

Z

x2(x1= 3π

4
)

x2(x1= π

2
)

dy

y2
q

2 − (h2 − 1
2

y2)2

+

Z

x̄2

x2(x1= 3π

4
)

dy

y2
q

2 − (h2 − 1
2

y2)2

«

,

(10)

where x0

2
= −

√

2(1 − cosx0
1

+ sin x0
1
), x2(x1 = π

4
) =

−
√

2(1 + 2 sinx0
1
−
√

2), x2(x1 = π

2
) = −2

√

sin x0
1

and

x2(x1 = 3π

4
) = −

√

2(−1 + 2 sinx0

1
+

√
2)

Note that the integrals in (10) are generalized in-
tegrals; that is, the integrands are not well-defined at
the extremes. The formula (10) applies tox̄2 < 0. Now
this must be connected with the segment ofγ̃ for which
x2 > 0, by using a continuity argument. In particular,
we use the continuity ofλ at the intersection of̃γ and
the x1 axis. The value ofλ at the intersection point
can be derived from (10) and from the equation (2) by
passing to the limit as̄x2 goes to0. The result is a
function of switching pointx0 and the choice ofH.
However, we observe thatH = λ2(sin x1−u cos x1) if
x2 = 0, so the value ofλ2 at a point of thex1 axis is the
same for any extremal trajectory with HamiltonianH
and passing through that point withu = −1. So the fact
that λ2 must be continuous at the intersection between
γ̃ and thex1 axis is not sufficient to determine the
corresponding point ofC. We must use the additional
information thatλ1 = −λ̇2 is also continuous. We have
that

lim
x2→0−

dλ2

dx2
= lim

x2→0+

dλ2

dx2
=

λ̇2

ẋ2
∣

∣x2=0
. (11)

Assume that there exists a switching pointx̃ =
(x̃1, x̃2) ∈ γ̃ with x̃2 > 0 and x̃1 > 3π

4 , so that we
haveu = −1 andε = −1 betweenx̃ and the axisx1.
We know thatλ2 = 0 at the pointx̃. Then we can find
an expression forλ2(x2), x2 > 0 similar to (10)

λ2(x̄2) = Hx̄2

∫

x̄2

x̃2

dy

y2

√

2 − (h2 − 1

2
y2)2

. (12)

Now we differentiate (10) and (12) with respect tox̄2,
and after some manipulation pass to the limit asx̄2

tends to0. The resulting expressions must be equal
thanks to (11). Finally, we arrive at the following
equation

Z

x2(x1= π

4
)

x
0
2

dy

y2
q

2 − (h1 − 1
2

y2)2
−

Z

x2(x1= π

2
)

x2(x1= π

4
)

dy

y2
q

2 − (h1 − 1
2

y2)2

−

Z

x2(x1=3π

4
)

x2(x1= π

2
)

dy

y2
q

2 − (h2 − 1
2

y2)2

−
1

4(2 − h2
2)

Z

0

x2(x1= 3π

4
)

y2dy
q

2 − (h2 − 1
2

y2)2

=

q

2 − (h2 − 1
2

x̃2
2)2

x̃2(2 − h2
2)

−
1

4(2 − h2
2)

Z

0

x̃2

y2dy
q

2 − (h2 − 1
2

y2)2
.

(13)

This givesx̃2 (and therefore alsõx1, sinceh(x̃1, x̃2) =
h2) in terms of x0 ∈ γ−. Therefore the switching
curveC can be determined by solving numerically the



previous equation.
We conclude this section with a few remarks. First,

there exists a switching curveC ′ symmetric to C
(x ∈ C if and only if −x ∈ C ′). Second, for the same
family of extremal trajectories, any switching curve that
precedesC (in time) cannot be optimal. Indeed, if we
assume that thex1 coordinate for the new switching
point is less than3π/2 (otherwise there would be a self-
intersection of the corresponding extremal trajectory
that would imply a loss of optimality) and we write the
equality obtained from (11), it turns out that the right-
hand side and the left-hand side of such an equation
has different signs. For the case whenx0

1 ≥ π
4 , one

simply removes the first integral in (13) and modifies
the lower limit of the second integral to bex0

2. By
solving numerically the resulting equation, one obtains
an expression for a switching curve which starts at the
final point of the switching curve obtained by (13).
Finally we mention that it is possible to prove that the
only switching curves inside regionsC, C′ are those
corresponding tox1 = π

2 + kπ.

C. Overlap curves and switching curves around(π, 0)

In Section II-B.1 we examined a candidate switching
curve C and we analyzed an extremal trajectory that
switches atx0 ∈ γ−. We can determine by direct
computation that ifx0

1 is large enough, then the cor-
responding switching point ofC, obtained by solving
(10), belongs to regionA. Therefore there exists a
second extremal trajectory starting atx̄ with control
u = 1, then switching atx1 = 3π

2 and reaching the
origin with an arc ofγ+. It is also possible to determine
numerically that ifx0

1 is larger than a value≈ 0.53, the
extremal trajectory starting at̄x ∈ C with u = 1 is time
optimal.

