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Abstract— The reach control problem (RCP) deals with
finding a feedback control which drives the states of an affine
control system to leave a simplex through a predetermined facet.
In analogy with Brockett’s obstruction to continuous feedback
stabilization, a topological obstruction to solving the RCP by
continuous feedback results in a deep necessary condition for
solvability. In this paper, we interpret the problem of topological
obstruction as a problem of existence of null-homotopic maps
on spheres. This results in a complete and easily implementable
characterization of the topological obstruction for the case of
systems with two inputs.

I. INTRODUCTION

We study the Reach Control Problem (RCP) for affine
systems defined on simplices. The problem is to drive the
states of an affine system defined on a simplex to reach and
exit a prescribed facet of the simplex in finite time without
first leaving the simplex [13], [22]. The RCP is motivated
by problems of hybrid systems, particularly control problems
involving safety and reachability specifications [25]; it is a
natural building block in such problems.

An increasing number of applications have recently been
identified to be amenable to an RCP approach. These include
aircraft control [5], biomolecular networks [6], material
transport [2], aggressive maneuvers of mechanical systems
[24], automated anesthesia [11], robotic manipulators [19],
mobile robots in complex environments [4] and process
control [15]. On the theoretical side, most research has
focused on identifying classes of feedbacks to solve the RCP,
including affine state feedback [13], [22], continuous state
feedback [9], time-varying affine feedback [1], piecewise
affine feedback [10] and multi-affine feedback [16]. Another
aspect of the problem which has been explored is the choice
of triangulation of the state space. A special triangulation
that allows closed-loop equilibria only to appear on faces of
simplices has enabled a more structural, geometric analysis
of the problem [9], [1], [10]. An alternative triangulation has
lead to further discoveries about the problem [23], [16].

In this paper we focus on more general triangulations (as
do [23], [16]), and we focus on continuous state feedback. In
parallel with [21], we announce the existence of a topological
obstruction to solving the RCP by continuous state feedback.
We provide a brief history on this aspect of the problem.

The possibility of a topological obstruction to solving the
RCP by continuous state feedback first arose in a disguised
form in Theorem 8.3 of [9], where it was observed that
for the special triangulation and under certain conditions
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on the system, equilibria always appeared in the simplex
using continuous state feedback. However, at that stage
the phenomenon was not understood in topological terms.
Further efforts to characterize the appearance of equilibria
appeared in [10] where so-called reach control indices were
introduced to catalogue the placement of equilibria under
the special triangulation. Again, the topological nature of
the problem had not yet been grasped.

The contribution of this paper is to remove the assumption
of a special triangulation as well as to introduce topological
tools to tackle the problem. This research is most closely
related to [21]. The differences between this paper and [21]
are as follows. [21] provides results solely for two- and
three-dimensional simplices, but without limitations on the
number of inputs. On the other hand, the dimension of S in
this paper is not limited, but the system is required to have
two inputs. Also, the approaches are entirely different: [21]
is based on retraction theory, whereas this paper uses the
theory of null-homotopic functions. As such, the conditions
for a topological obstruction are also quite different. Further
research is needed to relate the two approaches.

Notation: Notation Bn denotes the closed unit ball in
Rn centered at the origin and Sn−1 = ∂Bn denotes the unit
sphere in Rn. If F : X → Y is a map whose domain X is
a closed set, then the notation ∂F : ∂X → Y refers to the
boundary map which coincides with F on the boundary of
X . If A ⊂ Rn, A◦ denotes its (relative) interior.

II. REACH CONTROL PROBLEM

We consider an n−dimensional simplex S :=
co{v0, v1, · · · , vn} with vertex set VS := {v0, v1, · · · , vn}
and facets F0, · · · ,Fn (the facet is indexed by the vertex
it does not contain). Let hi, i ∈ {0, · · · , n}, be the unit
normal vector to the facet Fi pointing outside the simplex,
and let F0 be the exit facet. Define I := {1, · · · , n},
and for x ∈ S, let I(x) be the minimal index set such
that x ∈ co{vi | i ∈ I(x)}. We also define J(x) ⊂ I
to be the set of indices of facets containing x, given by
J(x) = {j ∈ I | x ∈ Fj}. Note that I(x) = I \ J(x).

