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Abstract— This paper deals with a necessary condition for the
solvability of the Reach Control Problem (RCP) by continuous
state feedback. The RCP seeks to find a continuous state
feedback which drives a control system defined on a simplex to
leave the simplex through a predetermined facet. The problem
of a topological obstruction has been previously identified as a
strong necessary condition for the solvability of the RCP, and
finding a characterization of a topological obstruction has been
an ongoing effort. Using the methodology of homotopy theory
and nerve theory, this paper provides a new necessary condition
for the existence of a topological obstruction. This condition re-
moves the gap that exists between currently available necessary
conditions and current sufficient conditions, and hence results
in a sufficient and necessary condition for the existence of a
topological obstruction in the RCP.

I. INTRODUCTION

The Reach Control Problem (RCP) studies the behaviour
of an affine control system on a simplex. It seeks, for a given
system, to design a control feedback law such that all system
trajectories starting from an initial point in the simplex leave
the simplex through a predetermined exit facet. The interest
in the RCP is primarily driven by reach control theory, which
is an approach, inspired by studies of reachability (see, e.g.,
[20]), to meet complex control objectives on a constrained
state space. Reach control theory and the RCP have been the
subject of significant theoretical and practical research in the
past decade (see, e.g., [3], [7], [9], [19], [21]).

One of the fundamental difficulties of reach control theory
is in determining whether the RCP, for a given system and
on a given simplex, is solvable. Recent research effort has
been devoted to finding suitable classes of feedback to solve
the RCP. For affine control laws, a set of necessary and
sufficient conditions for the solvability of the RCP has been
identified [9], [19]. These conditions are of limited use in
practice. For a given candidate feedback, they can be utilized
to verify whether that particular feedback solves the RCP.
However, they cannot be easily used to determine whether
there exists an affine feedback which solves the RCP. In the
case of continuous state feedback, analogous to the problem
of continuous feedback stabilization [6], the existence of a
topological obstruction has been identified as a fundamental
obstacle to the solvability of the RCP. The goal of this
line of research is to obtain an elegant and computable
characterization for the existence of such an obstruction,
thus providing a practically useful necessary condition for
the solvability of the RCP.
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The topological obstruction problem has been examined
in a number of recent papers: [8], [15], [16], [17]. A
similar problem of an affine obstruction in the RCP has also
been examined in [11], but that problem deals with affine
feedbacks. The methods and results of [8], [15], [16] are
significantly different from this work. In particular, [8] deals
with a very specific case where the possible set of equilibria
of the control system has a special geometric structure. The
assumptions of this paper are far more relaxed. Papers [15],
[16] limit the dimensions of the state space and the number
of control inputs, respectively. This paper contains no such
limits.

This paper is a direct successor of [17]. That paper estab-
lished a strong sufficient condition and a strong necessary
condition for the existence of a topological obstruction in the
RCP, with limited assumptions on the geometric structure
and dimensions of the system. In [17], there a minor gap
between the presented necessary condition and the presented
sufficient condition. In particular, [17] shows that there is a
topological obstruction in the system if a certain union of
open convex cones in Rm equals the entire Rm. On the other
hand, it shows that if a union of larger, closed, cones does not
equal all of Rm, then there is no topological obstruction. In
other words, in a degenerate case where the smaller union of
open cones does not equal Rm, but the larger union of closed
cones does equal Rm, the results of [17] could not be used
to determine whether there exists a topological obstruction
for a given control system.

This paper has two contributions. First of all, it closes the
described gap from [17]. In particular, we will show that
there exists a topological obstruction in the system if and
only if the above union of larger closed convex cones equals
Rm. The second contribution is in the method used to close
this gap. This paper invokes the machinery of nerve theory,
which was not used in any of the previous papers involving a
topological obstruction in the RCP. Moreover, to the authors’
knowledge, it has never been used in control theory before.

Notation: If f : X → Y is a map, and A ⊂ X ,
then f |A : A → Y denotes the restriction of f to A.
idX : X → X denotes an identity map on X . Bn denotes
an n-dimensional unit ball, Sn denotes an n-dimensional
unit sphere, and ∆n denotes an n-dimensional simplex.
co{v1, . . . , vk} denotes the convex hull of points v1, . . . , vk.
If X is a set, then int(X ) denotes its (relative) interior, and
∂X its (relative) boundary.



