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Abstract: The Reach Control Problem (RCP) deals with driving the states of an affine system
on a simplex to leave the simplex through a pre-determined facet. A necessary condition for
the solvability of the RCP by a given feedback is that there are no closed-loop equilibria in the
simplex. As a stepping stone to fully characterizing when equilibria can be removed from the
simplex using feedback, this paper studies the geometric structure of open-loop equilibria. Using
a triangulation in which the set of potential equilibria intersects the interior of the simplex, we
prove that the equilibrium set contains at most one point, in both the single-input and multi-
input case. We additionally improve on the currently available results on reach controllability to
characterize when the closed-loop equilibria can be pushed off the simplex using affine feedback.
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1. INTRODUCTION

The Reach Control Problem (RCP) is a fundamental
problem in the theory of hybrid dynamical systems. The
central problem of the RCP is to design a feedback that
drives the trajectories of an affine system to exit a simplex
through a predetermined facet in finite time (Habets et al.,
2006; Roszak and Broucke, 2006). It has been shown
in Habets et al. (2006) and Roszak and Broucke (2006)
that equilibria play a central role in solvability of the
RCP using affine feedback. Motivated by this, a currently
active line of research focuses on exploring the existence,
geometry and evolution of equilibria of an affine control
system (Ashford and Broucke, 2013; Helwa and Broucke,
2013; Semsar-Kazerooni and Broucke, 2014; Broucke and
Ganness, 2014).

One can interpret the RCP as the application of feedback
control to shift closed-loop equilibria off the simplex of
interest. In an effort to characterize when the system
is sufficiently actuated to do so, notions such as reach
control indices and reach controllability were formulated
in Broucke and Ganness (2014) and Semsar-Kazerooni
and Broucke (2014), respectively. In particular, reach con-
trollability was designed to describe how an infinitesimal
control actuation serves to push the closed-loop equilibria
out of the simplex. In that sense, it acts as an analogue
to the standard notion of local controllability, which uses
infinitesimal control actuation to move the state within
the neighbourhood of the starting point.

This paper has two main contributions. In Section 4 we
explore properties of the set of open-loop equilibria of
an affine system on a simplex. After significantly relaxing
the assumptions of Semsar-Kazerooni and Broucke (2014),
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in particular removing the restriction on the number
of inputs, we prove that this set contains at most one
point. In Section 5 we provide a generalization of the key
result of Semsar-Kazerooni and Broucke (2014) on reach
controllability in single-input systems, by removing the
need for an additional assumption made in that paper.

Notation. Let S ⊆ R
n be a set. The relative interior of S

is denoted int(S) and the relative boundary of S is denoted
∂(S). The notation 0 denotes the subset of Rn containing
only the zero vector. The notation co{v1, v2, . . .} denotes
the convex hull of a set of points vi ∈ R

n, and the notation
aff{v1, v2, . . .} denotes the affine hull of a set of points
vi ∈ R

n. By the standard orthogonal simplex we mean
a simplex S ⊆ R

n with vertices at v0 = 0, vi = ei,
i = 1, . . . , n. The unit normal vectors to facets Fi of such

a simplex are given by h0 = [1 1 1 . . . 1]
T
and hi = −ei,

i = 1, . . . , n, where each facet is indexed by the vertex it
does not contain.

2. REACH CONTROL PROBLEM

We review the reach control problem. Consider an n-
dimensional simplex S = co{v0, . . . , vn}, the convex hull of
n+ 1 affinely independent points in R

n. Let its vertex set
be V = {v0, . . . , vn} and its facets, indexed by the vertices
they do not contain, F0, . . . ,Fn. Let hj, j = 0, . . . , n, be
the unit normal vector to each facet Fj pointing outside
of the simplex. Facet F0 is called the exit facet. Let
I = {1, . . . , n} and define I(x) to be the minimal index
set among {0, . . . , n} such that x ∈ co{vi | i ∈ I(x)}.

We consider the affine control system on S:

ẋ = Ax+Bu+ a , x ∈ S , (1)

where A ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) = m.

Let B = Im(B), the image of B. Define O = { x ∈



R
n | Ax+a ∈ B}, E = { x ∈ R

n | Ax+a = 0}, OS = S∩O,
and ES = S ∩ E .