Consider the affine control system defined on S:

ẋ = Ax+Bu+ a , x ∈ S , (1)

where A ∈ Rn×n, a ∈ Rn, B ∈ Rn×m, and rank(B) = m.
Let B = Im(B), the image of B. Also, let φu(t, x0) denote
the trajectory of (1) under a control law u starting from x0 ∈
S.

Problem 1: (Reach Control Problem (RCP)) Consider
system (1) defined on a simplex S. Find a continuous state
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Fig. 1. 3-dimensional simplex S with a possible set of potential equilibria
OS .

feedback u(x) such that for every x0 ∈ S, there exists T ≥ 0
such that

(i) φu(t, x0) ∈ S for all 0 ≤ t ∈ [0, T ].
(ii) φu(T, x0) ∈ F0.

(iii) φu(T + ε, x0) 6∈ S for all sufficiently small ε > 0.
Essentially, the RCP requires that closed-loop trajectories
leave S in finite time through the exit facet F0.

It is clear that a necessary condition for u(x) to solve
the RCP is that there are no closed-loop equilibria in S, i.e.
Ax+Bu(x)+a 6= 0, x ∈ S. Closed-loop equilibria of (1) can
only appear in the affine space O := {x ∈ Rn|Ax+ a ∈ B}
[22], [9]. Thus, we are interested in equilibria in the set

OS := S ∩ O.

Since O is an affine space, either OS = ∅ or OS is a convex
polytope in S with a dimension 0 ≤ κ ≤ n. Let VOS =
{o1, · · · , ok+1} denote the set of vertices of OS . An example
of OS is shown in Figure 1.

A second necessary condition for solving the RCP is that
velocity vectors Ax+Bu(x)+a must point inward at points
in the facets Fi, i ∈ I [12]. To formalize this requirement,
for x ∈ S, define the closed, convex cone

C(x) :=
{
y ∈ Rn | hj · y ≤ 0, j ∈ J(x)

}
.

Figure 2 illustrates the cones C(x) as shaded cones attached
at various x ∈ S since they are used to characterize tangent
velocity vectors. Notice that for x ∈ S \F0, C(x) is exactly
the Bouligand tangent cone to S at v0, TS(x). At x ∈ F0,
C(x) includes directions pointing out of S. The requirement
that velocity vectors must point inwards can be formally
stated as

Ax+Bu(x) + a ∈ C(x), x ∈ S . (2)

Let u(x) be a continuous state feedback. Define f(x) =
Ax+Bu(x)+a. Notice that, by the definition of OS , f(x) ∈
B for x ∈ OS . From the foregoing discussion, a necessary
condition for u(x) to solve the RCP is that there exists f :
OS → B \ {0} such that f(x) ∈ C(x), x ∈ OS . We now
transform this statement so that explicit consideration of B
can be avoided.
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Fig. 2. Illustration of C(x), depicted as blue cones at several points x ∈ S.
An example of OS is depicted by a dashed line.

Since B ⊂ Rn is an m-dimensional subspace, we can
identify it with Rm through a linear transformation M ∈
Rn×m whose columns form an orthonormal basis of B, such
that MTM = I and MMT |B ≡ id. This interprets the
function f : OS → B\{0} as MT f

‖MT f‖ = f̃ : OS → Sm−1.
The requirement f(x) ∈ C(x) says hj · f(x) ≤ 0, j ∈ J(x).
Since MMT |B ≡ id, and f(x) ∈ B for x ∈ OS , hj · f(x) =
hj ·MMT f(x). Let h̃j := MThj ∈ Rm. Then f(x) ∈ C(x)
is equivalent to h̃j · f̃(x) ≤ 0, j ∈ J(x). In what follows we
abuse notation and remove the tilde’s from the variables f
and hj . We arrive at the main problem studied in this paper.

Problem 2: Does there exist a continuous function f :
OS → Sm−1 satisfying

f(x) ∈ C(x) , x ∈ OS . (3)

III. BACKGROUND

Problem 2 will be tackled using the tools of algebraic
topology [14]. In this section we give the necessary back-
ground. Particularly, we identify Problem 2 as one regarding
maps on spheres and more particularly, we apply ideas from
extension theory - whether a function can be extended from
the boundary of set to its interior.

We say two topological spaces X and Y are homeomor-
phic if there exists a continuous function f : X → Y which
is bijective and has a continuous inverse. Such an f is called
a homeomorphism.

Theorem 3 ([7]): Let P be a convex κ-dimensional poly-
tope. P is homeomorphic to Bκ, and ∂P is homeomorphic
to Sκ−1 = ∂Bκ.

