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Abstract: We propose a novel method of parallel parking using reach control theory. Reach
control is a hybrid control method to achieve complex control objectives. It relies on triangulating
the state space, devising a desired sequence of simplices or polytopes that a trajectory needs
to pass through to complete a task, and then constructing a separate closed-loop controller on
each polytope that enables the system state to move on to the next member of the sequence.
For the parallel parking task, we design a state space consisting of eight polytopes, and we use
an automated procedure to construct a continuous piecewise-affine controller for each polytope.
Extensive simulations demonstrate the robustness of the approach: a vehicle starting from an
acceptable initial position performs the maneuver safely and comes to a stop in the desired
parking area.
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1. INTRODUCTION

Automated parallel parking of a vehicle is a widely studied
problem in control theory (Lyon, 1992; Murray and Sastry,
1993; Tilbury et al., 1995; Pohl et al., 2009; Demirli
and Khoshnejad, 2009; Liang et al., 2012; Chand et al.,
2015). The problem seeks to automate the maneuver often
used by human drivers to park a car in a limited space
between two cars previously parked parallel to the curb.
The control strategies predominantly used in previous
literature consist of calculating a feasible path that a
vehicle should follow during the parallel parking maneuver,
starting from a given initial position, and then computing
the appropriate steering control to follow this path. This
approach is not robust, as a slight deviation from the
initial position or a disturbance during the parallel parking
maneuver requires a new path to be calculated, if such
a path can be calculated at all. We propose a different
method using a reach control approach.

The current formulation of the Reach Control Problem
(RCP) was given simultaneously by Roszak and Broucke
(2006) and Habets et al. (2006). Given an affine system
ẋ = Ax + Bu + a on a polytope P, the RCP seeks
to find a closed-loop controller which drives the system
states to leave a polytope P through a predetermined
facet F ⊂ P. This is a stepping stone to a hybrid
system approach to achieve complex control objectives.
The methodology of reach control sits within a larger
framework where complex control objectives are specified
using linear temporal logic (Kloetzer and Belta, 2008). In
the case of parallel parking, the system state is required
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to move from one area of the state space to another. Our
approach is to split the state space into polytopes and
then devise a sequence of polytopes leading from the initial
state to a desired endpoint. On each of these polytopes,
a closed-loop controller will be devised. It will drive the
system state to leave the polytope through the exit facet
that connects it to the next polytope in the sequence.

Robustness and simple controller design make the RCP
amenable to a number of applications, including quad-
copter motion (Vukosavljev et al., 2016), aircraft control
(Belta and Habets, 2006), robotic manipulators (Martino
and Broucke, 2014), and aggressive maneuvers of mechan-
ical systems (Vukosavljev and Broucke, 2014). The last
work is particularly relevant to the present problem. It
deals with driving a gantry crane from one area of the state
space to another while avoiding an obstacle. The model
used by Vukosavljev and Broucke (2014) is underactuated.
This is the case for the vehicle model in our investigation
as well. However, these two works have substantial dif-
ferences: Vukosavljev and Broucke (2014) linearize their
nonlinear model around a single point, whereas we seek
to ensure the faithfulness of our model by constructing
a separate linearization for each region of the partitioned
state space. This idea was discussed by Girard and Mar-
tin (2012) but was, to our knowledge, never previously
fully investigated in an application. Additionally, while the
state space of Vukosavljev and Broucke (2014) was four-
dimensional, the actual controller design was performed in
the 2D output space. In contrast, our design is performed
on the full three-dimensional state space.



2. MODEL AND PROBLEM STATEMENT

We use the standard front-wheel drive car model based on
the unicycle described by, e.g., De Luca et al. (1998). The
model uses an external reference frame (x, y, θ), where the
x-axis is parallel to the curb, the y-axis is perpendicular
to it and pointing into the road, and θ is the orientation of
the car with respect to the curb. The car’s position (x, y)
in this frame of reference is determined by the midpoint
of its rear axle. Let v denote the forward-moving speed of
the car, and let ϕ denote the angle in degrees of the front
wheels with respect to the orientation of the car, where
ϕ = 0◦ if the front wheels are aligned with the car.

