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Abstract

This paper presents qualitative results on the global structure of the time optimal
trajectories of the planar pendulum on a cart. This mechanical system is a benchmark to
test nonlinear control methods and various papers addressed the problem of computing
time optimal open-loop controls. Relying on the theory of optimal synthesis, we provide
a discontinuous feedback giving optimal solutions for any initial data. The approach is
that of geometric control theory.
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1 Introduction

This paper concerns the global structure of the time optimal trajectories to swing up a
planar pendulum on a cart. We consider only the dynamics of the pendulum and take the
acceleration w of the cart as the control input. Let x1 be the angle between the pendulum
and the upright position, increasing in the clockwise direction. The equations of motion are

ẋ1 = x2

ẋ2 =
mgl

I
sin x1 −

mgl

I
u cos x1 , (1)

where m is the pendulum’s mass, I its moment of inertia, l the distance from the pivot to
centre of mass, g ≈ 9.81 the gravitational field strength, and u = w

g is the control input.
The domain of the system is the cylinder S × R.

Global stabilization of this model has been studied as a benchmark for nonlinear control
by many researchers, for instance, [21], [3], [16], to name a few. Time optimal synthesis
has been studied recently in [4] and [25]. These papers are focused on computing exact
switching times for an open loop control starting from the down equilibrium. In contrast,
we are interested in computing a globally defined feedback control. Notice that, in the recent
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paper [15], the same problem has been studied with the help of numerical simulations in
the case of a pendulum with controlled torque.

Our approach is that of geometric control, whose birth, around the 1960’s, was characterized
by the systematic use of differential geometry tools. Since then, optimal control problems of
increasing difficulty have been addressed, permitting solutions through a systematic method.
Briefly, this method can be summarized in four steps:

(1) Study the properties of optimal trajectories using necessary conditions, for instance
in the form of the well known Pontryagin Maximum Principle (PMP).

(2) Determine a finite dimensional family of trajectories, sufficiently large to contain an
optimal trajectory for every initial datum. (By finite dimensional family it is meant
a family of trajectories parametrized by a finite number of parameters. In this case
one could choose as parameters the lengths of the bang and singular arcs arising from
the PMP.)

(3) Select one trajectory for every initial datum to define a synthesis.

(4) Prove that the necessary conditions on each trajectory, plus mild regularity conditions
on the whole synthesis, result in a synthesis that is optimal. Alternatively one can try
to prove optimality directly by comparing the selected trajectories with all the other
trajectories obtained at step (2) and corresponding to the same initial datum.

Some of the applications concern mechanical systems [17, 19] and quantum control [9, 10].
Still, success with this approach has been achieved only for special systems [22] or for
systems in low dimension. Particular attention has been payed to minimum time problems
on two dimensional manifolds. The first results are probably those of Baitman [5, 6]. Next,
a series of works of Sussmann dealt with the analytic case [23, 24]. Finally, the generic C∞

case was treated in [12, 13]. A general account of these results, together with a complete
analysis of singularities and the minimum time function, can be found in [11].

For single input systems with bound on the control, e.g. |u| ≤ 1, the general outcome is the
following. Under generic assumptions, minimum time syntheses correspond to discontinuous
controls which are equal to ±1 on two dimensional regions, and can be singular (i.e. not
equal to ±1) only on special curves called turnpikes. The phase portrait of the optimal flow
contains some special curves, called switching curves, where bang-bang optimal controls
switch from +1 to −1 and viceversa. Moreover, some overlap curves appear, where points
can follow more than one optimal trajectory to reach the target. Sometimes such curves
are called cut loci, because two different optimal flows meet (going backwards in time) and
lose optimality after such curves.

The system treated in this paper does not satisfy the genericity assumptions required in
[11]. However, we can still use the same geometric control approach to determine the shape
of the optimal synthesis. Some switching and overlap curves are determined numerically, by
solving implicitly defined equations. However, even in the case of explicit equations for the
optimal synthesis phase portrait, one has to deal with numerical evaluations for application
to the real system. Thus, this is not a great limitation.

The paper is organized as follows. In Section 2 we give a brief description of the theory of
time optimal syntheses for control affine systems in the plane. Then in Section 3 we apply
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these results to the pendulum problem. In particular we are able to determine the switching
curves and overlap curves by solving numerically suitable implicit equations. In Section 4
we assemble all the results obtained in order to give a complete description of the optimal
synthesis.

2 Background

We begin by reviewing some results from the geometric theory of optimal control [11] in
the special case of control affine systems in R

2. Consider a control system of the form

ẋ = F (x) + G(x)u (2)

where F and G are smooth vector fields in R
2 and u is a scalar input satisfying the constraint

|u| ≤ 1. Any trajectory of (2) joining two points x0, x1 in minimum time is called a time
optimal trajectory. We then consider the problem of determining all the time optimal
trajectories x : [0, T ] → R

2 such that x(T ) = 0; a solution to this problem is called a time
optimal synthesis.

Let
X = F − G , Y = F + G .

A bang-bang trajectory of (2) is a concatenation of X and Y trajectories. We write X ∗ Y
to mean a Y trajectory followed by an X trajectory.

If (γ, u) are a trajectory-control pair for the system (2) a covector field along (γ, u) is
an absolutely continuous function λ : [0, T ] → R

2 that satisfies the linear time-varying
differential equation

λ̇(t) = −λ(t) ·
[

∂F

∂x
(γ(t)) + u(t)

∂G

∂x
(γ(t))

]

a.e. t ∈ [0, T ] . (3)

The Hamiltonian is defined as

H(x, λ, u) = λ · (F (x) + uG(x)) .

The Pontryagin Maximum Principle says that if (γ, u) is a time optimal trajectory-control
pair, then there exists a nontrivial field of covectors λ along γ and a constant λ0 ≤ 0 such
that for a.e. t ∈ [0, T ]
(i) λ satisfies (3) ,
(ii) H(γ(t), λ(t), u(t)) + λ0 = 0 ,
(iii) H(γ(t), λ(t), u(t)) = maxu′∈[−1,1]{H(γ(t), λ(t), u′)} .
A trajectory that satisfies the PMP is called an extremal trajectory and (γ, λ) are called an
extremal pair. If λ0 = 0, then the trajectory is called an abnormal extremal.