Next, we require some background from homotopy theory.
A path is defined as a continuous function f : [0, 1] → Y ,
with endpoints at f(0) and f(1). The reverse path of path
f is denoted by f̄ and is defined by f̄(t) = f(1 − t). A
concatenation of two paths f and g with f(1) = g(0) is
denoted by fg and formally defined by fg(t) = f(2t) for
t ≤ 1/2 and fg(t) = g(2t − 1) for t > 1/2. A loop is a



closed path, i.e., a path f with f(0) = f(1). We say f(0) is
the basepoint of the loop f .

Definition 4: Let f, g : X → Y be continuous maps. We
say f is homotopic to g, denoted by f ' g, if there exists a
continuous function F : X×[0, 1]→ Y such that F (·, 0) ≡ f
and F (·, 1) ≡ g.

For paths, we have the following notion.
Definition 5: Let f, g : [0, 1] → Y be paths with the

same endpoints, i.e. f(0) = g(0) and f(1) = g(1). We
say f is homotopic to g, denoted by f ' g, if there exists
a continuous function F : [0, 1] × [0, 1] → Y such that
F (·, 0) ≡ f , F (·, 1) ≡ g, f(0, ·) ≡ f(0), f(1, ·) ≡ g(0).

Finally, we draw frow two other areas of algebraic topol-
ogy: the extension problem and maps on spheres. The
extension problem regards the following question: given a
continuous map f : ∂X → Y defined on the boundary of a
space X , we would like to know if there exists a continuous
extension of F : X → Y such that F |∂X ≡ f . The
terminology topological obstruction particularly refers to an
obstruction to extending a continuous map. Of particular
relevance to the extension problem is the notion of null-
homotopic maps. We make use of several results classifying
maps that are null-homotopic.

Definition 6: A continuous map f : X → Y is said to be
inessential or null-homotopic if f is homotopic to a constant
map c(x) = y0, a single point in Y . Otherwise f is said to
be essential.

Lemma 7: If f : X → Sn is a continuous map such that
f(X ) 6= Sn, that is, f is not surjective, then f is null-
homotopic.

Lemma 8 ([20]): If f : X → Y is a continuous map and
Y is contractible, then f is null-homotopic.

Lemma 9 ([20]): Every continuous map f : Sn → S1
with n ≥ 2 is null-homotopic.

Lemma 10 ([18]): Let f, g : [0, 1]→ Y be paths with the
same endpoints. Then, f is homotopic to g if and only if fḡ
is null-homotopic. In particular, ff̄ is null-homotopic.

The main result relating null-homotopic maps and the
extension problem is the following important Extension
Theorem (see [20]).

Theorem 11: A continuous map f : Sn → Y is null-
homotopic if and only if f extends to a map F : Bn+1 → Y .

Proof: Suppose f : Sn → Y is inessential and let H :
Sn×[0, 1]→ Y be a homotopy between f(x) = H(x, 0) and
a constant map c(x) = H(x, 1). Note that every point y ∈
Bn+1\{0} can be written uniquely as tx, where t ∈ (0, 1]
and x ∈ Sn. Define F : Bn+1 → Y by F (tx) = H(x, 1− t)
for x ∈ Sn and t ∈ (0, 1]. Also define F (0) = c(0). It is
easy to check that F is continuous.

Conversely, suppose that f : Sn → Y extends to a map F :
Bn+1 → Y . Define H(x, t) : Sn× [0, 1]→ Y by H(x, t) :=
F (tx). Then H is a homotopy between f and a constant
map c(x) = F (0).

IV. MAIN RESULTS

The main idea of our approach to Problem 2 is as
follows. First, a technical lemma, Lemma 12, gives a useful

property about the index sets J(x). Then we examine the
two dimensional polytopes in ∂OS . We assume that on those
polytopes there exists a continuous function which satisfies
the requirements of Problem 2. Thanks to the conditions
(2), this function can be shown, via Lemma 8 or Lemma 9,
to be null-homotopic. In Lemma 13 an induction argument
on the dimension of the boundary polytopes in OS shows
that the proposed null-homotopic map defined on the two
dimensional boundary polytopes of OS can be continuously
extended to all of OS and still satisfy the conditions (2).