The model equations are given as follows:

ẋ = v cos(ϕ) cos(θ)

ẏ = v cos(ϕ) sin(θ)

θ̇ =
v

L
sin(ϕ),

(1)

where L is the distance between the front wheels and the
back wheels (wheelbase). The exact dimensions of the car
are taken from Audi UK (2013), and are given in an online
document (Ornik et al., 2017). The maximum steering
angle of the front wheels is taken to be ϕM = 33◦. Because
of safety and liveness concerns, we take the lowest possible
speed of the vehicle vS = −5km/h ≈ −1.39m/s and the
highest speed vF = −10km/h ≈ −2.78m/s.

We assume the length of the parking space to be around
1.9 times the length of the car. The two already parked cars
are assumed to be equal in size to the car we are parking,
and the roadway is assumed to be clear of any obstacles
apart from the two cars. An illustration of the available
parking space is given in Figure 1. We note that the length
of the parking space allows a comfortable parallel parking
maneuver. We will show that our approach does not use
the entire area of the parking space.

In order to describe the vehicle’s initial position, ending
position, and obstacles, we define the following four sets:

• R(x) ⊂ R2 is the set of all physical positions covered
by a car whose position of the midpoint of its rear
axle and orientation are given by x.
• I ⊂ R2 is the set of allowed initial positions of the

vehicle. We assume its dimensions to be 0.5m×0.25m,
and we assume it to be located so that the back of
the car is between 0.5m and 0m behind the back of
the first parked car, and the side of the car is located
between 0.75m and 1m from the side of the parked
cars.
• E ⊂ R2 is the set of all desirable ending positions of

the vehicle. It is situated so that no part of the car
is colliding with another car or a curb, and that the
side of the car is no more than 0.3m from the curb.
• G ⊂ R2 is the set of all obstacles. It consists of the

two previously parked vehicles and the sidewalk.

We note that the size of E imposes a very tight criterion
for correct parking. An illustration of I, E , G is given in
Figure 2.

We now formalize the problem we will be solving in the
paper.

Problem 1. Let R(x), I, E ,G ⊂ R2 be as above. Let U =
[vF , vS ] × [−ϕM , ϕM ]. Consider the model (1). Find a
connected set M ⊃ I × {0} and a feedback controller
u : M → U such that for all x0 ∈ I × {0} there exists
T ≥ 0 such that the following holds:

(i) φ(T,x0) ∈ E × {0},
(ii) φ(t,x0) ∈M for all t ∈ [0, T ],
(iii) R(φ(t,x0)) ∩ G = ∅ for all t ∈ [0, T ].

Problem 1 is of the reach-avoid type. Note that the initial
condition set is I×{0} and the final condition set is E×{0},
so the car must be parallel to the curb at the start and
the end of the maneuver.

3. METHODOLOGY

In this section, we propose a solution to Problem 1 using
reach control. We will construct a sequence of polytopes
in the state space such that the first polytope contains
the initial states of the car, the feedback control on each
polytope pushes the system state into the next one, and
the last polytope ends in a acceptable ending state for the
parking maneuver.

The solution is motivated by the steps human drivers
follow to park the car. Using the notation in Figure 1, the
standard way to execute this maneuver consists of four
steps:

(1) Bring vehicle C to a stop in parallel to the curb, and
next to vehicle A.

(2) Start going in reverse, with the front wheels rotated
as far to the right as possible until vehicle C is roughly
at a 45◦ angle to the curb.

(3) Straighten out the wheels and continue going in re-
verse until vehicle C is situated almost behind vehicle
A.

(4) Continue going in reverse, with the front wheels ro-
tated as far to the left as possible until vehicle C is
parallel to the curb.
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Fig. 1. An illustration of the parallel parking maneuver.
Vehicles A and B, marked in dark gray, are previously
parked in parallel with the curb (marked in light
gray), and at a short distance from it. Vehicle C seeks
to park between vehicle A and vehicle B. The front
wheels of all vehicles are coloured red, while the rear
wheels are coloured black. States Ci, i = 1, . . . , 4
denote the position and orientation of vehicle C at
the end of Step i of the maneuver described above.

In the remainder of the paper, we assume that a human
driver has already completed Step 1 by bringing the car



to a standstill in state x0 ∈ I × {0}. The steps we want
to perform are 2–4. Our approach to designing a control
strategy which completes this maneuver consists of the
following elements:

• Design a sequence of polytopes Pi constructed around
an ideal but possibly infeasible car trajectory, with
the goal of having the car remain close to the ideal
trajectory by staying within the polytopes Pi.
• Use the necessary conditions for the solvability of

the RCP to design appropriate linearization points
at each polytope Pi, in order to turn the nonlinear
model (1) into an affine system amenable to an RCP
approach.
• Use the sufficient conditions for the solvability of the

RCP to determine the exact size of each polytope Pi.
• Use reach control theory to design a piecewise-affine

controller on each of the polytopes Pi.