Notice that E is the set of open-loop equilibria (when
u = 0), whereas Ax + Bu + a for x ∈ O can vanish for
an appropriate choice of u, so O is the set of possible
equilibrium points of the system. Let φu(t, x0) denote the
trajectory of (1) starting at x0 under control input u. We
are interested in studying reachability of the exit facet F0

from S.

Problem 1. (Reach Control Problem (RCP)).
Consider system (1) defined on S. Find a state feedback
u(x) such that for each x0 ∈ S there exist T ≥ 0 and δ > 0
such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0, and
(iii) φu(t, x0) /∈ S for all t ∈ (T, T + δ).

To solve the RCP we require conditions that disallow
trajectories to exit from the facets Fi, i ∈ I. For x ∈ S
define the closed, convex cone C(x) =

{

y ∈ R
n | hj ·

y ≤ 0, j ∈ I \ I(x)
}

. Figure 1 (a modified version
of a figure originally published in Ornik and Broucke
(2015)) illustrates the notation and the cones C(x) for a
2D simplex.

v0
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Fig. 1. Illustration of C(x), depicted as blue cones at several
points x ∈ S.

We say the invariance conditions are solvable if there exist
u0, . . . , un ∈ R

m such that,

Avi +Bui + a ∈ C(vi) , i = 0, . . . , n . (2)

The inequalities (2) are called invariance conditions, and
they guarantee that trajectories that exit S only do so
through F0 (Habets and van Schuppen, 2004).

The following result provides the foundation for solving
the RCP by affine feedback.

Theorem 2. (Habets et al., 2006; Roszak and Broucke,
2006) Given system (1) on a simplex S and an affine
feedback u(x) = Kx + g, with K ∈ R

m×n, g ∈ R
m, and

u0 = u(v0), · · · , un = u(vn), the closed-loop system is a
solution to Problem 1 if and only if

(a) The invariance conditions (2) hold,
(b) There is no equilibrium in S.

3. PRELIMINARIES

We note that OS is an intersection of the affine space O
and the simplex S. Hence, OS = co{o1, . . . , oκ+1} is a
polytope with vertices o1, . . . , oκ+1. Also, we define

cone(OS) =
κ+1
⋂

k=1

C(ok).

We make use of the following assumptions:

Assumption 3.

(A1) ES = co{ε1, · · · , εκ0+1}, a κ0-dimensional simplex
with 0 ≤ κ0 ≤ κ,

(A2) O ∩ int(S) 6= ∅,
(A3) O ∩ F0 = ∅,
(N1) Avi + a ∈ C(vi) , i = 0, . . . , n,
(N2) B ∩ cone(OS) 6= 0.

Assumptions (A2) and (A3) allow O to intersect the
interior of simplices. Arguments motivating this choice of
triangulation are found in Semsar-Kazerooni and Broucke
(2014). Notice that we remove the restriction of Semsar-
Kazerooni and Broucke (2014) that OS is itself a simplex.
We use a different numbering for assumptions (N1) and
(N2) as these arise from necessary conditions. Theorem 2
shows that a necessary condition for solvability of the RCP
by an affine feedback u = Kx + g is that the invariance
conditions (2) hold. To achieve (N1), we may assign the
affine feedback transformation u(x) = Kx+ g + v, with v
as a new exogenous input, to obtain a new affine system

ẋ = (A+BK)x+Bv + (Bg + a) =: A′x+Bv + a′ . (3)

Clearly, A′vi + a′ ∈ C(vi), i = 0, . . . , n. Now we abuse
notation and redefine the system to be (3) — with A′

replaced by A, a′ replaced by a, and v replaced by u —
for which (N1) is satisfied a priori. It can be shown that O
is invariant under such feedback transformations, whereas
the set E generally is not. It is an area of future investi-
gation to understand the evolution of ES under repeated
affine feedback transformations that preserve the invari-
ance conditions. In this paper we assume that such an
affine feedback transformation has already been performed
and the new system satisfies the above assumptions.

Assumption (N2) was shown in Semsar-Kazerooni and
Broucke (2014) to be a necessary condition for solvability
of the RCP by continuous state feedback in the case of
single-input systems. Accordingly, we will only be making
use of this assumption when discussing single-input sys-
tems.