The continuous function φ(t) = λ(t) · G(γ(t)) is called the switching function. If φ(t) 6= 0
then the optimal control is u(t) = sgn(φ(t)). One would like to determine when u(t) changes
value, namely when φ(t) = 0. First, it is easily shown that φ is differentiable and

φ̇(t) = λ(t) · [F,G](γ(t)) ,

where [F,G] = ∇G · F −∇F · G is the Lie bracket of F and G. An extremal trajectory γ
defined on an interval [c, d] is said to be singular or a Z-trajectory if φ = 0 on [c, d]. If γ
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is singular on [c, d] we have φ(t) = φ̇(t) = 0 on [c, d]. That is, λ(t) · G = λ(t) · [F,G] = 0.
Since λ(t) 6= 0 we have that G and [F,G] are parallel.

Following [23] we define the following scalar functions on R
2:

∆A(x) := det(F (x), G(x))

∆B(x) := det(G(x), [F,G](x)) ,

where the notation (F,G) means the 2 × 2 matrix formed by columns F and G. The first
function ∆A(x) is for locating abnormal extremals. Suppose that at some time t along an
extremal trajectory γ, φ(t) = 0 and G(γ(t)) 6= 0. Then it can be shown ([11], p. 45) that
γ is an abnormal extremal iff for every t with φ(t) = 0 one has ∆A(γ(t)) = 0. Clearly, the
second function ∆B(x) is to locate singular trajectories. It can be shown that under certain
generic conditions, singular trajectories are of a particular type called regular turnpikes.
Since it will be shown that the pendulum does not have singular trajectories, we will not
go further into characterizing properties of regular turnpikes. See [11] for details.

So far we have described a simple test to locate abnormal and singular trajectories. One
would like to determine the behavior of optimal trajectories which are instead bang-bang.
To this end, a point x ∈ R

2 is called an ordinary point if ∆A(x) · ∆B(x) 6= 0. If we define
the sets ΩA = {x : ∆A(x) 6= 0} and ΩB = {x : ∆B(x) 6= 0} then the set of ordinary points
is Ω = ΩA ∩ΩB. Now we can study bang-bang trajectories on Ω. On Ω we define the scalar
functions f and g which are the coefficients of the linear combination

[F,G](x) = f(x)F (x) + g(x)G(x) .

One can show that f(x) = −∆B

∆A
([23], p. 447). Let U ⊂ Ω and suppose that f > 0 on U ,

the opposite case being analogous. Let (γ, λ) be an extremal pair such that γ is contained
in U . Suppose that t is a switching time, i.e. λ(t) · G(t) = 0. Then

φ̇(t) = λ(t) · [F,G](γ(t))

= λ(t) · (fF + gG)(γ(t))

= f(γ(t))
(

λ(t) · F (γ(t))
)

.

From the PMP we have that H(γ(t), λ(t)) = λ(t) · F (γ(t)) ≥ 0. Hence, φ̇ ≥ 0. But we
cannot have λ(t) · F (γ(t)) = 0, otherwise F (γ(t)) and G(γ(t)) would be parallel and γ(t)
would not be a ordinary point. So we find φ̇(γ(t)) > 0. This shows that φ has at most
one zero along γ with positive derivative at the switching time. We have just proved the
following useful result due to Sussmann ([23], p. 443).

Theorem 1. Let U ⊂ Ω. Then all time optimal trajectories γ of the system (2) restricted to
U are bang-bang with at most one switching. Moreover, if f > 0 throughout U then γ is an
X, Y , or Y ∗ X trajectory; if f < 0 throughout U then γ is an X, Y , or X ∗ Y trajectory.

Finally, we discuss a method to construct the optimal synthesis once the properties of
singular and bang-bang trajectories have been exploited. Under certain generic conditions,
one can prove that there exists a bound on the number of bang and singular arcs. See ([11],
p. 48). One can then devise a finite, inductive, conceptual algorithm with the induction on
the number of bang or singular arcs. Under the generic conditions, the qualitative features
of the synthesis can be classified, in the spirit of the qualitative classification of generic flows
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Figure 1: Phase portraits for u = ±1.

on 2D manifolds due to Peixoto [18]. The qualitative features are in the form of boundary
curves and points called frame curves and frame points. Under the generic conditions, the
algorithm generates five types of frame curves:

1. The trajectories γ̂+ and γ̂− which are the X and Y trajectories that reach the origin.

2. Singular trajectories called S curves.

3. Switching curves, called C curves.

4. Overlap curves, formed by points where two distinct optimal trajectories can reach
the origin; called K curves.

5. The topological frontier of the set of states that can reach the origin, called a B curve.

Topologically distinct frame points can similarly be classified. This information is then
used to obtain a qualitative picture of the optimal synthesis. Unfortunately, the pendulum
system does not satisfy the generic conditions of these results, but we can still use the
inductive algorithm and see that it terminates.

3 Analysis of the pendulum system

We consider the time optimal synthesis of the pendulum with equations of motion corre-
sponding to mgl

I = 1 and with the bound |u| ≤ 1, so that (1) becomes

ẋ1 = x2

ẋ2 = sin x1 − u cos x1 . (4)

Therefore, we have F (x) =
( x2

sin x1

)

and G(x) =
( 0

− cos x1

)

. In the sequel, it will be

useful to refer to the phase portraits for (4) with u = ±1, as shown in Figure 1. The optimal
trajectories will be concatenations of trajectory segments of these two phase portraits. We
consider the following problem.
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Problem. For every (x̄1, x̄2) ∈ S × R find a trajectory-control pair (γ(·), u(·)) defined on
[0, T ] and such that γ is time optimal between γ(0) = (x̄1, x̄2) and γ(T ) = 0.

In order to solve this problem one first needs to prove that the system is globally stabilizable
at the origin. This can be easily done by using classical results in geometric control theory
on global controllability. In particular, since all the trajectories of (4) corresponding to u
constant, with the exception of the separatrices, are closed and {F,G} defines a bracket-
generating family of vector fields, we can apply the Rashevsky-Chow Theorem (see [1],
Theorem 5.9, p. 67) to conclude that the attainable set from every point coincides with
the whole cylinder. Finally, for every initial datum (x̄1, x̄2), the existence of a time optimal
trajectory reaching the origin can be derived, when u(·) belongs to the class of measurable
functions with |u| ≤ 1, from Filippov Theorem (see [1], Corollary 10.7, p. 143).