II. MATHEMATICAL BACKGROUND

Note that the results and definitions of Section II-A are
also contained in a number of previous works on the topo-
logical obstruction in the RCP, most notably [17]. However,
we repeat them here to introduce the reader to the topological
machinery used in the paper. The definitions and results of
Section II-B have, however, not appeared in previous related
papers, as they serve as foundation for the use of nerve
theory.

A. Homotopy Theory and Topology of Spaces

Continuous maps f, g : X → Y are homotopic if there
exists a continuous function F : X × [0, 1] → Y such that
F (·, 0) ≡ f , F (·, 0) ≡ g. A continuous map f : X → Y is
null-homotopic if it is homotopic to a constant map c(x) =
y0, y0 ∈ Y .

Topological spaces X and Y are homotopy equivalent,
denoted by X ' Y , if there exist two continuous maps
f : X → Y , g : Y → X such that f ◦ g and g ◦ f are
homotopic to idY and idX , respectively. A topological space
X is contractible if the identity map id : X → X is null-
homotopic. A topological space X is locally contractible if
for every x ∈ X and every open subset x ∈ Vε ⊂ X , there
exists an open subset x ∈ Vδ ⊂ Vε which is contractible in
the subspace topology inherited from X .

Topological spaces X and Y are homeomorphic, denoted
by X ∼= Y , if there is a continuous map f : X → Y
which is bijective and has a continuous inverse. This f is
called a homeomorphism. Note that homeomorphic spaces
are trivially homotopy equivalent, as f ◦ f−1 = idY and
f−1 ◦ f = idX . Informally, for the purposes of topology,
homeomorphic spaces are considered to be essentially the
same.

Finally, the following definition is given in [1]. We note
that it substitutes the usual definition of absolute extensors
by absolute retracts. However, these notions are in the case of
metrizable spaces equivalent (see [18]). The same definition
is also used in [17].

Definition 1: A metrizable space X is an absolute retract
(AR) if for every metrizable space Y and every closed set
A ⊂ Y , each continuous map f : A → X is extendable to a
continuous map F : Y → X .

Proposition 2 ([5], [1]): If X is (homeomorphic to)
a compact, contractible and locally contractible finite-
dimensional metric space, it is AR.

B. Simplicial Complexes

Let J be a finite index set. D ⊂ 2J\{∅} is a (finite)
abstract simplicial complex if

(L ⊂ K ∧K ∈ D)⇒ L ∈ D, K,L ∈ 2J\{∅}. (1)

Geometrically, an abstract simplicial complex D can be
realized with the singletons in J playing the role of vertices,
and with k-subsets of J being the k-dimensional faces of D.
It is well-known (see, e.g., Remark 1.3.4 in [14]) that we can
indeed represent D as a usual geometric simplicial complex
instead of an abstract one, without any loss of functionality.

Let D be a finite simplicial complex with vertices denoted
by 1, 2, . . . , l. The (first) barycentric subdivision of D divides
each k-dimensional simplex P ⊂ D into (k + 1)! smaller
simplices, k = 1, . . . , l− 1. Each of these smaller simplices
consists of one vertex x0 ∈ {1, 2, . . . , l} of the original
simplex, one vertex in the middle of some edge co{x0, x1},
one vertex in the middle of some two-dimensional simplex
co{x0, x1, x2}, etc. The barycentric center of P is the vertex
of its barycentric subdivision contained in the interior of P .
The barycentric star bst(j) in D consists of all simplices in
the first barycentric subdivision of D which contain {j}. See
Fig. 1 for an example of one simplicial complex and its first
barycentric subdivision.
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Fig. 1: The barycentric subdivision of the simplicial complex
D = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 3}, {2, 3},
{2, 4}, {3, 5}, {3, 6}, {5, 6}, {3, 5, 6}}. The barycentric star
of vertex 3 is marked in blue, and the barycentric center of
the two-dimensional simplex with vertices 3, 5, 6 is marked
in green.

Finally, we give a technical lemma that will be crucial in
our main result.

Lemma 3 (Lemma 4.3, [2]): Let ∆ be a simplex, and let
f : ∆→ ∆ be a continuous map such that f(P) ⊂ P holds
for each face P ⊂ ∆. Then, f is surjective.

Corollary 4: Let ∆ be a simplex. There does not exist a
continuous map f : ∆→ ∂∆ such f(P) ⊂ P holds for each
face P ⊂ ∆.

