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Abstract— This paper presents results on the global wherez € S x R, lu| < 1, F(z) = ( .w2 > and
structure of the time optimal trajectories of the planar o Sm

pendulum on a cart. Relying on the geometric theory (z) = ( 0 )
of time optimal synthesis, we provide a discontinuous —cosxy /'

feedback giving optimal solutions for any initial data. Problem. For every (1,#) € S x R find a

|. INTRODUCTION trajectory-control pair(+(-), u(-)) defined orj0, 7] and

This paper concerns the global structure of the timguch thaty is time optimal between(0) = (z1,72)
optimal trajectories to swing up a planar pendulum o@nd (7T") = 0.
a cart. We consider only the dynamics of the pendulum 1his problem is meaningful since the system (1) is
and take the_ _acc_eleration of the cart as the control i”pl&}obally stabilizable to the origin, as it can be proven
Global stabilization of the pendulum system has be&gy, applying classical results on global controllability.
studied as a ben_chmark for nonlinear control by manygreover, for every initial daturiz; , z»), the existence
researchers, for instance, [10] and [2], to name a feW 4 time optimal trajectory reaching the origin can be

Time optimal synthesis has been studied recenftly in [Jerived, whenu(-) belongs to the class of measurable
and [14]. These papers are focused on computing exaghctions with lu| < 1, from Filippov Theorem (see
switching times for an open loop control starting from1] corollary 10.7, p. 143).

the down equilibrium. In contrast, we are interested
in computing a globally defined feedback control. Ir}
particular, some results concerning the problem oP
swinging up the pendulum via feedback in minimun¥ (z, A, u) =A-(F(x)+uG(x))= 22+ A2 (sinx1 —ucosxy) .
time from any initial condition, have been recently

obtained in [9]. hat if : . imal trai | oai
Our approach is that of geometric time optima atif (v, u) is a time optimal trajectory-control pair,
: hen there exists a nontrivial field of covectorsilong
control. For the general theory, the first results are and a constank, < 0 such that for a.et € [0, T]
probably those of Baitman [4], [5]. Next, a series of! R0 2H ' ’
. . i) A satisfiesh = —S2(v(t), A(t),u(t)),

works of Sussmann dealt with the analytic case [12 ) H(v(t), \(t) (t)%er = 0
[13]. Finally, the generi> case was treated in [7], i) H(’Y(t)7>\(t)7u(t))— 0= H(v(#), A\(8), )
[8]. A general account of these results, together wit VA, ALY, ULL)) A w e[-1, 1 HEATAL), AL, U )

a complete analvsis of singularities and the minimu trajectory that satisfies the PMP is calledextremal
: piet Y g rPrajectory. In particular condition (i) translates into the
time function, can be found in [6].

following differential equation

Now we apply the general theory of [6]. We define,
I every covector\ € R2, the Hamiltonianas

Then the Pontryagin Maximum Principle (PMP) says

1. ANALYSIS OF THE PENDULUM SYSTEM

We consider the time optimal synthesis of the pen- A= —Aa(cos 1 + usinzy)
dulum with equations of motion given by Ae = =, 2)
i =F(z)+ G(z)u (1) while from (iii) one easily derives the optimal control