Once we have identified the existence of a continuous map
satisfying (2) on the two dimensional boundary polytopes of
OS as turnkey to the solution, we then turn, in Proposi-
tion 18, to identifying verifiable conditions for existence of
such a map. The argument relies on homotopy properties of
certain loops, expressed in Lemmas 16 and 17. Combining
Lemma 13 and Proposition 18, we obtain the main result,
which is Theorem 19.

Lemma 12: Let dim(OS) = κ ≥ 2 and OS ∩ F0 =
∅. Suppose o1, o2 ∈ VOS are such that o1o2 is a one-
dimensional edge of OS . Then, I(o1) ∪ I(o2) 6= I . Equiva-
lently, J(o1) ∩ J(o2) 6= ∅.

Proof: Suppose by way of contradiction that I(o1) ∪
I(o2) = I . Let x = 1

2o1 + 1
2o2. Since dim(OS) ≥ 2, x ∈

o1o2 ⊂ ∂OS . By Lemma 1 of [23], ∂OS ⊂ ∂S, so x ∈
∂S. Let o1 =

∑
i∈I(o1) αivi and o2 =

∑
i∈I(o2) βivi for

some αi > 0 and βi > 0. Then x = 1
2

∑
i∈I(o1) αivi +

1
2

∑
i∈I(o2) βivi =

∑
k∈I λkvk, where λk = αk/2 if k ∈

I(o1) \ I(o2), λk = βk/2 if k ∈ I(o2) \ I(o1), and λk =
(αk + βk)/2 if k ∈ I(o1) ∩ I(o2). Note that hence λk > 0,
k ∈ I . Thus, x ∈ S◦ ∪ F0 but OS ∩ F0 = ∅, so x ∈ S◦, a
contradiction.

For each k, 0 ≤ k ≤ κ, let ∂kOS be the k-skeleton of OS ,
i.e., the union of all k-dimensional edges of OS . Particularly,
∂0OS = VOS , and ∂κOS = OS .

The next result allows us to reduce the problem of finding
the topological obstruction on OS with an arbitrary dimen-
sion to determining whether there exists an obstruction on
the skeleton of two-dimensional edges of OS . The argument
rests on the fact that every continuous map g : Sk → S1,
k ≥ 2, is null-homotopic. Hopf showed in [17] that such a
claim is not generally true for maps g : Sk → Sr with r ≥ 2.

Lemma 13: Let dim(OS) = κ ≥ 2 and m = 2. If there
exists ∂2f : ∂2OS → S1 satisfying ∂2f(x) ∈ C(x) for x ∈
∂2OS , then ∂2f can be extended to f : OS → S1 satisfying
f(x) ∈ C(x), x ∈ OS .

Proof: The proof is by induction on the dimension k.
The base case when k = 2 is the assumption of the lemma
statement. Next, if 2 ≤ k ≤ κ − 1 and there exists ∂kf :
∂kOS → S1 satisfying (3), then we will show that there
exists ∂k+1f : ∂k+1OS → S1 satisfying (3) and such that
∂k+1f |∂kOS ≡ ∂kf . Finally, the result follows by noting that
∂κOS = OS .

Let 2 ≤ k ≤ κ−1 and suppose there exists ∂kf : ∂kOS →
S1 satisfying (3). Since OS is a convex polytope, ∂k+1OS
is comprised of (k + 1)-dimensional convex polytopes, and
those polytopes intersect in polytopes of lower dimension.



Take any (k + 1)-dimensional polytope A in ∂k+1OS . Let
∂A ⊂ ∂kOS be the relative boundary of A, consisting of k-
dimensional polytopes in ∂kOS . By Theorem 3, A is home-
omorphic to Bk+1, and the same homeomorphism sends
∂A to ∂Bk+1 = Sk. Via this homeomorphism ∂kf |∂A :
∂A → S1 can be understood as ∂kf |∂A : Sk → S1. Let
Y := Im(∂kf |∂A).

We consider two cases. First, suppose Y 6= S1. Since
∂kf |∂A is a continuous map and ∂A is connected, Y must be
a circular arc. Hence, it is trivially homeomorphic to [0, 1].
The interval [0, 1] and hence Y are contractible. By Lemma 8
we obtain that ∂kf |∂A : Sk+1 → Y is null-homotopic. By
Theorem 11, ∂kf |∂A can be extended to fA : A → Y .
Second, suppose Y = S1. By Lemma 9, ∂kf |∂A : Sk → S1
is null-homotopic. By Theorem 11, ∂kf |∂A can be extended
to fA : A → Y . (It is worth noting that we cannot use
Lemma 9 for the first case because we are specifically
interested in extensions that map into Im(∂kf |∂A) in order
for the argument below to go through.)