3.1 Polytopes

An intuitive idea of what the position (x, y) and orienta-
tion θ of the car “should” look like during steps 2–4 is given
in Figure 2. The trajectory in Figure 2 is not necessarily
feasible for the system (1) or its linearization. Moreover, it
is a trajectory for only one initial condition, whereas our
goal is to perform a successful parking maneuver starting
from any point in I × {0}. Our approach is to design a
control strategy to ensure that actual trajectories of cars
starting at any point x0 ∈ I × {0} remain similar to this
imaginary trajectory. In order to do that, we will embed
the trajectory in Figure 2 into a sequence of polytopes
P1, . . . ,Pm and ensure that all trajectories starting from
initial states in I × {0} remain inside those polytopes.

O
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(xi−1, yi−1)

(xi, yi) ∆yi

∆xi

Fig. 2. An illustration of an imaginary ideal path for the
parking maneuver. The set of obstacles G is drawn in
gray. The initial box I for the midpoint of the car’s
rear axle is drawn in yellow. The acceptable ending
box E is drawn in green.

Let I = [x11, x12] × [y11, y12]. We now describe the
construction of polytopes P1, . . . ,Pm. The process is as
follows:

• Grid up the interval [0◦, 45◦] into intervals [θ0, θ1],
[θ1, θ2], . . . , [θk−1, θk], where θ0 = 0◦ and θk = 45◦,
so that the (x, y) trajectory of the car in Figure
2 is nearly linear during the time its orientation is
between θi and θi+1. We found that k = 4 and

θi = i · 11.25◦, i = 0, 1, . . . , 4,

are suitable.
• Based on a measurement from Figure 2, let (xi, yi) be

the position of the car when its orientation is θ = θi.
We compute

∆xi = xi − xi−1, ∆yi = yi − yi−1.

In the interest of space, we omit listing coefficients
∆xi,∆yi. All are available online (Ornik et al., 2017).

• We now start with θ ∈ [0, θ1]. At θ = 0◦, we know
that the position of the car is inside I. At θ = θ1, the
position of the car should be inside I + (∆x1,∆y1),
based on Figure 2. Thus, an ideal polytope P ′1 would
be constructed by taking the convex hull of faces
F in

1 = I × {0} and Fout′

1 = (I + (∆xi,∆yi)) × {θ1}.
Unfortunately, this will not work because the ideal
trajectory in Figure 2 is not necessarily feasible, and
the trajectories are not linear.

• Thus, we introduce widening coefficients w1x, w1y ≥
0, and we construct a modified polytope P1 to be the
convex hull of F in

1 = I×{0} and Fout
1 = [x11+∆x1−

w1x, x12 +∆x1 +w1x]× [y11 +∆y1−w1y, y12 +∆x1 +
w1y]× {θ1}. In particular, Fout

i is now widened.
• We generate P2, . . . ,Pk inductively, where Pi is the

convex hull of the facets given by

F in
i = Fout

i−1,

Fout
i = [xi+1,1, xi+1,2]× [yi+1,1, yi+1,2]× {θi},

where
xi1 = xi−1,1 + ∆xi−1 − wi−1,x,

xi2 = xi−1,2 + ∆xi−1 + wi−1,x,

yi1 = yi−1,1 + ∆yi−1 − wi−1,y,

yi2 = yi−1,2 + ∆yi−1 + wi−1,y.

Notice that the “in facet” of Pi is the “out facet” of Pi−1,
and Fout

i is again widened as above. See Figure 3 for an
illustration of the above procedure.
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Fig. 3. An illustration of polytope Pi. The polytope
resembles a parallelepiped with F in

i and Fout
i as its

bases. The imaginary ideal trajectory of the car while
going through polytope Pi is given by a blue dashed
line. Widening coefficients wix, wiy are represented by
red arrows.

The above process corresponds to Step 2 of the maneuver.
Step 3, in which the orientation θ of the vehicle does not
change significantly, is then interpreted by repeating the
same process as above, just with θi = θi−1 = 45◦, until
some polynomial Pl. After that, Step 4 is again performed
in the same way as Step 2, just with 0◦ < θi < θi−1,
until θm = 0◦ for some m ≥ l. In our case, the entire
construction is performed with just eight polytopes: k = 4,
l = k = 4, and m = 8. This means that Step 3 is short
enough to not make a significant impact in the parking
maneuver. Orientations θ5, . . . , θ8 are chosen by

θi = 90◦ − i · 11.25◦, i = 5, 6, 7, 8.