u*(t) =sgn(¢(t)), wheregp = —X\ycos z; is called the
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A. Extremal trajectories (t1,t14€) andsgn(Aa(t)) = sgn(xz) on (t2 —¢, t2) the
In this section we identify properties of the extremafOntinuous function\y(-) must be zero somewhere on
trajectories. We assume w.l.0.g. that extremal trajectéti; 2) and we find a contradiction. We have therefore
ries reach the origin at = 0; thus, time is negative Proved that every extremal trajectory withy(-) # 0
and increasing. First, it can be verified that there argalisfies one among), (ii) and (iii). Conversely, it
no optimal trajectories containing singular arcs. NexiS clear from the previous arguments that every bang-
we consider the bold, black curves in Figure 1 calleBang trajectoryz(.) satisfying (ii) or (iii) satisfies
~+ andy. the PMP with A(¥) = (sgn(z2),0). When (i) holds
Definition 1: Let~+ (resp.y~) be the trajectory of the PMP is satisfied with\(f1) = (sgn(z2),0) if
(1) defined on(—oo,0] that reaches the origin with “(-) = sgn(z2)sgn(cos z1(-)) or A(tz) = (sgn(z2),0)
u =1 (resp.u = —1) at time¢ = 0 and such that the iIf u() = —S_gn("’?)sgn(cosle(‘))- u
control switches occur exactly at = Z+kr, k€ Z. The following is a straightforward consequence of
The controls corresponding to+ and 4~ are a.e. Proposition 1. _ '
u(t) = sgn(coszi(t)) and u(t) = —sgn(coszq(t)), Corollary 1: The tr"}JeCtQWVJF (resp.y7) is ex-
respectively. tremal on any intervalt, 0], ¢ < 0, and for every point
The following result exhibits the main properties? Of 7™ (resp.y7), there exists an extremal trajectory
of the extremal trajectories for the pendulum systenthat reaches/™ (resp.y~) for the first time atp and
and it provides our main guide for determining théhen follows~y™ (resp.y™) until it touches the origin.
switching curves. The results so far on extremal trajectories permit a
Proposition 1: Consider a bang-bang trajectory ofpartition of the cylinder into regions in which the be-
A), z(-) = (x1(-), 22(")) : [t1, ta] — R, with z5(t) # 0  haviour of extremal trajectories has common qualitative
on(ty,t) and letS be the set of switching times af-) ~ properties.

and K = {t € (ti,t2) : 1(t) = 5+ kr, 3k € Z}. Referring to Figure 1, we describe boundaries of
Thenz(-) is extremal if and only if one of the following these regions by identifying particular trajectories. No-
three possibilities is satisfied: tice in the following descriptions that we make no
() K =5, distinction between a trajectory and its support. {et

(i) there existd € (t1,t) \ K such thatS = K U {t} [0,+00) — SxR be the trajectory of (1) corresponding
and u(t) = —sgn(zy) sgn(cosz(t)) a.e. on(ty,f), tou = sgn(coszy(t)),such thatt_légloo ()= (3,0,
while u(t) = sgn(z2) sgn(cos z1(t)) a.e. on(t, t2) &0) = 0and&f(t) < 0, V¢ > 0. Let y* :
(ii) there existsi € K such thatS = K\ {t} and R _, 5 x R be the trajectory of (1) corresponding to
u(t) = —sgn(x2) sgn(cosz1(t)) a.e. on(ty,t), while ,, _ sgn(cosz1(t)), such thatt hgrn xH)= (%,0),

u(t) = sgn(zy) sgn(cosz1(t)) a.e. on(t, ta). L N L
Proof: Let z(-) be an extremal trajectory which X1 (0) = 0 andxy () # 0, vt > 0. Letn" :
does not intersect the, axis. Then we haves(t) = (o0 — SxRbe the trajectory of (1) corresponding

— : + _ (T
sen(6(t)) = —san(Aa(t)) sgn(cosz1 (). Therefore © = sgn(coszi(t)), suchthat lim »™(t)= (3,0),
(i) is equivalent tosgn(\2(t)) = & a.e (Wheree € andn™ Ny~ = n*(0). Let t* < 0 be the largest

{—1,1}), while one among the casdsi) and (iii) hegative time such that the; component ofy™ (t*)
holds if and only ifsgn(Az(t)) = sgn(xo(t)) a.e on vanishes.

(t1,t) andsgn(A2(t)) = —sgn(za(t)) a.e on(t, ta). RegionsA, B, C, D, A/, B’, C’, D’ are then defined
Assume that(-) does not satisfy:), then in particular by means of the previous trajectories as in Figure 1.
there existg such that\s(¢) = 0. Then, using the fact Now we give a brief description of the trajectories
that H = X\i(f)z2(f) > 0, we obtainsgn(\;(¢)) = of (1) satisfying the conditions given by Proposition 1
sgn(xz(t)). From this equality and sincd, = —)\;, inside the regiond, B, C, andD, until they reach their
we find thatsgn(A2(t)) = sgn(z2(t)) on (t —€,t) and corresponding boundaries.

sgn(Aa(t)) = —sgn(z2(t)) on (¢, ¢ + €). To prove that e If the initial condition for the minimization problem
x(+) satisfies eithefii) or (ii4) it is enough to see that, is inside A then it is easy to see that the trajectories
if the sign ofxs is fixed, then there is only one tinte corresponding ta, = — sgn(cos x1(¢)) must reach the
with \o(f) = 0. Assume by contradiction thdt < ¢ boundary ofA at some point ofy™. On the other hand
are such that\a(t1) = Xa(t2) = 0 and X\o(-) # 0 all the trajectories correspondingdo= sgn(cos z1(t))

on (t1,t2). Then, sincesgn(A\2(t)) = —sgn(z2) on reach the boundary dd, D’ or C'.