Next we show that fA satisfies (3). Consider any x ∈
A. If x ∈ ∂A, then fA(x) = ∂kf(x), and by assumption
∂kf satisfies (3). Instead suppose x ∈ A◦. In the two cases
above we have constructed an extension that maps to Y =
Im(∂kf |∂A). Thus, there exists y ∈ ∂A such that fA(x) =
∂kf(y). By assumption, ∂kf(y) ∈ C(y). On the other hand,
C(y) ⊂ C(x). To see that, consider the line going through y
and x. Since A is a convex polytope, there exists z ∈ ∂A
such that x ∈ yz. Then x is a convex combination of y and
z. Thus, I(y) ∪ I(z) ⊂ I(x). In particular, J(x) ⊂ J(y).
Using the definition of C(x), we get fA(x) ∈ C(y) ⊂ C(x).

Finally, we want to show that different fA can be “glued”
together to obtain ∂k+1f . Precisely, if A and A′ are dif-
ferent (k + 1)-dimensional faces of OS and x ∈ A ∩ A′,
then fA(x) = fA′(x). This follows because the (k + 1)-
dimensional faces of OS intersect on k-dimensional faces.
Thus, if x ∈ A∩A′, then x ∈ ∂kOS , and fA(x) = ∂kf(x) =
fA′(x). The result is that ∂k+1f(x) := fA(x) if x ∈ A
defines a continuous map on ∂k+1OS = ∪A.

Assumption 14: (i) hi 6= 0 for all i ∈ I .
(ii) hi 6= λhj for all i, j ∈ I and all λ < 0.

(iii) OS ∩ F0 = ∅.
Part (i) of the above assumption ensures that all sets {y ∈

S1|hTi y ≤ 0} are semicircles. Part (ii) ensures that no two
of these semicircles are diametrically opposite.

The requirements of Assumption 14 can be removed, but
they significantly contribute to the elegance of the stated
results. So, unless noted otherwise, we are now assuming
that Assumption 14 is true.

Let A be a two-dimensional polytope in ∂2OS such that
A = co{o1, · · · , or}, where we are assuming without loss
of generality that oi’s are ordered counterclockwise. In other
words, the edges of A are o1o2, o2o3, . . . , oro1. Consider
a continuous map F : A → S1 such that F (x) ∈ C(x),
x ∈ A. Define fi := F |oioi+1

, taking or+1 ≡ o1. Also let
f̃i be the path traversing the shorter circular arc between
F (oi) and F (oi+1). Since reparametrizations do not change
the homotopy properties of paths, without loss of generality

b1

b2

F (o2)

F (o1)

g1

m1

m2

f1

Fig. 3. An illustration of the different paths defined below. Paths m1 and
m2 are the shortest paths from F (o1) to b1 and F (o2) to b2, respectively.
Path g1 is the shortest path from b1 to b2, and f1 is a path (not necessarily
the shortest) from F (o1) to F (o2). Path f1 is drawn away from the circle
for visibility. Path f̃1 is not pictured, but is the shortest path from F (o1)
to F (o2). In this case, f̃1 equals m1g1m2.

we assume that fi and f̃i traverse the arc in S1 with uniform
speed. Let b1, · · · , br ∈ S1 be any vectors such that bi ∈
C(oi), i = 1, · · · , r. Such bi’s exist, as otherwise some
C(oi) would be empty and the problem would clearly not
be solvable (see Proposition 18 and Theorem 19). Define gi
to be the shorter arc in S1 between bi and bi+1. Let mi be
the path from F (oi) to bi through the shorter circular arc
in S1. An illustrative example of the paths defined above is
given in Figure 3.

Remark 15: In the remainder of this text, it will often be
necessary to deal with the “shorter arc” between two points
bi ∈ C(oi) and bi+1 ∈ C(oi+1). This presents an issue if both
arcs between those points are of equal length π. Let those
arcs be labeled K1 and K2. We will show that in that case,
exactly one of the arcs Ki satisfies the following: for each
point y on the arc, hTj y ≤ 0 for all j ∈ J(oi) ∩ J(oi+1).