We note that we still did not select widening coefficients
wix, wiy. The widening coefficients need to be selected so



that there exists a controller driving all trajectories from
Pi to leave Pi through the facet Fout

i . Since we will be
using reach control theory to construct such a controller,
the choice of widening coefficients will follow from the
solvability conditions of RCP. After we elucidate these
conditions in the following section, we will provide the
appropriate widening coefficients in Section 3.4.

3.2 Reach Control Problem

We revisit the theory of solvability of the RCP. Let P ⊂ Rn

be a convex polytope, and let F0 ⊂ P be its designated
exit facet. Let us consider system ẋ = Ax+Bu+ a on P.
In order to drive the system state not to leave through any
facets other than F , all the velocity vectors Ax+Bu+a on
the boundary of P need to point inside P, except perhaps
on F , where they are allowed to point through F . This is
formally encoded in the following way: let hi, i ∈ {1, . . . , r}
be the unit vector normal to Fi and pointing outside of
polytope P. For each x ∈ P we define the cone

C(x) = {y ∈ Rn | hj · y ≤ 0 if x ∈ Fj , 1 ≤ j ≤ r}, (2)

where hj · y denotes the inner product of the two vectors.
In particular, C(x) = Rn for all x in the interior of P.

Definition 2. If for all x ∈ P there exists u such that
Ax+Bu+a ∈ C(x), we say that the invariance conditions
are solvable.

It was shown by Habets and van Schuppen (2004) that
solvability of the invariance conditions is a necessary
condition for solvability of the RCP by continuous state
feedback. Additionally, Habets and van Schuppen (2004)
show that solvability of invariance conditions on the entire
polytope P is equivalent to finding ui such that Avi +
Bui + a ∈ C(vi) for all vertices v1, . . . , vp ∈ P. As C(vi) is
a closed, convex cone, this is a linear feasibility problem.

Another necessary condition for a system to leave P
through a designated facet F is the lack of equilibria in
P. Clearly, if ẋ = Ax + Bu(x) + a = 0 for some x ∈ P,
the trajectory starting in x will not leave P at all. Ax +
Bu(x) + a = 0 implies Ax + a = B(−u(x)), so we define

OP = {x ∈ P | Ax + a ∈ Im(B)}.
OP is the set of all potential equilibria of the control
system ẋ = Ax + Bu + a on P. It was shown by Helwa
and Broucke (2013) that, if OP = ∅, solvability of the
invariance conditions is in fact a sufficient condition for
solvability of the RCP by continuous piecewise affine
feedback. In the following section we will linearize system
(1) in such a way that OPi = ∅ for all i ∈ {1, . . . ,m}.

3.3 Linearization

In order to make (1) amenable to an RCP approach, we
linearize it around (x0, y0, θ0, ϕ0, v0), and assume ϕ0 = 0.
Note that we do not require (x0, y0, θ0, ϕ0, v0) to be an
equilibrium for system (1). This results in the linearized
system having affine form

ẋ = Ax +Bu+ a (3)

which fits within the setting of reach control. In order
to make the system (3) as faithful to (1) as possible,
we will choose a different linearization point for each Pi,
i ∈ {1, . . . ,m}. First, we want to choose (x0, y0, θ0, v0, ϕ0)

in such a way that OPi
= ∅. The choice of x0, y0 is

irrelevant as they do not appear on the right side of (1).
Additionally, as v0 ∈ [vS , vF ] and ϕ0 ∈ [−ϕM , ϕM ], it is
natural to take v0 = (vS + vF )/2, ϕ0 = 0. Going back to
the affine model (3), we can now easily calculate A, B, and
a, and establish that OPi

= {(x, y, θ) ∈ Pi | θ = θ0}.
Thus, if we choose θ0 so that Pi does not contain any
points (x, y, θ) with θ = θ0, it is guaranteed that there
are no equilibria in P. By construction in Section 3.1,
the orientations θ in Pi are between θi−1 and θi, with
the convention that θ0 = 0. As we want the linearization
(3) of the system to be as faithful to (1) as possible,
we want θ0 close to [θi−1, θi]. Thus, we will choose θ0
for each polytope Pi so that θ0 < min(θi−1, θi), with
min(θi−1, θi) − θ0 = ε > 0 as small as possible. In our
simulations, we chose ε = 10−10.