We can now apply the general theory recalled in the previous section. The Hamiltonian is

H = λ1x2 + λ2(sin x1 − u cos x1) ,

and the adjoint variables satisfy the differential equation

λ̇1 = −λ2(cos x1 + u sinx1)

λ̇2 = −λ1 . (5)

The switching function is φ = −λ2 cos x1 and the optimal control is u∗(t) = sgn(φ(t)). From
this we deduce that switchings occur only if λ2 = 0 or if x1 = π

2 + kπ, k ∈ Z.

We compute the Lie bracket

[F,G](x) = cos x1
∂

∂x1
+ x2 sin x1

∂

∂x2

and the functions

∆A(x) = −x2 cos x1

∆B(x) = cos2 x1 .

The set of ordinary points is Ω = {x : x2 6= 0, x1 6= ±π
2 }. Also

f(x) = −∆B

∆A
=

cos x1

x2
.

Ω is split into four regions where f has a constant sign. In the region

{

x | x1 ∈ (−π

2
,
π

2
), x2 > 0

}

∪
{

x | x1 ∈ (−π,−π

2
) ∪ (

π

2
, π), x2 < 0

}

(6)

f(x) > 0 so by Theorem 1, the optimal control can switch at most once from u = −1 to
u = +1. In the region

{

x | x1 ∈ (−π

2
,
π

2
), x2 < 0

}

∪
{

x | x1 ∈ (−π,−π

2
) ∪ (

π

2
, π), x2 > 0

}

(7)

f(x) < 0, and the optimal control can switch at most once from u = +1 to u = −1.
See Figure 2. Note that pendulum system does not satisfy all the generic conditions in
([11], p. 48), since both the sets ∆−1

A (0) and ∆−1
B (0) contain the line x2 = 0 and therefore
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Figure 2: Regions where f > 0 and f < 0 for the pendulum system.

∆−1
A (0) ∩ ∆−1

B (0) is not locally finite. Nevertheless, the analyticity of (4) allows to exclude
pathological behaviours [24], such as the Fuller phenomenon, so that we will be able to
construct an optimal synthesis.

We have established some basic features of the optimal synthesis using ideas from [23]. In
the next two subsections, these results are refined. In Section 3.1, we identify properties
of extremal trajectories. First, we eliminate the possibility of singular extremals. Then we
examine the trajectories γ+ and γ− which form a skeleton of the synthesis, and we examine
those extremal trajectories that switch onto γ+ and γ−. Second, in Section 3.2, we identify
and analytically characterize candidate switching and overlap curves.

3.1 Extremal trajectories

In this section we identify properties of the extremal trajectories. We assume w.l.o.g. that
extremal trajectories reach the origin at t = 0; thus, time is negative and increasing.

First, we observe that there are no optimal trajectories containing singular arcs. Indeed a
singular arc must be contained inside ∆−1

B (0) i.e. it must be a vertical segment, which is
not allowed by equation (4).

Now we consider γ+ and γ−, those trajectories that reach the origin and whose final bang
arcs before reaching the origin, γ̂+ and γ̂−, form the first step of the algorithm described
in Section 2.

Definition 1. Let γ+ (resp. γ−) be the trajectory of (4) defined on (−∞, 0] that reaches the
origin with u = 1 (resp. u = −1) at time t = 0 and such that the control switches occur
exactly at x1 = π

2 + kπ, k ∈ Z.

The bold, black curve in Figure 3 depicts γ+ and γ−.

Remark 1. The controls corresponding to γ+ and γ− are (almost everywhere) u(t) = sgn(cos x1(t))
and u(t) = − sgn(cos x1(t)), respectively.

The trajectories γ+ and γ− play an important role in the construction of the synthesis, as
will be clear after the following proposition and corollary.
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The following result exhibits the main properties of the extremal trajectories for the pen-
dulum system, and it is our main guide for determining the switching curves.

Proposition 1. Consider a bang-bang trajectory of (4), x(·) = (x1(·), x2(·)) : [t1, t2] → R,
with x2(t) 6= 0 on (t1, t2) and let S be the set of switching times of x(·) and K = {t ∈
(t1, t2) : x1(t) = π

2 + kπ , ∃k ∈ Z}. Then x(·) is extremal if and only if one of the following
three possibilities is satisfied:

(i) K = S,

(ii) there exists t̄ ∈ (t1, t2) \K such that S = K ∪ {t̄} and u(t) = − sgn(x2) sgn(cos x1(t))
a.e. on (t1, t̄), while u(t) = sgn(x2) sgn(cos x1(t)) a.e. on (t̄, t2)

(iii) there exists t̄ ∈ K such that S = K \ {t̄} and u(t) = − sgn(x2) sgn(cos x1(t)) a.e. on
(t1, t̄), while u(t) = sgn(x2) sgn(cos x1(t)) a.e. on (t̄, t2).