Proof: Assume otherwise. Then, by taking the codomain
of f to be ∆ instead of ∂∆, such a map f satisfies the
conditions of Lemma 3 with Im(f) ⊂ ∂∆. However, by
Lemma 3, Im(f) = ∆.

III. A SHORT TUTORIAL ON NERVE THEORY

The notion of a set cover is a central notion of topology. To
remind the reader, a cover of a set X is a set {Xj | j ∈ J}
such that ∪j∈JXj = X . If all the sets Xj are open (in a
topology on X ), {Xj | j ∈ J} is an open cover. If all Xj
are closed, {Xj | j ∈ J} is a closed cover. If the index set
J is finite, the corresponding cover is a finite cover.

The properties of a set cover reveal a great deal of
information about the underlying space: for more details, see
[12]. This motivates the need to examine the structure of the
intersections of elements of a set cover. Nerve theory seeks
to provide a comprehensive methodology for doing so.



A nerve of a cover of a space is just a list of all subsets
of {Xj | j ∈ J} whose elements all have a nonempty
intersection. Formally, let J be an finite index set, and let
{Xj | j ∈ J} be a family of subsets of a topological space
X . The nerve N of {Xj | j ∈ J} with respect to X is the
set of non-empty subsets K of J given by

K ∈ N ⇔
⋂
k∈K

Xk 6= ∅. (2)

While other related objects can be described and inves-
tigated within the purview of nerve theory (e.g., the nerve
graph introduced and used in [10]), due to the confines of
the format of this paper, we omit such a discussion. We refer
the reader to [10], [13], and other references regarding nerve
theory contained at the end of this paper.

The structure of a nerve has remarkable geometric proper-
ties. First of all, by (1), N is an abstract simplicial complex.
Thus, N has a natural geometric interpretation: see Fig. 2
for an example.
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Fig. 2: The figure on the left gives an example of a closed
cover of a unit square X = [0, 1] × [0, 1]. The square is
covered by four sets: one (green, denoted by 1) covering the
bottom half, one (red, denoted by 2) covering the right two
thirds of the square, another (blue, denoted by 3) covering
the left two thirds of the square, and the fourth one (gray,
denoted by 4) covering the upper right corner of the square.
The figure on the right gives a geometric realization of the
corresponding nerve N .

A far more remarkable result concerning nerves is the
nerve theorem. It states that, under certain conditions, a space
and a nerve of its cover are homotopy equivalent. This is
remarkable because a given space can clearly admit a variety
of different covers, which are thus shown to share the same
homotopic properties.

We note that nerve N depends on X and {Xj | j ∈ J}.
In the remaining sections of this text, however, we will not
explicitly note this. This is for two reasons. First, we will
be using nerve theory exclusively to investigate a nerve of
a single cover on one particular space. Secondly, the nerve
theorem exactly states that the homotopic properties of N
are preserved regardless of the underlying cover.

Although the statement of the nerve theory can be proved
under varying conditions, the form given in [4] and [13] is
most applicable to our work.

Theorem 5 (Theorem 3.3, [13]): Let N be the nerve of a
closed finite cover {Xj | j ∈ J} with respect to X . Assume

that the following holds: ∩j∈KXj is AR for all ∅ 6= K ⊂ J .
Then, X ' N .

If a closed cover {Xj | j ∈ J} satisfies this assumption of
Theorem 5, we say that it is regular. We note that the nerve
in Fig. 2 is indeed homotopy equivalent its corresponding
space (unit square), confirming Theorem 5.

IV. REACH CONTROL PROBLEM

In the RCP, we consider an n-dimensional simplex S ⊂
Rn, with vertices v0, . . . , vn and facets F0, . . . ,Fn, where
each facet is indexed by the vertex that it does not contain.

We consider the system

ẋ = Ax+Bu+ a, (3)

where A ∈ Rn×n, B ∈ Rn×m with rank(B) = m, a ∈ Rn.
Let B = Im(B).