Let us prove that. We note that by Assumption 14 and
Lemma 12, there exists k ∈ J(oi)∩J(oi+1). Now, bi ∈ C(oi)
implies that hTk bi ≤ 0, and hTk bi+1 ≤ 0. Since both arcs
between bi and bi+1 are of length π, this means that bi =
−bi+1. So, hTk bi = hTk bi+1 = 0. Thus, bi and bi+1 are on the
edges of the semicircle {y ∈ S1|hTk y ≤ 0}. This semicircle
is hence exactly an arc between bi and bi+1. Hence, for
each k ∈ J(oi) ∩ J(oi+1), {y ∈ S1|hTk y ≤ 0} = K1 or
{y ∈ S1|hTk y ≤ 0} = K2.

We note that hTk bi = hTk bi+1 = 0 also implies that,
for every k ∈ J(oi) ∩ J(oi+1), hk is perpendicular to bi.
As we are working with vectors in R2, there is only one
perpendicular line to bi. Hence, all hk’s are scalar multiples
of each other. The second part of Assumption 14 implies
that they are indeed positive multiples of each other. In
other words, all the semicircles {y ∈ S1|hTk y ≤ 0} for
k ∈ J(oi) ∩ J(oi+1) are the same, and equal exactly one
of the arcs K1 or K2.

The next two lemmas will provide a connection between



fi’s, f̃i’s and gi’s. This will lead to an easily checkable
characterization of Problem 2 in terms of null-homotopic
loops.

Lemma 16: The paths fi and f̃i are homotopic.
Proof: Let f̃i be the reverse path of f̃i. We will show that

fif̃i is null-homotopic. First, fi and f̃i have the same start
and end points, so fif̃i is a loop in S1. For any x ∈ oioi+1,
I(x) ⊂ I(oi) ∪ I(oi+1) so J(x) ⊃ J(oi) ∩ J(oi+1). By
assumption, fi(x) ∈ C(x), x ∈ oioi+1, so hj ·fi(x) ≤ 0, x ∈
oioi+1, j ∈ J(x) ⊃ J(oi) ∩ J(oi+1). Now consider f̃i(x),
x ∈ oioi+1. Since it is the shorter arc from F (oi) to F (oi+1),
f̃i(x) is a positive multiple of a convex combination of F (oi)
and F (oi+1). Since F (oi) ∈ C(oi) and F (oi+1) ∈ C(oi+1),
we get hj · f̃i(x) ≤ 0, x ∈ oioi+1, j ∈ J(x) ⊃ J(oi) ∩
J(oi+1). By Lemma 12, there exists k ∈ J(oi) ∩ J(oi+1).
We conclude fif̃i ⊂ {y ∈ S1 | hk · y ≤ 0}. This implies
fif̃i is not surjective. By Lemma 7, it is null-homotopic. By
Lemma 10, fi ' f̃i, as desired.

Lemma 17: The paths f̃imi+1gi and mi are homotopic.
Proof: Both f̃imi+1gi and mi are paths from F (oi)

to bi+1. Thus, we will prove that the loop f̃imi+1gimi is
null-homotopic. We showed in the proof above that there
exists k ∈ J(oi) ∩ J(oi+1) such that hk · y ≤ 0 for all y
in f̃i. Also, hk · y ≤ 0 for all y in gi since bi ∈ C(oi),
bi+1 ∈ C(oi+1), and any y in gi is a positive scalar multiple
of a convex combination of bi and bi+1. Next consider mi.
Since bi, F (oi) ∈ C(oi), we have hk · bi ≤ 0, hk ·F (oi) ≤ 0.
Then, since every y in mi is a positive multiple of a convex
combination of bi and F (oi), we get hk · y ≤ 0 for all y in
mi. By an analogous argument we find hk ·y ≤ 0 for all y in
mi+1. We conclude that hk · y ≤ 0 for all y in f̃imi+1gimi.
This implies f̃imi+1gimi is not surjective so by Lemma 7, it
is null-homotoic. By Lemma 10, f̃imi+1gi ' mi, as desired.

We now present our main technical tool for characterizing
the topological obstruction. We note that indices are taken
modulo r, i.e., or+1 ≡ o1. Recall that, for any bi, bi+1 ∈ S1,
gi is defined as the shorter arc in S1 between bi and bi+1.

Proposition 18 solves Problem 2 in the case of a two-
dimensional polytope A by exploring the homotopy classes
of maps defined on its boundary ∂A. This will serve as the
foundation of our final result given in Theorem 19.