We deduce that the switching curveC is not com-
pletely optimal and there exists an overlap curveK1

which starts at a point ofC. On the other hand, it is
possible to see, still numerically, that there is a point
of C corresponding tox0

1 ≈ 0.3, at which the tangent
vector toC is parallel to the vector field corresponding
to u = 1. At this point a second overlap curveK2

starts. See Figure 3. Associated to each point of this
curve there are two optimal trajectories: the first one
starts with controlu = −1 and reachesγ− at a point
corresponding to a small value ofx0

1, while the second
one starts with controlu = 1, then switches onC and
ends again onγ−. The curveK2 ends at a point in
which a further overlap curveK3 is generated. This
curve contains the point(π, 0) and the two time optimal

(π,0)
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4π/32π/3

K
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K
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K 3

Fig. 3. Optimal synthesis around(π, 0)

trajectories starting at a point ofK3 have a symmetric
behaviour, in the sense that they switch for the first
time, respectively, onC and C ′ and for the last time
onγ− andγ+. The complete synthesis around the point
(π, 0) can be completed using symmetry with respect
to the point(π, 0). Figure 3 provides a sketch of the
optimal synthesis around the point(π, 0).

In order to show how to determine explicitly the
overlap curves previously defined we derive an equation
for K1. As in Section II-B.1, we consider an extremal
trajectory that starts at a point̄x ∈ K1 and whose
last switching before reaching the origin withu = −1
occurs atx0 ∈ γ−. Using equations (7) and (8) on each
bang arc where the extremal trajectory is either strictly
monotone inx1 or in x2, it is possible to obtain a
formula for the elapsed time, as in (9). We assume that
x0

1 < π/2, but if not, one can proceed in the same way
to find a similar equation. This procedure can now be
repeated for the other trajectory that reaches the origin
by switching at a pointx1 ∈ γ+. By propagating values
of h(·) on each bang arc it can be determined that
x1

1 := 2π−arcsin
(

sin x0
1+sin x̄1). The equation for the

overlap curve is obtained by setting the times to reach
the origin along the two possible extremal trajectories
equal, to yield:

Z

x
0
2

0

dy
q

2 − (1 − 1
2

y2)2
+

Z π

4

x
0
1
−

π

4

dy
q

2h1 − 2
√

2 cos y

+

Z 5π

4

3π

4

dy
q

2h2 − 2
√

2 cos y

+

Z

2
q

sin x
0
1

0

dy
q

2 − (h2 − 1
2

y2)2

+

Z

x̄2

0

dy
q

2 − (h2 − 1
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√
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√
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=
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− sinx1
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Fig. 4. The complete time optimal synthesis

−1 + 2 sinx0

1
, h3 = −1 + 2 sinx0

1
+ 2 sin x̄1, and h4 =

1+2 sinx0

1
+2 sin x̄1. It is also possible to find equations

for K2 andK3, using (7) and (8) and with the help of
the expressions of the switching curvesC andC ′ found
above. In order to avoid long and not very interesting
computations (similar to those made above), we will
not present these derivations.

III. T IME OPTIMAL SYNTHESIS

The following result describes the time optimal syn-
thesis for the inverted pendulum on the whole cylinder
S × R. Its proof, that we will skip, is based on the
results obtained in the previous sections.

Theorem 1: Consider an optimal trajectory starting
from x0 ∈ S × R. Then:
• If x0 ∈ B the corresponding optimal trajectory
starts with controlu = − sgn(cos x1) and switches
to sgn(cos x1) when it reachesγ+.
• If x0 ∈ A and if it is far enough from the boundary
with D

′, the optimal trajectory corresponds tou =
− sgn(cos x1) and switches tosgn(cos x1) when it
reachesγ+.
• If x0 ∈ D

′ or x0 ∈ A is close to the boundary
with D

′, then, according to Section II-C, there are three
possibilities. Ifx0 is “below” the overlap curveK3 the
optimal trajectory starts withu = −1, switches when
it reachesC ′ and continues withu = − sgn(cos x1)
until it reachesγ+. If x0 is betweenK3 andC ∪ K2

the optimal trajectory starts withu = 1, switches when
it reachesC and continues withu = sgn(cos x1)
until it reachesγ−. Otherwise the optimal trajectory
corresponds tou = sgn(cos x1) until it reachesγ−.
• If x0 ∈ C and it is “close” toγ+, then the optimal
trajectory corresponds tou = sgn(cos x1) until γ−.
Otherwiseu = − sgn(cos x1) until γ+. More precisely

there is an overlap curveK winding around the cylin-
der, betweenγ+ andχ+, dividing C in two parts with
different optimal strategies.
• If x0 belongs to the regionsB′, A′, D, C′ the optimal
strategy is obtained by symmetry with respect to the
origin.

The qualitative shape of the optimal synthesis is now
completely clarified. After solving the equations given
in the previous sections that describe the switching
curves and the overlap curves, and the analogous equa-
tions that determine the curveK defined above, one can
easily obtain, with the help of matlab simulations, the
global shape of the synthesis, as depicted in Figure 4.
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