Assume that u : S → Rm is a continuous function. Let
φu(·, x0) be the solution of (3), with φu(0, x0) = x0. The
Reach Control Problem, given in its current version in [9],
[19], is as follows:

Problem 6 (Reach Control Problem (RCP)): Given sys-
tem (3) on S, determine whether there exists a control
u : S → Rm such that for all x0 ∈ S there exist T ≥ 0
and ε > 0 such that the following holds:

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0,

(iii) φu(t, x0) /∈ S for all t ∈ (T, T + ε).
There are two trivial necessary conditions for the solvabil-

ity of Problem 6 by continuous state feedback u. The first
condition is that system (3) cannot contain any equilibria.
Related to that condition, we note that any equilibrium point
x would satisfy Ax + a = −Bu(x) ∈ B and hence define
OS = {x ∈ S | Ax+a ∈ B}. The following two statements
trivially hold:

(E1) Any equilibrium of (3) necessarily lies in OS .
(E2) Velocity vectors Ax+Bu(x)+a are contained in B for

all x ∈ OS .
The second necessary condition for the solvability of the

RCP is that the velocity vectors Ax + Bu(x) + a cannot
point outside of the simplex at facets other than F0. Suppose
otherwise: dφ(0, x0)/dt = Ax0 +Bu(x0)+a points outside
of S for some x0 ∈ ∂S\F0. Then, the trajectory φ(·, x0)
will leave simplex S by exiting through a facet other than
F0, breaking conditions (ii) and (iii) of Problem 6.

The rigorous statement of the second condition is as
follows. We denote I = {1, . . . , n}. Let hj be the outward
pointing normal to the facet Fj for j ∈ I . For each x ∈ S,
let I(x) ⊂ {0, 1, . . . , n} be the smallest set such that x ∈
co{vi | i ∈ I(x)}. Inward-pointing cones C(x), x ∈ S , are
defined by C(x) = {y ∈ Rn | hj · y ≤ 0, j ∈ I\I(x)}, with
the convention that C(x) = Rn if I\I(x) = ∅.

The above necessary condition for the solvability of the
RCP by continuous state feedback u can now be stated as
Ax+Bu(x)+a ∈ C(x) for all x ∈ S. These are the so-called
invariance conditions. For more details on these conditions,
we refer the reader to [9], [19].



The problem of a topological obstruction [8], [15], [16],
[17] seeks to combine the two above conditions into a strong
and operable necessary condition for the solvability of the
RCP by continuous state feedback. In particular, we first
assume that the invariance conditions hold for all x ∈ OS .
We know from (E1) that outside of OS there will not be any
equilibria of (3), no matter which feedback control we use.
Thus, we are interested in whether there exists a feedback
control u on OS such that f(x) := Ax + Bu + a does not
vanish on OS . Since f(x) ∈ B for all x ∈ OS by (E2), this
problem can be given as follows:

Problem 7 (Topological Obstruction): Does there exist a
continuous function f : OS → B\{0} such that f(x) ∈ C(x)
for all x ∈ OS?

From the above discussion, an affirmative answer to Prob-
lem 7 is a necessary condition for the solvability of the
RCP. Our goal is to find an elegant necessary and sufficient
condition for an affirmative answer to Problem 7.

Problem 7 can easily be transformed into a form more
amenable to topological investigation. This requires employ-
ing a linear transformation that maps B\{0} into Rm\{0}
and noticing that f solves is a solution to Problem 7 if and
only if f̃(x) = f(x)/‖f(x)‖ is a solution to Problem 7;
we refer the reader to [15], [17] for all details. The above
transformations also require us to redefine the cone C(x). We
finally obtain the following problem, which is equivalent to
the original Problem 7.

Problem 8: Let

C(x) = {y ∈ Sm−1 | hj · y ≤ 0, j ∈ I\I(x)}. (4)

Does there exist a continuous map f : OS → Sm−1 which
satisfies f(x) ∈ C(x) for all x ∈ OS?

In line with the exposition in [17], we also define cones

Cj = {y ∈ Sm−1 | hj · y ≤ 0}, j ∈ I . (5)

From (4) and (5), we have C(x) = ∩j /∈I(x)Cj for all x ∈ S.
In the remainder of the text, we make the following

assumptions, which are the same as the assumptions in [17]:
Assumption 9:

(A1) The pair (A,B) is controllable,
(A2) 2 ≤ m ≤ n− 1,
(A3) For any index set ∅ 6= I ′ ⊂ I , if Y = ∩j∈I′Cj 6= ∅,

then Y ∼= Bρ for some ρ ∈ {0, . . . ,m− 1},
(A4) OS = co{o1, . . . , oκ+1} is a κ-dimensional simplex

with vertices o1, . . . , oκ+1,
(A5) v0 /∈ OS ,
(A6) OS ∩ int(S) 6= ∅,
(A7) C(oi) 6= ∅ for all i ∈ {1, . . . , κ+ 1}.