Proof. Let x(·) be an extremal trajectory which does not intersect the x1 axis. Then
we have u(t) = sgn(φ(t)) = − sgn(λ2(t)) sgn(cos x1(t)). Therefore (i) is equivalent to
sgn(λ2(t)) = κ a.e (where κ ∈ {−1, 1}), while one among the cases (ii) and (iii) holds if
and only if sgn(λ2(t)) = sgn(x2(t)) a.e on (t1, t̄) and sgn(λ2(t)) = − sgn(x2(t)) a.e on (t̄, t2).
Assume that x(·) does not satisfy (i), then in particular there exists t̄ ∈ (t1, t2) such that
λ2(t̄) = 0. Then, using the fact that H = λ1(t̄)x2(t̄) > 0, we obtain sgn(λ1(t̄)) = sgn(x2(t̄)).
From this equality and since λ̇2 = −λ1, we find that sgn(λ2(t)) = sgn(x2(t̄)) on (t̄ − ǫ, t̄)
and sgn(λ2(t)) = −sgn(x2(t̄)) on (t̄, t̄ + ǫ). To prove that x(·) satisfies either (ii) or (iii)
it is enough to see that, if the sign of x2 is fixed, then there is only one time t̄ with
λ2(t̄) = 0. Assume by contradiction that t̄1 < t̄2 are such that λ2(t̄1) = λ2(t̄2) = 0 and
λ2(·) 6= 0 on (t̄1, t̄2). Then, since sgn(λ2(t)) = −sgn(x2) on (t̄1, t̄1 + ǫ) and sgn(λ2(t)) =
sgn(x2) on (t̄2 − ǫ, t̄2) the continuous function λ2(·) must be zero somewhere on (t̄1, t̄2)
and we find a contradiction. We have therefore proved that every extremal trajectory with
x2(·) 6= 0 satisfies one among (i), (ii) and (iii). Conversely, it is clear from the previous
arguments that every bang-bang trajectory x(·) satisfying (ii) or (iii) satisfies the PMP
with λ(t̄) = (sgn(x2), 0). When (i) holds the PMP is satisfied with λ(t1) = (sgn(x2), 0) if
u(·) = sgn(x2) sgn(cos x1(·)) or λ(t2) = (sgn(x2), 0) if u(·) = −sgn(x2) sgn(cos x1(·)).

Remark 2. Note that Proposition 1 agrees with the conclusions of Theorem 1. The extra
information provided in Proposition 1 concerns the possibility of switching when cos(x1) = 0,
i.e. when f(x) changes sign.

The previous statement can be applied to the trajectories γ+ and γ− so that we obtain the
following important result.

Corollary 1. The trajectory γ+ (resp. γ−) is extremal on any interval [t̄, 0], t̄ < 0, and for
every point p of γ+ (resp. γ−), there exists an extremal trajectory that reaches γ+ (resp.
γ−) for the first time at p and then follows γ+ (resp. γ−) until it touches the origin.

Remark 3. We comment on the existence of abnormal extremals. If we choose initial con-
ditions x(0) = 0 and λ(0) = (1, 0), then H = 0. This implies λ2 6= 0 for every point of the
extremal trajectory such that x2 6= 0 (otherwise λ2 = 0 and H = 0 imply λ1 = 0, which
is impossible from PMP). Thus, for x(0) = 0 and λ(0) = (1, 0), γ− is the corresponding
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extremal trajectory and it is an abnormal extremal. Analogously, taking λ(0) = (−1, 0), we
find that γ+ is an abnormal extremal. Clearly there are no other abnormal extremals reach-
ing the origin. Otherwise, there would exist a point in γ± with λ2 = 0 and so H = λ1x2 = 0
would imply λ1 = 0, which is impossible.

The results so far on extremal trajectories permit a partition of the cylinder into regions in
which the behaviour of extremal trajectories has common qualitative properties. Referring
to Figure 3, we describe boundaries of these regions by identifying particular trajectories.
Notice in the following descriptions that we often make no distinction between a trajectory
and its graph.

• Let ξ+ : [0,+∞) → S×R be the trajectory of (4) corresponding to u = sgn(cos x1(t)) ,
such that lim

t→+∞
ξ+(t)= (π

4 , 0) , ξ+
2 (0) = 0 and ξ+

2 (t) < 0 , ∀t > 0.

• Let χ+ : R → S × R be the trajectory of (4) corresponding to u = sgn(cos x1(t)) ,
such that lim

t→+∞
χ+(t)= (π

4 , 0) , χ+
1 (0) = 0 and χ+

1 (t) 6= 0 , ∀t > 0.

• Let η+ : (−∞, 0] → S×R be the trajectory of (4) corresponding to u = sgn(cos x1(t)) ,
such that lim

t→−∞
η+(t)= (π

4 , 0) , and η+ ∩ γ− = η+(0).

• Let t+ < 0 be the largest negative time such that the x1 component of γ+(t+) vanishes.

Remark 4. Although χ+ is an extremal trajectory for the minimization problem, an arbitrary
arc of it can never belong to an optimal trajectory reaching the origin. Indeed, from Propo-
sition 1, this trajectory should follow χ+ until it reaches the point (π

4 , 0), which actually
never happens, since (π

4 , 0) is an equilibrium point.

Referring to Figure 3, we call D the region enclosed by ξ+ and by the segment joining ξ+(0)
with (π

4 , 0). The region C is defined as the strip whose boundary is the union of γ+, χ+, η+

and the arc of γ− between η+(0) and the origin. The region B is the strip whose boundary
is the union of the restriction of χ+ to (−∞, 0), the restriction of γ+ to (−∞, t+), and
the segment joining χ+(0) with γ+(t+). The regions B′, C′, D′ are obtained from B, C,
D by symmetry with respect to the origin. Finally A (resp. A′) is the complement of
B∪C∪D∪B′∪C′∪D′ in the upper (resp. lower) half-plane.

Now we give a brief description of the trajectories of (4) satisfying the conditions given
by Proposition 1 inside the regions A, B, C, and D, until they reach their corresponding
boundaries.

• If the initial condition for the minimization problem is inside A then it is easy to see
that the trajectories corresponding to u = − sgn(cos x1(t)) must reach the boundary
of A at some point of γ+. On the other hand all the trajectories corresponding to
u = sgn(cos x1(t)) reach the boundary of D, D′ or C′.

• If the initial condition is inside B then all the trajectories reach the boundary in a
point of γ+ or of the segment connecting χ+(0) and γ+(t+).

• If the initial condition is inside C then the trajectories corresponding to u = sgn(cos x1(t))
stay in C until they reach γ−, while every trajectory corresponding to u = − sgn(cos x1(t))
must cross χ+.

9



+

χ (0)

χ+ +

χ (0)

χ+

DD
C

B

B

A

A
A

D D

A

C

ξ+

ξ (0)+ξ (0)+

ξ+

π−π

−γ

γ+

+η

+γ (   )t

+

Figure 3: Partition of S × R

• All the trajectories that start inside D must cross the x1 axis.

The descriptions of the trajectories starting from the regions A′, B′, C′ and D′ are analo-
gous.