Proposition 18: Let Assumption 14 hold, m = 2, and κ ≥
2. Let A = co{o1, · · · , or} be a two-dimensional polytope in
∂2OS . Then there exists F : A → S1 such that F (x) ∈ C(x),
x ∈ A, if and only if

(i) There exists {b1, · · · , br} with bi ∈ S1 ∩ C(oi), i =
1, · · · , r.

(ii) For any selection {b1, · · · , br | bi ∈ S1 ∩ C(oi)}, the
map g : ∂A→ S1 defined by g(oi) = bi, i = 1, · · · , r
and g|oioi+1

:= gi is null-homotopic.
Proof: (⇐=) Suppose (i)-(ii) are satisfied. Let g be as

in (ii). We claim g satisfies g(x) ∈ C(x), x ∈ ∂A. First,
g(oi) = bi ∈ C(oi), g(oi+1) = bi+1 ∈ C(oi+1) by (ii).
Second, let x ∈ ∂A\{o1, · · · , or}. Then x is in the relative
interior of oioi+1 for some i. We know I(x) = I(oi) ∪

I(oi+1), so J(x) = J(oi) ∩ J(oi+1). Since gi is on the
shorter arc between bi and bi+1, g(x) is a positive multiple
of a convex combination of bi and bi+1. Since hj · bi ≤ 0,
j ∈ J(oi), hj · bi+1 ≤ 0, j ∈ J(oi+1), then hj · g(x) ≤ 0,
j ∈ J(oi) ∩ J(oi+1), so g(x) ∈ C(x).

By assumption, g is null-homotopic. Now, if Im(g) = S1,
g can be extended to F : A → Im(g) by Theorem 11. If
g is not surjective, its image is a circular arc. As an arc is
contractible, by Lemma 8, g : A → Im(g) is null-homotopic.
Hence, by Theorem 11, it can again be extended to F : A →
Im(g).

We claim F (x) ∈ C(x), x ∈ A. For x ∈ ∂A, we have
F (x) = g(x) ∈ C(x). For x ∈ A◦, F (x) = g(z) for some
z ∈ ∂A. As in Lemma 13, C(z) ⊂ C(x). Thus, F (x) =
g(z) ∈ C(z) ⊂ C(x).

(=⇒) For the converse direction, suppose there exists
F : A → S1 such that F (x) ∈ C(x), x ∈ A. Then (i) is
immediately satisfied by taking bi := F (oi) ∈ S1 ∩ C(oi),
i = 1, · · · , r. To prove (ii), let g : ∂A → S1 be any map
such that g(oi) = bi ∈ C(oi), i = 1, · · · , r and g|oioi+1

= gi,
the shorter arc in S1 between bi and bi+1. We will show that
g is null-homotopic. First, we claim that F |∂A and g are
homotopic. Since F |∂A extends to F on A, by Theorem 11
F |∂A is null-homotopic. Then if F |∂A ' g, g is also null-
homotopic. Therefore, we must only show F |∂A ' g.

To that end, recall that fi := F |oioi+1
and f̃i denotes

the shorter arc in S1 between F (oi) and F (oi+1). Define
f̃ : ∂A → S1 by f̃ |oioi+1

= f̃i, i = 1, · · · , r, with indices
again taken modulo r. Also define g : ∂A → S1 to be
the concatenation of gi, i = 1, · · · , r. In our loop notation,
F |∂A = f1 · · · fr, g = g1 · · · gr, and f̃ = f̃1 · · · f̃r.

By Lemma 16, fi ' f̃i so by iterating on Proposition 7.10
of [18], F |∂A = f1 · · · fr ' f̃1 · · · f̃r = f̃ . Now consider
f̃1 · · · f̃rm1gr · · · g1m1. By Lemma 17, f̃rm1gr ' mr,
so f̃1 · · · f̃rm1gr · · · g1m1 ' f̃1 · · · f̃r−1mrgr−1 · · · g1m1.
Iterating on this argument, we get f̃m1gm1 ' f̃1m2g1m1.
Again by Lemma 17, f̃1m2g1m1 ' m1m1, and by Lemma
10, that path is null-homotopic. Thus, f̃m1gm1 is null-
homotopic. Now, m1gm1 is a loop from F (o1) through
b1, · · · , br back to F (o1). Equivalently, it can be expressed
as gm1m1, a loop starting and ending at b1. By Lemma 10,
gm1m1g = gm1gm1 is null-homotopic. Again applying
Lemma 10, this implies gm1m1 ' g. We conclude f̃ '
m1gm1 ' g. We already showed F |∂A ' f̃ . We conclude
F |∂A ' g, as desired.