In the interest of conserving space, we refer the reader
to [17] for a discussion on the meaning of the stipulations
contained in Assumption 9. Although some of the stipula-
tions can be relaxed for the results that we are presenting
here, this is not the focus of this paper, and in the interest
of clarity we choose to remain by the assumptions of [17].

The following result can be easily derived from Assump-
tion 9:

Lemma 10 (Lemma 3(i), [17]): If the pair (A,B) is con-
trollable and OS ∩ int(S) 6= ∅, then dim(OS) = m.

Finally, we introduce some additional notation from [17].
Let FO1 , . . . ,FOκ+1 be the facets of OS , again denoted by
the vertex oj they do not contain. It is easy to verify that for
any facet FOj and any x ∈ int(FOj ),

I(x) =
⋃

1≤i≤κ+1
i 6=j

I(oi).

Thus, by (4), C(x) is the same for all x ∈ int(FOj ). We
denote

Hj = C(x), x ∈ int(FOj ). (6)

The following lemma was proved in [17].
Lemma 11 (Lemma 6, [17]): At most one of the sets

H1, . . . ,Hκ+1 equals Sm−1.
Finally, we introduce the notation

H =
⋃

Hj 6=Sm−1

Hj , H∗ =
⋃

Hj 6=Sm−1

int(Hj).

V. INFORMAL RESULT OUTLINE

The main result of [17] was the following:
Theorem 12 ([17]): If H 6= Sm−1, Problem 8 has an

affirmative answer. On the other hand, if H∗ = Sm−1,
Problem 8 has a negative answer.

As discussed before, this leaves a gap between the two
stated conditions. If H∗ ( Sm−1 = H, Theorem 12 does
not answer Problem 8. We will now amend that gap and
show that the condition H∗ = Sm−1 above can be replaced
by H = Sm−1. Our paper does not directly focus on the
condition H 6= Sm−1 for an affirmative answer. For more
details on this condition, we invite the reader to see [17].
We provide an example outlining our method of proof that
H = Sm−1 implies that Problem 8 has a negative answer.
This example, along with Fig. 3, is modified from [17].

Example 13: Suppose n = 3, m = 2, and OS =
co{o1, o2, o3}, where oi lies in the interior of the segment
v0vi for all i ∈ {1, 2, 3}. This is illustrated on the left
side of Fig. 3. For any x in the interior of ojok, we have
I(x) = {0, j, k}. Hence, by (5) and (6), Hi = Ci for all
i ∈ {1, 2, 3}. Assume that cones Hi are given as on the
right side of Fig. 3.

v1 v2

v0

v3

o1

o2

o3 H1

H2

H3

Fig. 3: Configuration of the set OS and cones Hi from
Example 13.

By looking at the right side of Fig. 3, we notice that we
can split S1 into six (non-disjoint) arcs: H1, H1 ∩ H2, H2,
H2 ∩H3, H3, and H3 ∩H1. This is shown in Fig. 4.



H1

H1 ∩H2

H2

H2 ∩H3

H3

H1 ∩H3

Fig. 4: Different areas of S1 from Example 13. Set H1

is denoted by red, H2 by blue, and H3 by green. The
intersections of the sets are denoted by a mixture of the
corresponding colours.

Let us contract H1∩H2, H2∩H3 and H1∩H3 from Fig. 4
into single points, and “straighten out” H1, H2 and H3. We
are being imprecise here: this procedure will be formally
justified in Theorem 19. We obtain a simplex as on the right
side of Fig. 5.

Now, consider a function ∂f : ∂OS → S1 which satisfies
f(x) ∈ C(x) for all x ∈ ∂OS . Hence, by (4) and (6),
∂f satisfies ∂f(o1) ∈ H2 ∩ H3, ∂f(o2) ∈ H1 ∩ H3 and
∂f(o3) ∈ H1 ∩ H2. Also, ∂f satisfies ∂f(FOi ) ⊂ Hi for
all i ∈ {1, 2, 3}. We obtain that ∂f is a map from one
simplex (OS ) to the boundary of another (modified S1) which
preserves faces. This is illustrated in Fig. 5.

FO2

FO3

FO1

o3

o1 o2

−→ H2

H3

H1

H1 ∩H2

H2 ∩H3 H1 ∩H3

Fig. 5: An illustration of the proof from Example 13. On the
left side is OS , while the right side contains a S1 modified
from Fig. 4 into a simplex, as outlined in the text.