we obtain
P i

Ao
2 _Chz A .
o dzy 3 xo(sinxzy —ucosaxy) )

The right-hand side of this equation can be written in
terms ofzy only by usingh(z). If w = +1 we have
sinzy — ucosz; = V2sin(zy — uf). while h(z) =
123 + V2 cos(zy — uZ). Combining this information
we obtain

dXg _ ﬁ . H )

By o e

where e = sgn(sinxz; — ucosz) is the only term
depending orx;. The explicit solution to this equation,
with initial condition Ay (29) = A9, is:

Fig. 1. Partition ofS x R

e If the initial condition is insideB then all the B A w2 dy 5
trajectories reach the boundary in a pointyof or of Ao(w2) = 9 i /0 5 | L o) (©)

. + (1t T2y 2 - (h - §y )
the segment connecting® (0) and~* (™).
e If the initial condition is insideC then the trajectories This integral cannot be solved exactly, but it can be
corresponding tou = sgn(cosxi(t)) stay in C until  written in terms of elliptic integrals, and therefore it
they reachy—, while every trajectory corresponding tocan be easily computed numerically.

u = —sgn(cos z1(t)) must crossy™. The formula (6) for)s is applied on intervals where

e All the trajectories that start inside must cross the ¢ andw are constant. At switching points, the value of

x1 axis. h must be updated by using the previous valué ahd

The descriptions of the trajectories starting from théhe value ofx at the switching point. In this manner

regionsA’, B, C' andD’ are analogous. the formula (6) can be used to derive an equation for
a particular switching curves(z2) = 0.

B. Switching curves The above observations are also useful for determin-

_ _ _ ~ing overlap curves, so we briefly outline the technique
Collecting the results of the previous section, we flnq:\ere though it will be applied later in Section II-

that every extremal trajectory reaching the origin angs overlap curves occur where two or more extremal
belonglngito the upper or lower half plane can switClyajectories reach the origin in minimum time. In order
only on y= or if z; = 5 + kn for somek € Z. {5 compute them, we would like to derive an explicit

Therefore, in order to detect other nontrivial switchinqormma for the time elapsed for an extremal trajectory
curves, we need to look for extremal trajectories react&-) reach the origin. From above we know that

ing the origin and crossing the axis. These switching
curves are identified with the regular submanifold of ; — ., — sgn(xQ)\/Q(h(I) —V2cos(z _UZ)) 7)
points such thais = 0. 4

The following observations will facilitate our analy-and, similarly
sis both of switching curves and of overlap curves. For N
a fixed value ofu, the system (1) admits a first integral  ;, = sgn (Sin (:vl _ UE)) \/2 _ (h(;c) _ ﬁ) . (8)

4 2

1, .
h(z) = 523 + coszy +usin; . (3)  Using equation (8) we obtain a formula f@K(z?, 1),
{e time elapsed along a extremal trajectory starting

Moreover we know that along an extremal trajector 0 : : :
om z" and ending at:*, as a function ofr,

the value of the Hamiltonian is a constant, which we"

call H. Using these two facts, we would like to obtain 0 1 3 dy

an explicit formula for); in order to find the switching T("2') = /0 A ©)
v \/2_ (h(x)—%)

curves. We have-\yzy + \o(sinz; — ucoszy) = H

SO /.\2 = ﬁ(sinml —ucosxy) — x% If zo # 0 and

T2

. . . This formula must be used on segments of an extremal
o # 0 we can locally view), as a function ofry and



where 2§ = —/2( 1—cosx1—|—smxl) ro(zy = %) =
—\/2(1—!-25111171 —V2), z2(zy = T) = —24/sinz and
za(wy = 3T) = —\/2(—1 +2sinzf + \/_

Note that the integrals in (10) are generalized in-
tegrals; that is, the integrands are not well-defined at
the extremes. The formula (10) applies#p< 0. Now
this must be connected with the segment dbr which
xo9 > 0, by using a continuity argument. In particular,