3.4 Choice of Widening Coefficients

Since OPi = ∅, we know from Helwa and Broucke (2013)
that if the invariance conditions Ax + Bu(x) + a ∈ C(x)
are solvable on the vertices v ∈ Pi, the RCP is solvable
using continuous piecewise feedback. The vertices of Pi

were defined in Section 3.1, but we did not yet give the
exact values for wix, wiy. It is intuitive to expect that
the larger wix, wiy we choose, the invariance conditions
will be more likely to be solvable, as we allow the car to
deviate more from our ideal trajectory. The trade-off is
that choosing larger wix, wiy results in larger polytopes
Pi. Unfortunately, there is no developed theory for the
choices of wix, wiy. The parameters that worked in our
case are listed in an online document (Ornik et al., 2017).

We have now fully defined our sequence Pi, i = 1, . . . ,m. It
can be verified that the invariance conditions are solvable
on each polytope Pi. Thus, by Theorem 4.2 in Helwa and
Broucke (2013), the RCP is solvable on each Pi. What
remains is to find a piecewise affine controller on each
Pi. This is done using Algorithm 4.11 of Habets and van
Schuppen (2004).

3.5 Control Design

Algorithm 4.11 of Habets and van Schuppen (2004) re-
quires that we first triangulate each polytope Pi into sim-
plices. This can be performed in multiple ways. We used
Delaunay triangulation with the addition of a centroid
node (see, e.g., the work by Cheng et al. (2013) for more
on Delaunay triangulation). After splitting polytope Pi

into simplices S1, . . . ,Ss, a control vector uv ∈ U such
that Av + Buv + a ∈ C(v) is chosen at every point v in
the union of vertex sets of S1, . . . ,Ss. An affine feedback
control uj : Sj → U is then defined by uj(v) = uv for
every vertex v ⊂ Sj , and this is affinely extended to
the entire Sj . This defines a continuous piecewise affine
control u : Pi → U by defining the restriction of u on Sj
as u|Sj ≡ uj . Finally, we can use controls u defined on
P1, . . . ,Pm to define u : ∪mi=1Pm → U . Note there is no
guarantee that u is continuous on the boundary between Pi

and Pi+1, i ∈ {1, . . . ,m− 1}. However, in our assignment
of control values, u only has a discontinuity between P4

and P5.



As listing all 96 simplices and 48 assigned control values
would take up a considerable amount of space, we omit
stating the control values and affine controllers at each
simplex. All relevant values are available in a supplemen-
tary document (Ornik et al., 2017). This completes our
design of a controller for the parallel parking maneuver.

4. SIMULATION RESULTS

The procedure in Section 3 resulted in a hybrid affine
system

ẋ = Aix+Biu(x) + ai, x ∈ Pi, (4)

defined on M′ = P1 ∪ P2 . . . ∪ P8. The system data
(Ai, Bi, ai), i ∈ {1, . . . , 8} is obtained from the lineariza-
tion (3) of the system (1) around points

xL
i = (x0, y0,min{θi, θi−1} − ε, (vF + vS)/2, 0).

This choice of linearization was justified in Section 3.3.
Control u : M → U is given by defining u|Pi

on each
polytope as in Section 3.5.

Because of our choice of widening parameters wiy, the
state space M′ = P1 ∪ P2 . . . ∪ Pm becomes very large
in y-coordinate by the time the trajectories reach Pm.
(See Figure 4 for a drawing.) The polytopes are placed
far from the car parked in front of the parking space to
ensure that there is no collision, but there is currently
no theory available to guarantee that our vehicle will not
hit the curb or end up too far from it. The RCP theory
merely guarantees that, starting from any state inM′, the
system state will exit through Fout

m . However, Fout
m 6⊂ E ×

{0}. Thus, there is no theoretical proof that Problem 1
is solved by our algorithm. On the other hand, we note
that the specifications of our problem do not use reach
control theory to the full extent, as the initial position and
orientation of the car are actually guaranteed to be inside
I × {0} = F in

1 , which is just one facet of one polytope in
M′. Thus, the set of possible system states of the car at
the point of leaving P1 is a proper subset of Fout

1 = F in
2 .

Simulations show that it is in fact much smaller than Fout
1 .

As we then proceed further through subsequent polytopes,
this brings us to the conclusion that the final states of the
car make up only a small subset of Fout

m . Hence, we achieve
much better behaviour than guaranteed by reach control
theory.