However, by Corollary 4 such a map cannot be extended
into a map on the entire OS . �

Example 13 gives an outline of the method that we use to
prove that H = Sm−1 implies a negative answer to Problem
8: we assume that there exists a solution to Problem 8, and
transform it into a map from one simplex to another which
preserves faces. To formalize this process we use a tool that
automatically transforms sets Hi1 ∩ · · · ∩ Hik into faces of
a simplex. This tool is nerve theory.

Remark 14: In Example 13, H∗ = Sm−1. Thus, the
problem of a topological obstruction in that case could have
also been solved using the approach of [17]. As the situation
in whichH = Sm−1 6= H∗ is degenerate, any example which
illustrates this gap would be highly inelegant.

VI. MAIN RESULT

In order to solve Problem 8, we will reduce it to the
following question:

Problem 15: Let FO1 , . . . ,FOκ+1 be the facets ofOS . Does
there exist a continuous map f : OS → Sm−1 which satisfies
f(FOj ) ⊂ Hj for all j ∈ {1, . . . , κ+ 1‖?

Lemma 16: If f satisfies the conditions of Problem 8, then
it satisfies the conditions of Problem 15.

Proof: Assume f solves Problem 8. Let j ∈ {1, . . . , κ+
1} and let x ∈ int(FOj ). We have f(x) ∈ C(x). By (6), then
f(x) ∈ Hj . Thus, f

(
int(FOj )

)
⊂ Hj . As f is continuous

and Hj is closed, we get f(FOj ) ⊂ Hj .
We now present a technical lemma that establishes

a structure-preserving homeomorphism between a k-
dimensional simplex ∆k and a simplex whose vertices are
the barycentric centers of the facets of ∆k.

Lemma 17: Let ∆k be a simplex with vertices
1, 2, . . . , k + 1. Let A1, . . . ,Ak+1 be the facets of
∆k, and let their barycentric centers be t1, . . . , tk+1,
respectively. Then, ∆′ = co{t1, . . . , tk+1} is a
simplex, and eomorphism h : ∂∆k → ∂∆′ such that
h (bst(j)) = co{ti | i = 1, . . . , k + 1, i 6= j} for all
j ∈ {1, . . . , k + 1}.

Proof: We introduce the following notation:
C(j1, . . . , jr) is the barycentric center of co{j1, . . . , jr}.
In a special case, ti = C(1, 2, . . . , i − 1, i + 1, . . . , k + 1).
It is trivial to computationally show that ti’s are affinely
independent. Hence, ∆′ is a simplex. Let us denote its
facets by A′i.

Let J = {1, 2, . . . , k + 1}. We define h : ∂∆k → ∂∆′

to be piecewise affine on each simplex of the barycentric
subdivision of N . In other words,

h(C(j1, . . . , jr)) = C(tj | j ∈ J\{j1, . . . , jr}), (7)

with an affine extension on each simplex
co{C(j1), C(j1, j2), . . . , C(j1, . . . , jk)}. h maps each
simplex in the barycentric subdivision of ∂∆k to a simplex
in the barycentric subdivision of ∂∆′. h is clearly well-
defined, bijective, continuous and piecewise affine, and has
a continuous and piecewise affine inverse.

Now, first suppose that x ∈ bst(j). Then x is in
some simplex of the barycentric subdivision of ∂∆k

which contains j: x = α1C(j) + α2C(j, j2) + . . . +
αkC(j, j2, . . . , jk). By (7), h(x) = α1C(ti | i ∈ J\{j}) +∑k
r=2 αrC(ti | i ∈ J\{j, j2, . . . , jr}). We note that none

of the sets J\{j, j2, . . . , jr} contain j. Hence, h(x) ∈ A′j .
Thus,

h(bst(j)) ⊂ A′j . (8)

Conversely, suppose x ∈ A′j . Then x = α1C(tj1) +
α2C(tj1 , tj2) + . . . + αkC(tj1 , . . . , tjk), where none of
ji’s equal j. By (7), h−1(x) =

∑k
r=1 αk+1−rC(i | i 6=

j1, . . . , jr). Since j 6= j1, . . . , jk, we know h−1(x) ∈ bst(j),
i.e.,

h−1(A′j) ⊂ bst(j). (9)

By combining (8) and (9) we get h(bst(j)) = A′j .
In the proof of our main result, we will also need the

following technical statement. It builds on the homotopy
equivalence of space X and its cover N from Theorem 5



by showing that each cover element Xj ⊂ X corresponds to
a barycentric star of a vertex of N .