Using Lemma 13 and Proposition 18, we are now ready
to prove our main result.

Theorem 19: Let Assumption 14 hold and let dim(B) =
2. There exists a continuous function F : OS → B\{0} such
that F (x) ∈ C(x), x ∈ OS , if and only if:

(i) For all oi ∈ VOS , there exists bi ∈ B ∩ C(oi), bi 6= 0.
(ii) For every two-dimensional polytope A =

co{o1, · · · , or} in ∂2OS and for any selection
{b1, · · · , br | bi ∈ B ∩ C(oi), bi 6= 0}, the map
g : ∂A → B\{0} ' S1 defined by g(oi) = bi,
i = 1, · · · , r and g|oioi+1

:= gi is null-homotopic.



Proof: First we consider the case that dim(OS) =
κ ≥ 2. Suppose (i)-(ii) hold. By Proposition 18, for every
2-dimensional A there exists a function FA : A → S1
satisfying (3). We also know that all functions FA agree
on the 1-dimensional edges of OS , as FA|∂A ≡ g, and the
definition of g on some edge oioj of OS only depends on
bi and bj , i.e., does not depend on A. Hence, all functions
FA can be “glued” together into a continuous function
F : ∂2OS → S1 ' B\{0} satisfying (3). By Lemma 13, F
can be extended to a function F : OS → B\{0} satisfying
F (x) ∈ C(x), x ∈ OS .

In the converse direction, suppose κ ≥ 2 and there exists
a function F : OS → B\{0} such that F (x) ∈ C(x),
x ∈ OS . Then (i) is automatically satisfied by taking bi =
F (oi). For (ii), we note that the function F |A satisfies the
Proposition 18. Hence, (i)-(ii) in Proposition 18 hold, and by
(ii), g is null-homotopic.

The only case remaining is κ = 1. In that case, (ii) is
vacuous, i.e., there are no two-dimensional polytopes A.
Now assume that (i) holds. Let OS = o1o2. We define
F : OS → S1 ' B\{0} as the shorter arc connecting b1 and
b2. If the length of arc between b1 and b2 is exactly π, by
Assumption 14 and our discussion in Remark 15, we know
that at least one of those two arcs lies in {y ∈ S1|h̃jy ≤ 0},
for all j ∈ J(o1)∩J(o2). We choose that arc as the “shorter”.
(The set J(o1)∩J(o2) may be empty, in which case both of
those arcs satisfy our conditions.) By the same discussion as
in the proof of Proposition 18, we know that F so defined
satisfies (3) on all of OS , and hence solves Problem 2. On
the other hand, if we assume that there exists a function
F : OS → B\{0} satisfying F (x) ∈ C(x), x ∈ OS , (i) is
automatically satisfied by taking bi = F (oi).

V. CONCLUSION

This paper expands on the notion of a topological ob-
struction to solving the RCP by continuous state feedback
introduced in [21]. Theorem 19 solves this problem in the
case of systems with two inputs. The results require an
inspection of cones C(x) at the vertices of OS , as well as
a check of whether the function g is null-homotopic. We
note that Theorem 19 also requires technical Assumption 14
to work. This assumption can be removed, but the resulting
necessary and sufficient conditions are less elegant and we
omit them in the interest of space and readability.

The most immediate obstacle to generalizing the results to
the case of m > 2 is in Lemma 13. As mentioned, it has been
shown in [17] that it is not generally true that any continuous
function f : Sk → Sl with k > l ≥ 2 is null-homotopic.
Hence, an analogue to Lemma 13 in higher dimensions does
not exist.

However, there is a possible alternative approach. It is
not difficult to check that Lemma 12 can essentially be
generalized to edges of OS of higher dimensions. Hence,
for any edge A in ∂κ−1OS , every continuous function fA :
A → Sm−1 that satisfies the cone invariance conditions is

not surjective, and hence null-homotopic. Thus, the main
problem in extending the results of this paper is finding the
conditions to “glue” the null-homotopic functions fA into a
null-homotopic function ∂κ−1f : ∂κ−1OS → Sm−1.
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