Fig. 4. A projection of state space M′ designed from
parameters in Section 3 on the x, y-space. Polytopes
Pi ⊂ M′ are shown in black. The initial box I is
marked in yellow, the ending box E in green, while
the guaranteed final facet Fout

8 is marked with red.

We now present the results of our simulations. We simu-
lated the behaviour of 10 cars the nonlinear model (1). The
initial states of the cars were chosen at random in I ×{0}.

However, to ensure that the system does not leave M′
at the very beginning of the maneuver, we restricted the
initial positions to be inside a 0.3m × 0.15m box in the
middle of I. The controller u :M′ → U remains the same
as in the hybrid affine case. Figure 5 shows the results.

Fig. 5. The positions of cars during the maneuver, under
the nonlinear model (1). The desired ending box E is
given in green.

As reach control theory only pertains to the hybrid system
(4), in the nonlinear case we had no guarantees at all
for the behaviour of system state trajectories. However,
Figure 5 shows that the linearization performed in Section
3 worked surprisingly well. The differences between the two
models could be made smaller by working with a larger
number of polytopes m, at the expense of computational
power when calculating the feedback controller.

We additionally note that in the affine case the only
guarantee provided by our control strategy was that all
the cars will stop inside Fout

8 . However, all the cars, both
using (4) and (1), in fact stopped in close proximity to each
other. In particular, all the x-coordinates of the stopped
cars at the end of the maneuvers are almost exactly the
same. This was not guaranteed by our construction of the
final exit facet Fout

8 .

To illustrate the similarity between the trajectories ob-
tained by the two models, in Figure 6 we compare the
trajectory of a car starting from the middle of the box I ×
{0} and using the nonlinear model 1 with the trajectory of
a car starting from the same initial condition, but obtained
using the hybrid model (4). We additionally compare this
to the intuitive, but not necessarily feasible, trajectory
from Figure 2, which served as a motivation for our choice
of polytopes Pi. The trajectories are clearly similar.

Fig. 6. A comparison between two trajectories of a car
parking in the desired spot using the hybrid model
(4), with the midpoint of the rear axle drawn in blue,
and the nonlinear model (1), with the midpoint of
the rear axle drawn in red. The trajectory given by
the dashed black line is the imaginary trajectory from
Figure 2.



5. CONCLUSION

The contribution of this paper is to give a robust control
strategy for parallel parking which does not require the
car to follow a specific previously calculated path. Our
solution is based on a novel application of reach control
theory. Extensive simulations show that the constructed
feedback control results in the vehicle parking correctly in
a desired position. We now list all assumptions that were
made to obtain the presented solution.

• Nonlinear model (1) was linearized around non-
equilibrium points to obtain a hybrid model (4). Ad-
ditionally, the linearization used on each polytope Pi

was obtained by linearizing around a point that is
outside of Pi.
• State spaceM′ was chosen heuristically, based on an

imaginary ideal trajectory, and without a guarantee
of a correct parking maneuver.
• Controllers u : Pi → U were not calculated to ensure

the correctness of a parking maneuver. They were not
even chosen by hand to match our expectations. The
only criterion in place was that u solved the invariance
conditions on Pi. During simulations, we also required
u to be continuous onM′ except between P4 and P5.
A controller automatically chosen by MATLAB that
satisfied those criteria was used.

The fact that our model went through this many crude as-
sumptions and still produced a correct parking maneuver
is surprising and indicative of a deeper theory behind this
problem. This paper is the first step towards exploring this
theory. In particular, the fact that we let MATLAB choose
any controller that satisfied the invariance conditions and
the maneuver still worked in a desired way suggests a yet
unexplored stability property for the RCP. Moreover, in
the linearized model, the procedure ended up aligning all
the cars to stop at virtually the same x-coordinate, even
though their starting x-coordinates were up to 0.5m apart.
We will investigate this apparent stability property in a
future paper.

The construction of an appropriate state space M′ is
another limitation of our current approach. While the
M′ that we chose is guaranteed to be invariant under
piecewise affine feedback, it is too large to theoretically
ensure that the vehicle will stop in a correct position. A
potential solution would be dynamic generation of the set
M′ = P1∪. . .∪Pm: when the car reaches a point at an exit
facet of polytope Pi, a smaller Pi+1 could be constructed
on the fly using the information on the current position of
the car. This is another future research topic.
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