3.2 Switching curves

Collecting the results of the previous section, we find that every extremal trajectory reaching
the origin and belonging to the upper or lower half plane can switch only on γ± or if
x1 = π

2 +kπ for some k ∈ Z. Therefore, in order to detect other nontrivial switching curves,
we need to look for extremal trajectories reaching the origin and crossing the x1 axis. The
switching curves are identified with the regular submanifold of points such that λ2 = 0.

The following observations will facilitate our analysis both of switching curves and of overlap
curves. For a fixed value of u, the system (4) admits a first integral

h(x) =
1

2
x2

2 + cos x1 + u sin x1 . (8)

Moreover we know that along an extremal trajectory the value of the Hamiltonian is a
constant, which we call H. Notice that, since we can rescale λ by an arbitrary positive
factor, we can assume w.l.o.g. that H = 1. Using these facts, we would like to obtain an
explicit formula for λ2 in order to find the switching curves. We have

−λ̇2x2 + λ2(sin x1 − u cos x1) = H =⇒ λ̇2 =
λ2

x2
(sin x1 − u cos x1) −

H

x2
.

If x2 6= 0 and ẋ2 6= 0 we can locally view λ2 as a function of x2 and we obtain

λ̇2

ẋ2
=

dλ2

dx2
=

λ2

x2
− H

x2(sin x1 − u cos x1)
.

10



The right-hand side of this equation can be written in terms of x2 only by using h(x). If
u = ±1 we have

sin x1 − u cos x1 =
√

2 sin(x1 − u
π

4
) ,

while

h(x) =
1

2
x2

2 + cos x1 + u sin x1 =
1

2
x2

2 +
√

2 cos(x1 − u
π

4
) .

Combining this information we obtain

dλ2

dx2
=

λ2

x2
− κ

H

x2

√

2 − (h − 1
2x2

2)
2

where κ = sgn(sin x1 − u cos x1) is the only term depending on x1. The explicit solution
to this equation, with initial condition λ2(x

0
2) = λ0

2, can be obtained via the method of
variation of parameters:

λ2(x2) = x2

(

λ0
2

x0
2

− κH

∫ x2

x0
2

dy

y2
√

2 − (h − 1
2y2)2

)

(9)

This integral cannot be solved exactly, but it can be written in terms of elliptic integrals,
and therefore it can be easily computed numerically.

The formula (9) for λ2 is applied on intervals where κ and u are constant. At switching
points, the value of h must be updated by using the previous value of h and the value of
x1. In this manner the formula (9) can be used to integrate through all the switchings and
segments with constant κ of an extremal trajectory to obtain an analytical expression for a
particular switching curve λ2(x2) = 0.

The above observations are also useful for determining overlap curves, so we briefly outline
the technique here, though it will be applied later in Section 3.3. Overlap curves occur
where two or more extremal trajectories reach the origin in minimum time. In order to
compute overlap curves, we would like to derive an explicit formula for the time elapsed for
an extremal trajectory to reach the origin. From above we know that

ẋ1 = x2 = sgn(x2)

√

2
(

h(x) −
√

2 cos(x1 − u
π

4
)
)

(10)

and, similarly

ẋ2 =
√

2 sin
(

x1 − u
π

4

)

= sgn
(

sin
(

x1 − u
π

4

)

)

√

2 −
(

h(x) − x2
2

2

)2

. (11)

Using equation (11) we obtain a formula for T (x0, x1), the time elapsed along a extremal
trajectory starting from x0 and ending at x1, as a function of x2

T (x0, x1) =

∫ x1
2

x0
2

dy
√

2 −
(

h(x) − y2

2

)2
. (12)

This formula must be used on segments of an extremal trajectory where the control does
not switch and where sgn

(

sin
(

x1 − uπ
4

))

is constant.

11
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Figure 4: Switching curve C.

3.2.1 Switching curve C

In this section we consider the family of extremal trajectories that cross, with u = −1, the
segment of the x1 axis between D′ and A′ with x1 < 3π

2 , then switch from u = −1 to u = 1
on the line x1 = π

2 , and finally, switch at a point x0 on γ−, and follow γ− until reaching the
origin. See Figure 4. Let C be (if it exists) the set of points belonging to these trajectories
and corresponding to λ2 = 0. We want to determine an equation that describes C. To
do this we follow backwards the extremal trajectories that reach the origin, integrating by
quadratures the equation (9).

Take an extremal trajectory γ̃ as described above, and assume that the last switching before
reaching the origin is at x0 = (x0

1, x
0
2) ∈ γ−, with x0

1 < π/4 and with λ0
2 = 0. (We will

comment on the case x0
1 ≥ π/4 below). Also, let x̄ = (x̄1, x̄2) be a point of γ̃ with x̄1 > 3π/4

and x̄2 < 0. Recall that H is a fixed positive real number along γ̃, and we can rescale λ1(x
0
2)

such that H = 1. We must determine the value of h(·) along each bang arc of γ̃. Using
(8) we have that h(·) = 1 along γ−; h(·) = h1 := 1 + 2 sin x0

1 for the bang arc of γ̃ when
x1 ∈ [x0

1,
π
2 ]; and h(·) = h2 := −1 + 2 sin x0

1 for the bang arc of γ̃ when x1 ∈ [π2 , x̄1]. Also,
κ = −1 when x1 ∈ [x0

1,
π
4 ], κ = +1 when x1 ∈ [π4 , 3π

4 ], and κ = −1 when x1 ∈ [3π
4 , x̄1],

where κ = sgn(sin x1 − u cos x1). Referring to Figure 4, we notice that in such segments γ̃
is monotone with respect to x2. Combining these informations with (9) we obtain

λ2(x̄2) = Hx̄2

(
∫ x2(x1= π

4
)

x0
2

dy

y2
√

2 − (h1 − 1
2y2)2

−
∫ x2(x1=

π

2
)

x2(x1= π

4
)

dy

y2
√

2 − (h1 − 1
2y2)2

−
∫ x2(x1=

3π

4
)

x2(x1= π

2
)

dy

y2
√

2 − (h2 − 1
2y2)2

+

∫ x̄2

x2(x1=
3π

4
)

dy

y2
√

2 − (h2 − 1
2y2)2

)

, (13)

where

x0
2 = −

√

2(1 − cos x0
1 + sin x0

1) , x2(x1 =
π

4
) = −

√

2(1 + 2 sin x0
1 −

√
2) ,

x2(x1 =
π

2
) = −2

√

sin x0
1 , x2(x1 =

3π

4
) = −

√

2(−1 + 2 sin x0
1 +

√
2) .
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Note that the integrals in (13) are generalized integrals; that is, the integrands are not
well-defined at the extremes.