Fig. 2. Switching curveC'. we use the continuity ok at the intersection of and
the z; axis. The value of\ at the intersection point
can be derived from (10) and from the equation (2) by
passing to the limit ag, goes to0. The result is a

trajectory where the control does not switch and wherg tion of switching pointz® and the choice off.
sgn (sin (21 —uf)) is constant, However, we observe thdl = \o(sinz; —ucoszy) if

1) Switching curveC: In this section we consider z, = 0, so the value of\, at a point of ther; axis is the
the family of extremal trajectories that cross, with=  same for any extremal trajectory with Hamiltoni&h
-1, the segment of the; axis betweeD’ andA’ with  and passing through that point with= —1. So the fact
7 < 2 7, then switch fromu = —1towu = 1 on the line  that A, must be continuous at the intersection between
z1 = %, and finally, switch at a point® ony~, and 5 and thez; axis is not sufficient to determine the
fO||OW 7_ until reaching the origin. See Figure 2. Letcorresponding point of”. We must use the additional
C be (if it exists) the set of points belonging to thesénformation that\; = —\, is also continuous. We have
trajectories and corresponding } = 0. We want to that )
determine an equation that descrili&sTo do this we lim 922 . dhy A

. . = lim — = . 11
follow backwards the extremal trajectories that reach =0~ dwy  2—0t dwe 29 \xz—o (11)

the origin, integrating by quadratures the equation (6% that th i itchi ¢
Take an extremal trajectory as described above, ssum)ee aW|there EX'OS zng SW;Cgingsop?rzigt we
Y Z2 T1

and assume that the last switching before reaching the!’ *2 | ande — —1 betweens ard the ax
origin is atz0 — (10.49) € ~— with 20 < 7/4 and [18veu = —1 ande = —1 between; and the axisr,.

with A9 = 0. (We will comment on the case) > /4 We know th_at)\? :A 0 at the p0|(r)1tic: T_tlwentwelt(:)an find
below). Also, leti = (Z;,72) be a point ofy with 2" EXPressionio 2(22), @2 > 0 similar to (10)

Z1 > 3m/4 andz, < 0. Recall thatf is a fixed positive (72) = HE / (12)
real number along;, and we can rescalg; (3) such 2) ? ) 22— (= Ly2)2
that H = 1. We must determine the value bf-) along ?

each bang arc of. Using (3) we have thak(-) = 1 Now we differentiate (10) and (12) with respectits,
alongy~; h(-) = hy := 1+ 2sin ) for the bang arc of and after some manipulation pass to the limitas

7 whenz; € [29,Z]; and h(-) = hy := —1 + 2sin tends to0. The resulting expressions must be equal
for the bang arc of whenz; € [%, z;]. Also, referring thanks to (11). Finally, we arrive at the following
to Figure 2, the segments on whlc,hls monotone in €quation

zo arezy € [29,2], 21 € [5,27], anday € [, 4] /12(11 2 dy 7/12@1:%) dy
Also, e = —1 whenz; € [m(f, 7l e = +1 whenz, € Ja3 v 2= (- 1922 Jaae1=%) 42, /2 (h, — 142)2
[Z,27], ande = —1 whenz; € [T, 2], wheree = 7/w2<w1:%"> dy
sgn(sin 21 —u cos x1). Combining this information with Tr2@=3) y3\2 - (he - 5v%)? )
(6) we obtain - ﬁ A —
. 13) Jwg(wy==4) \/W
Ao (Z2) = H@(/jjmfﬁ 2 (h 133 1 o V2dy
,_/22(11 ) /12(213%) dy . 722 = h3) ) 42 =hp) Jaz (2 (hy — 3v2)? -
w201=8) 422 — (b1 - Ju)? - zvh)? Jr2n=%) y%/2- (e - 39%)*  This givesi, (and therefore als®q, sinceh(zy, &s) =
+ [ d—y) h) in terms of z° € ~~. Therefore the switching

Joa(r=2F) 42, /2 — (hy — $y2)2

ao curveC can be determined by solving numerically the



previous equation.