Lemma 18 (Proof of Theorem 3.3, [13]): Let N be the
nerve of a closed finite regular cover {Xj | j ∈ J} with
respect to X . Let us denote vertices of N by 1, . . . , j.
Then there exist continuous functions f ′ : X → N and
g′ : N → X such that f ′(Xj) ⊂ bst(j) and g′(bst(j)) ⊂ Xj .

We now reach the main result of our paper.
Theorem 19: Suppose Assumption 9 holds, and let H =

Sm−1. Then, the answer to Problem 8 is negative.
Proof: Assume otherwise. Let f : OS → Sm−1 = H be

a solution to Problem 8. By Lemma 16, f is then a solution
to Problem 15.

By Lemma 10, κ = dim(OS) = m, i.e., the vertices of
OS are o1, . . . , om+1. By the conditions of Problem 15,

f(oi) ∈ Hj , i, j = 1, . . . ,m+ 1, i 6= j. (10)

Let N be the nerve of {Hj | Hj 6= Sm−1}. We note
that {Hj | Hj 6= Sm−1} is a closed finite cover of H.
Additionally, by (A3) all Hj which are not whole spheres
are homeomorphic to closed balls. It can easily be verified
that a closed ball is contractible and locally contractible, so
the cover {Hj | Hj 6= Sm−1} is also regular by Proposition
2. Hence, invoking Theorem 5, N ' H = Sm−1.

We note that N , by definition, has at most m+1 vertices.
Let us show that it has exactly m + 1 vertices, i.e., that
Hj 6= Sm−1 for all j ∈ {1, . . . ,m + 1}. By Lemma 11,
there is at most one Hj such that Hj = Sm−1. Assume such
an Hj indeed exists. Without loss of generality, let Hm+1 =
Sm−1. By (10), f(om+1) ∈ Hj for all j = 1, . . . ,m, and
also f(om+1) ∈ Sm−1 = Hm+1. Thus, all Hj’s intersect.
Hence, by (2), N is a full m-dimensional simplex ∆m. Since
∆m ∼= Bm 6' Sm−1, this is in contradiction withN ' Sm−1.

Thus, let the vertices of N be denoted by 1, 2, . . . ,m+ 1.
Now, by (2) and (10), simplicial complex N 6= ∆m includes
all faces of an m-dimensional simplex ∆m. Thus,

N = ∂∆m. (11)

By Lemma 18, there exists a continuous function f ′ :
H → N such that f ′(Hj) ⊂ bst(j). By the conditions of
Problem 15, continuous map f ′ ◦ f : OS → N satisfies

(f ′ ◦f)(FOj ) ⊂ f ′(Hj) ⊂ bst(j), j = 1, . . . ,m+1. (12)

Let N ′ be the simplex generated by barycentric centers of
facets of N , and let A′1, . . . ,A′m be the facets of N ′. By (11)
and Lemma 17, there exists a homeomorphism h : N → N ′
such that h(bst(j)) = A′j Hence, by (12), the continuous
map f = h ◦ f ′ ◦ f : OS → N ′ satisfies

f(FOj ) ⊂ h(bst(j)) = A′j , j = 1, . . . ,m+ 1. (13)

We noted earlier that OS ∼= ∆m. By Lemma 17 and (11),
N ′ ∼= N = ∂∆m. Thus, f : OS → N ′ can be viewed as a
continuous map f : ∆m → ∂∆m which by (13) satisfies

f(Pj) ⊂ Pj (14)

for all facets Pj ⊂ ∆m. By taking intersections of different
Pj’s, it is clear from (14) that f : ∆m → ∂∆m not only

preserves facets of ∆m, but also all faces. However, by
Corollary 4, such a map cannot exist.

The following result completely characterizes the solvabil-
ity of the problem of a topological obstruction in the RCP.

Theorem 20: Suppose Assumption 9 holds. The answer to
Problem 8 is affirmative if and only if H 6= Sm−1.

Proof: It was shown in [17] that, if H 6= Sm−1, the
answer to Problem 8 is affirmative. In the other direction,
if the answer is affirmative, condition H 6= Sm−1 holds by
Theorem 19.
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