The formula (13) applies to x̄2 < 0. Now this must be connected with the segment of γ̃
for which x2 > 0, by using a continuity argument. In particular, we use the continuity of
λ at the intersection of γ̃ and the x1 axis. The value of λ at the intersection point can be
derived from (13) and from the equation (5) by passing to the limit as x̄2 goes to 0. The
result is a function of switching point x0 and the choice of H. However, we observe that
H = λ2(sin x1−u cos x1) if x2 = 0, so the value of λ2 at a point of the x1 axis is the same for
any extremal trajectory with Hamiltonian H and passing through that point with u = −1.
So the fact that λ2 must be continuous at the intersection between γ̃ and the x1 axis is not
sufficient to determine the corresponding point of C.

We must use the additional information that λ1 = −λ̇2 is also continuous. We have that

lim
x2→0−

dλ2

dx2
= lim

x2→0+

dλ2

dx2
=

λ̇2

ẋ2
∣

∣x2=0
. (14)

Assume that there exists a switching point x̃ = (x̃1, x̃2) ∈ γ̃ with x̃2 > 0 and x̃1 > 3π
4 , so

that we have u = −1 and κ = −1 between x̃ and the axis x1. We know that λ2 = 0 at the
point x̃. Then we can find an expression for λ2(x2), x2 > 0 similar to (13)

λ2(x̄2) = Hx̄2

∫ x̄2

x̃2

dy

y2
√

2 − (h2 − 1
2y2)2

. (15)

Now we differentiate (13) and (15) with respect to x̄2, then apply the identity

∫ z2

z1

dy

y2
√

2 − (h − 1
2y2)2

= −

√

2 − (h − 1
2y2)2

y(2 − h2)

∣

∣

∣

∣

∣

z2

z1

− 1

4(2 − h2)

∫ z2

z1

y2dy
√

2 − (h − 1
2y2)2

(16)

to the last integral of (13) and to the one of (15), and finally pass to the limit as x̄2 tends to
0. The resulting expressions must be equal thanks to (14). Thus, we arrive at the following
equation

∫ x2(x1= π

4
)

x0
2

dy

y2
√

2 − (h1 − 1
2y2)2

−
∫ x2(x1= π

2
)

x2(x1=
π

4
)

dy

y2
√

2 − (h1 − 1
2y2)2

−

−
∫ x2(x1= 3π

4
)

x2(x1= π

2
)

dy

y2
√

2 − (h2 − 1
2y2)2

− 1

4(2 − h2
2)

∫ 0

x2(x1=
3π

4
)

y2dy
√

2 − (h2 − 1
2y2)2

=

=

√

2 − (h2 − 1
2 x̃2

2)
2

x̃2(2 − h2
2)

− 1

4(2 − h2
2)

∫ 0

x̃2

y2dy
√

2 − (h2 − 1
2y2)2

. (17)

This gives x̃2 (and therefore also x̃1, since h(x̃1, x̃2) = h2) in terms of x0 ∈ γ−. Therefore
the switching curve C can be determined by solving numerically the previous equation.

We conclude this section with a few remarks. First, there exists a switching curve C ′

symmetric to C (x ∈ C if and only if −x ∈ C ′). Second, for the same family of extremal
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trajectories, any switching curve that precedes C (in time) cannot be optimal. Indeed, if
we assume that the x1 coordinate for the new switching point is less than 3π/2 (otherwise
there would be a self-intersection of the corresponding extremal trajectory that would imply
a loss of optimality) and we write the equality obtained from (14), it turns out that the
right-hand side and the left-hand side of such an equation have different signs. Finally, for
the case when x0

1 ≥ π
4 , one simply removes the first integral in (17) and modifies the lower

limit of the second integral to be x0
2. By solving numerically the resulting equation, one

obtains an expression for a switching curve which starts at the final point of the switching
curve obtained by (17). However, as will become more clear in Section 3.3, this switching
curve is not optimal due to the presence of an overlap curve.

3.2.2 Switching curves in region C

In this section we analyze the extremal trajectories that reach γ− with a coordinate x0
1 <

arcsin((
√

2 − 1)/2), i.e. the trajectories that are contained in region C before the last
switching on γ−. In particular, these trajectories form a front that crosses the x1 axis
with x1 ∈ [0, π

4 ). See the left side of Figure 5. We will show in the following proposition
that this front cannot generate a switching curve (different from x1 = π

2 + kπ) on the half-
plane x2 > 0. This possibility cannot be excluded apriori using the qualitative results of
Section 3.1.

Proposition 2. An optimal trajectory that switches for the last time at x0 ∈ γ− after having
crossed the x1 axis must switch before x0 only at the points such that x1 = π

2 + kπ.

Let Λ denote the strip of trajectories that reach γ− after crossing the axis x1 and correspond
to u(t) = sgn(cos x1(t)). This strip corresponds exactly to the region C. The proof of the
proposition is based on the following lemma.

Lemma 1. Let T (x) be the time needed to reach the origin starting from x ∈ C and following
the corresponding trajectory in Λ. Then ∂T

∂x2
(x) > 0.

Proof. Consider a trajectory of Λ that switches if x1 = ±π/2 and at a point x0 ∈ γ−.
For every initial condition x ∈ C one can associate a value x0

1 where the corresponding
trajectory reaches γ−. See the left of Figure 5. If we restrict initial conditions in C to
a line x1 = x̄1, one can locally consider the inverse map x2(x

0
1), that takes values on a

neighborhood of x̄2 with (x̄1, x̄2) ∈ C and which is increasing. Then it is enough to show
that dT

dx0
1

(

(x̄1, x2(x
0
1))

)

> 0.