We conclude this section with a few remarks. First,
there exists a switching curvé’ symmetric to C
(z € C if and only if —z € C’). Second, for the same
family of extremal trajectories, any switching curve that
precedeg” (in time) cannot be optimal. Indeed, if we
assume that the; coordinate for the new switching
point is less thadn /2 (otherwise there would be a self-
intersection of the corresponding extremal trajectory
that would imply a loss of optimality) and we write the
equality obtained from (11), it turns out that the right-
hand side and the left-hand side of such an equation
has different signs. For the case wh;e‘f] > 7, one
simply removes the first integral in (13) and modifies
the lower limit of the second integral to be&). By trajectories starting at a point df3 have a symmetric
solving numerically the resulting equation, one obtainsehaviour, in the sense that they switch for the first
an expression for a switching curve which starts at thgme, respectively, orC' and ¢’ and for the last time
final point of the switching curve obtained by (13).on~~ andy*. The complete synthesis around the point
Finally we mention that it is possible to prove that ther, 0) can be completed using symmetry with respect
only switching curves inside regior@, C' are those to the point(r,0). Figure 3 provides a sketch of the
corresponding tary = 5 + k. optimal synthesis around the poifit, 0).

o In order to show how to determine explicitly the

C. Overlap curves and switching curves aroud0)  gyeriap curves previously defined we derive an equation

In Section II-B.1 we examined a candidate switchingor K. As in Section II-B.1, we consider an extremal
curve C' and we analyzed an extremal trajectory thatrajectory that starts at a point € K; and whose
switches atz’ € y~. We can determine by direct last switching before reaching the origin with= —1
computation that ifz{ is large enough, then the cor-occurs at” € 4. Using equations (7) and (8) on each
responding switching point of’, obtained by solving bang arc where the extremal trajectory is either strictly
(10), belongs to regiorA. Therefore there exists a monotone inz; or in w», it is possible to obtain a
second extremal trajectory starting atwith control formula for the elapsed time, as in (9). We assume that
u = 1, then switching atr; = 37“ and reaching the 2! < /2, but if not, one can proceed in the same way
origin with an arc ofy™. It is also possible to determine to find a similar equation. This procedure can now be
numerically that ifz{ is larger than a valuer 0.53, the repeated for the other trajectory that reaches the origin
extremal trajectory starting ate C with « = 1 is time by switching at a point! € 4. By propagating values
optimal. of h(-) on each bang arc it can be determined that

We deduce that the switching curéé is not com- 1 := 2r—arcsin ( sinz9+sin ;). The equation for the
pletely optimal and there exists an overlap cuidg overlap curve is obtained by setting the times to reach
which starts at a point of’. On the other hand, it is the origin along the two possible extremal trajectories
possible to see, still numerically, that there is a poirgqual, to yield:

Fig. 3. Optimal synthesis aroun, 0)

of C corresponding tar! ~ 0.3, at which the tangent 29 dy -z dy

vector toC' is parallel to the vector field corresponding /o 2 (1- Ly2)? +/z?f% V/2h1 — 2vZcosy

to u = 1. At this point a second overlap curv&, +/57w dy +/2¢—9 dy
starts. See Figure 3. Associated to each point of this T3 \Jahy —2vEcosy 0 V2= (ha = $42)2
curve there are two optimal trajectories: the first one +/fz dy _ /%" dy

starts with controb: = —1 and reaches ™ at a point 0 2= (he = 3y®)? UTimF \fahg — 2v2cosy
corresponding to a small value of, while the second +/ﬁ+% W +/’% W
one starts with controk = 1, then switches o’ and T Vha—2vEeosy 0 (20— 52

ends again ony~. The curveK, ends at a point in where
which a further overlap curve(s is generated. This z3= —/2(1—cosaz{+sina?), Zo=/2(ha—cosz1+sinz1),
curve contains the poirtr, 0) and the two time optimal z} = /2(1 — coszl —sinzl), by = 1 + 2sinz?, hy =




(@) a (N

7
7

AN
o~

Fig. 4. The complete time optimal synthesis

—1 + 2sinaf, hs = —1 + 2sina{ + 2sinzy, and hy =
1+2sinz{ +2sinz;. It is also possible to find equations
for Ky and K3, using (7) and (8) and with the help of
the expressions of the switching curv&sandC’ found

there is an overlap curv& winding around the cylin-
der, betweeny™ andx*, dividing C' in two parts with
different optimal strategies.

e If o belongs to the regiorB’, A’, D, C’ the optimal
strategy is obtained by symmetry with respect to the
origin.

The qualitative shape of the optimal synthesis is now
completely clarified. After solving the equations given
in the previous sections that describe the switching
curves and the overlap curves, and the analogous equa-
tions that determine the curv€ defined above, one can
easily obtain, with the help of matlab simulations, the
global shape of the synthesis, as depicted in Figure 4.
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