Using (12) it is possible to write T
(

(−π
2 , x2(x

0
1))

)

as a sum of two integrals:

T
(

(−π

2
, x2(x

0
1))

)

=

∫

√
2−2 cos x0

1
+2 sinx0

1

0

dy
√

2 −
(

1 − y2

2

)2

+

∫ 2
√

1+sin x0
1

−
√

2−2 cos x0
1
+2 sinx0

1

dy
√

2 −
(

1 + 2 sin x0
1 − y2

2

)2
. (18)

Therefore it is possible to compute formally the derivative of this quantity and one can verify
numerically that it is larger than 9.9 for every value of x0

1 corresponding to trajectories of
Λ.
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Figure 5: Region C

Similarly, it is possible to compute the time between two consecutive switchings at x1 =
−π

2 − nπ and x1 = π
2 − nπ, n ≥ 1, up to the point (−π

2 , x2(x
0
1)), using equation (10), and

the corresponding derivative with respect to x0
1 has the following form:

−2 cos x0
1

∫ π

2
−nπ

−π

2
−nπ

dz
(

2 (h − cos z − u sin z)
)3/2

(19)

where h = 2n + 1 + 2 sin x0
1 and u = cos nπ , n ≥ 1. The derivative dT

dx0
1

(

(x̄1, x2(x
0
1))

)

is

obtained as the sum of the derivative of (18) and the series of the terms (19) for n ≥ 1.

The latter in modulus is bounded by
∑∞

n=1 n− 3

2 < 3. The lemma follows immediately from
these estimates.

Proof of Proposition 2. Assume by contradiction that there exists an optimal trajectory
γ starting from a point x̃ ∈ C with u(t) = − sgn(cos x1(t)) and switching to u(t) =
sgn(cos x1(t)) at a point x̄ ∈ C, after which it follows the corresponding trajectory γ̄ of
Λ until the origin. Before reaching x̄, γ̄ crosses the line x1 = x̃1 at a point (x̃1, x̃

′
2) with

x̃′
2 > x̃2. See the right of Figure 5. Let T be the time to reach the origin along γ starting

from x̃. Then from the equation ẋ1 = x2, one immediately sees that T
(

(x̃1, x̃
′
2)

)

< T .
Moreover by the previous lemma it must be T (x̃) < T

(

(x̃1, x̃
′
2)

)

. Therefore, T (x̃) < T , a
contradiction.

3.3 Overlap curves and switching curves around (π, 0)

In Section 3.2.1 we examined a candidate switching curve C and we analyzed an extremal
trajectory that switches at x0 ∈ γ−. We can determine by direct computation that if x0

1

is large enough, then the corresponding switching point x̃ of C, obtained by solving (17),
belongs to region A. Therefore there exists a second extremal trajectory starting at x̃ with
control u = 1, then switching at x1 = 3π

2 and reaching the origin with an arc of γ+. It is
also possible to determine numerically that if x0

1 is larger than a value ≈ 0.53, the extremal
trajectory starting at x̃ ∈ C with u = 1 is time optimal.
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We deduce that the switching curve C is not completely optimal and there exists an overlap
curve K1 which starts at a point of C. On the other hand, it is possible to see, still
numerically, that there is a point of C corresponding to x0

1 ≈ 0.3, at which the tangent
vector to C is parallel to the vector field corresponding to u = 1. At this point a second
overlap curve K2 starts. See Figure 6. Associated to each point of this curve there are
two optimal trajectories: the first one starts with control u = −1 and reaches γ− at a
point corresponding to a small value of x0

1, while the second one starts with control u = 1,
then switches on C and ends again on γ−. The curve K2 ends at a point in which a further
overlap curve K3 is generated. This curve contains the point (π, 0) and the two time optimal
trajectories starting at a point of K3 have a symmetric behaviour, in the sense that they
switch for the first time, respectively, on C and C ′ and for the last time on γ− and γ+. The
complete synthesis around the point (π, 0) can be completed using symmetry with respect
to the point (π, 0). Figure 6 provides a sketch of the optimal synthesis around the point
(π, 0).

In order to show how to determine explicitly the overlap curves previously defined we derive
an equation for K1. As in Section 3.2.1, we consider an extremal trajectory that starts at
a point x̄ ∈ K1 and whose last switching before reaching the origin with u = −1 occurs at
x0 ∈ γ−. Using equations (10) and (11) on each bang arc where the extremal trajectory
is either strictly monotone in x1 or in x2, it is possible to obtain a formula for the elapsed
time, as in (12). We assume that x0

1 < π/2, but if not, one can proceed in the same way to
find a similar equation. This procedure can now be repeated for the other trajectory that
reaches the origin by switching at a point x1 ∈ γ+. By propagating values of h(·) on each
bang arc it can be determined that x1

1 := 2π − arcsin
(

sin x0
1 + sin x̄1). The equation for

the overlap curve is obtained by setting the times to reach the origin along the two possible
extremal trajectories equal, to yield:

∫ x0
2

0

dy
√

2 − (1 − 1
2y2)2

+

∫ π

4

x0
1
−π

4

dy
√

2h1 − 2
√

2 cos y
+

∫ 5π

4

3π

4

dy
√

2h2 − 2
√

2 cos y
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+

∫ 2
√

sin x0
1

0

dy
√

2 − (h2 − 1
2y2)2

+

∫ x̄2

0

dy
√

2 − (h2 − 1
2y2)2

=

∫ 5π

4

x̄1−
π

4

dy
√

2h3 − 2
√

2 cos y
+

∫ x1
1+ π

4

7π

4

dy
√

2h4 − 2
√

2 cos y
+

∫ x1
2

0

dy
√

2 − (1 − 1
2y2)2

where

x0
2 = −

√

2(1 − cos x0
1 + sinx0

1), x̄2 =
√

2(h2 − cos x̄1 + sin x̄1),

x1
2 =

√

2(1 − cos x1
1 − sin x1

1), h1 = 1 + 2 sin x0
1, h2 = −1 + 2 sin x0

1,

h3 = −1 + 2 sin x0
1 + 2 sin x̄1, h4 = 1 + 2 sin x0

1 + 2 sin x̄1.

It is also possible to find equations for K2 and K3, using (10) and (11) and with the help of
the expressions of the switching curves C and C ′ found above. In order to avoid long and
not very interesting computations (similar to those made above), we will not present these
derivations.

4 Time optimal synthesis

In this section we assemble all of the previous results to obtain the time optimal synthesis
for the inverted pendulum on the whole cylinder S × R.

Following the approach of geometric control, it would be natural to apply the known suf-
ficiency results that guarantee the optimality of an extremal synthesis (see for instance [8]
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and [20]). To do this, one first needs to determine a candidate extremal synthesis, i.e. select
a single extremal trajectory for each initial point, and then verify the regularity conditions
required by the theorems in the above references. Roughly speaking, such regularity condi-
tions, for instance according to [8], amount to requiring piecewise regularity w.r.t. time of
trajectories and w.r.t. to space of the corresponding cost function. The verification of such
conditions involves tedious but straightforward computations.

On the other hand, a careful selection of trajectories, obtained by combining the conditions
established in Section 3.2 with the results of Section 3.3, is enough to isolate a unique
extremal trajectory, which is also a candidate for optimality, for each initial point. The
obtained synthesis is clearly optimal. We begin with the following lemma.

Lemma 2. The trajectories γ+ and γ− are optimal on (−∞, 0].

Proof. We know from Proposition 1 that the only extremal trajectory starting from γ+(t0)
(for some t0 < 0) with control u = sgn(cos x1(t0)) is γ+|[t0,0]. On the other hand, from
Section 3.2, the optimal control corresponding to a trajectory starting from γ+(t0) with
u = − sgn(cos x1) may switch to u = sgn(cos x1) only at a point belonging to the switching
curve C or to γ+ itself. For the first case, it is clear that the trajectories starting from γ+

with control − sgn(cos x1) never reach C. This is because C loses optimality close to the
boundary of the region D′ but the proposed trajectories do not reach D′. For the second
case of switching on γ+ itself, the control passes from − sgn(cos x1) to sgn(cos x1) at some
γ+(t1), with t1 < t0, so that this trajectory can not be optimal. Therefore the only optimal
trajectory starting from γ+(t0) must be γ+|[t0,0]. The same reasoning shows that γ− is
optimal on (−∞, 0].

The optimal synthesis is described by the following result, and is depicted in Figure 7.

Theorem 2. Consider an optimal trajectory starting from x0 ∈ S × R. Then:

• If x0 ∈ B the corresponding optimal trajectory starts with control u = − sgn(cos x1)
and switches to sgn(cos x1) when it reaches γ+.

• If x0 ∈ A and if it is far enough from the boundary with D′, the optimal trajectory
corresponds to u = − sgn(cos x1) and switches to sgn(cos x1) when it reaches γ+.

• If x0 ∈ D′ or x0 ∈ A is close to the boundary with D′, then, according to Section 3.3,
there are three possibilities. If x0 is “below” the overlap curve K3 the optimal trajectory
starts with u = −1, switches when it reaches C ′ and continues with u = − sgn(cos x1)
until it reaches γ+. If x0 is between K3 and C ∪K2 the optimal trajectory starts with
u = 1, switches when it reaches C and continues with u = sgn(cos x1) until it reaches
γ−. Otherwise the optimal trajectory corresponds to u = sgn(cos x1) until it reaches
γ−.

• If x0 ∈ C and it is “close” to γ+, then the optimal trajectory corresponds to u =
sgn(cos x1) until γ−. Otherwise u = − sgn(cos x1) until γ+. More precisely there is
an overlap curve K winding around the cylinder, between γ+ and χ+, dividing C in
two parts with different optimal strategies.

If x0 belongs to the regions B′, A′, D, C′ the optimal strategy is obtained by symmetry with
respect to the origin.
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Proof of Theorem 2. Consider an extremal trajectory starting from the region B with con-
trol u = sgn(cos x1). Then from Proposition 1 the control remains sgn(cos x1) until the
trajectory reaches the x1 axis. We deduce that this trajectory is not optimal, since there
are no optimal trajectories crossing the x1 axis and starting from B, as can be deduced
from Sections 3.2, 3.3. On the other hand, still from 3.2, we know that there are no optimal
trajectories switching on a point of the switching curve C, so that the optimal trajectory
must be the one starting with control − sgn(cos x1) that switches to u = sgn(cos x1) when
it reaches γ+.

Consider now the region C. Let γ∗ : [t∗, 0] → S × R be the trajectory starting from γ+(t0)
(for some t0 < 0) with control u = − sgn(cos x1) and switching to u = sgn(cos x1) when
it reaches again γ+. As we proved above, this trajectory is optimal on every subinterval
[t, 0] ⊂ [t∗, 0] if γ∗(t) ∈B but it is not optimal on the whole interval [t∗, 0]. In particular,
from the continuity of the minimum time function (see for instance [11]) it is not optimal
on [t, 0] if t > t∗ is close enough to t∗. We deduce that there is a strip of optimal trajectories
corresponding to the control u = sgn(cos x1) “just above” γ+. This strip is delimited by an
overlap curve K that extends the overlap curve K1 found in Section 3.3 (K can be computed
in an analogous way). Above K, the optimal control is u = − sgn(cos x1). This concludes
the description of the optimal synthesis inside C.

The most delicate regions are the regions A and D. However we know that every tra-
jectory that does not cross the x1 axis and does not cross C, C ′ must switch from u =
− sgn(x2 cos x1) to u = sgn(x2 cos x1) at a point of γ±. Therefore, the synthesis inside these
regions is completely determined in Sections 3.2 and 3.3 (see Figure 6).

The qualitative shape of the optimal synthesis is now completely clarified. After solving the
equations given in the previous sections that describe the switching curves and the overlap
curve, and the analogous equations that determine the curve K defined above, one can
easily obtain the global shape of the synthesis, as depicted in Figure 7.

5 Conclusion

In this paper, by using tools from geometric control theory, we have obtained a complete
description of the time optimal synthesis for the problem of swinging up a pendulum on a
cart, with the acceleration of the cart as control input. In particular, in order to determine
the synthesis, we combined general results on the structure of the optimal trajectories with
the computation of the special curves of the synthesis, overlap curves and switching curves.
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