The mathematical machinery laid out in Lemmas 4-8 to
derive the main arguments on characterization of equilib-
ria is based on manipulating index sets I(ok) in order to
book-keep the constraints arising from (N1). This machin-
ery enables us to relate the combinatorial properties of
index sets to geometric properties of polytopes and cones.

Lemma 4. Let I(o1)∩· · ·∩I(oκ+1) = {0, 1, 2, . . . , l}. Then,
cone(OS) = {y | hj · y ≤ 0 for all j = l + 1, . . . , n}.

Lemma 5. Let S = co{v0, . . . , vn} be an n-dimensional
simplex, and let P = co{w1, . . . , wk} ⊆ S. Let q ≤ n
be such that

k
⋃

i=1

I(wi) = {0, . . . , q}.

Define S ′ = co{v0, . . . , vq}. Then, there exists x ∈ P ∩
int(S ′).

We now give a proof of three fundamental claims which
we use as building blocks for our main results. One of the



key properties is the following generalization of Lemma 2
of Semsar-Kazerooni and Broucke (2014).

Lemma 6. Let S = co{v0, . . . , vn} be an n-dimensional
simplex. Let S ′ be a q-dimensional face of S, with q ≤ n.
Let P = co{w1, . . . , wp+1} be a p-dimensional simplex.
Suppose P ⊆ S ′, P ∩ int(S ′) 6= ∅ and ∂(P) ⊆ ∂(S ′).
Then each index set I(wk), k ∈ {1, . . . , p + 1}, has an
exclusive member. That is, there exists ik ∈ I(wk) such
that ik 6∈ I(wj) for all j ∈ {1, . . . , p+ 1} \ {k}.

Proof. Without loss of generality, assume the vertices of
S ′ are v0, . . . , vq. By the assumption that P ∩ int(S ′) 6=

∅, we have ∪p+1
i=1 I(wi) = {0, . . . , q}. If p = 0 we are

done. Instead suppose w.l.o.g. I(w1) ⊆ ∪p+1
j=2I(wj). Thus,

∪p+1
j=2I(wj) = {0, . . . , q}. Define P ′ = co{w2, . . . , wp+1}.

Since P is a simplex, P ′ is a (p − 1)-dimensional facet of

P so P ′ ⊆ ∂(P). However, ∪p+1
j=2I(wj) = {0, . . . , q} implies

P ′ ∩ int(S ′) 6= ∅. This contradicts that ∂(P) ⊆ ∂(S ′). �

The following lemma relates the dimension of ES with the
dimension of the affine space generated by the vertices vi
present in I(εk).

Lemma 7. Let ES = co{ε1, · · · , εκ0+1} be a simplex with
dim(ES) = κ0. Let q ≤ n be such that ∪κ0

k=1I(εk) =
{0, 1, . . . , q}. Then, dim(E ∩ aff{v0, . . . , vq}) = κ0.

Proof. Let S ′ = co{v0, . . . , vq}, and define E ′
S = E ∩ S ′.

Since ES ⊆ S ′ and ES ⊆ E , we note ES ⊆ E ′
S . On the other

hand, E ′
S = E ∩ S ′ ⊆ E ∩ S = ES . Hence, E

′
S = ES and

thus, dim E ′
S = dim ES = κ0.

Now, since S ′ ⊆ aff(S ′), E ′
S = E ∩S ′ = E ∩S ′ ∩ aff(S ′). By

Lemma 5, there exists x ∈ ES = E ′
S such that x ∈ int(S ′).

By observing the dimension of E ∩ aff(S ′) locally around
x, we note that dim(E ∩ aff(S ′)) = dim(E ∩ aff(S ′) ∩
S ′) = dim(E ′

S) = dim(ES) = κ0. �

Finally, the following lemma will present the key rank
argument appearing in Theorem 9 and Theorem 14. This
is a generalization of Proposition 1 from Semsar-Kazerooni
and Broucke (2014). The assumptions of Proposition 1
from Semsar-Kazerooni and Broucke (2014) have been
relaxed, and the scope of the result has been significantly
extended. In particular, it now covers a larger class of
simplices on S, instead of solely OS itself.

Lemma 8. Let P = co{w1, . . . , wp+1} ⊆ S be a simplex in
S with vertices w1, . . . , wp+1. We assume the following:

(I1) ∪p+1
i=1 I(wi) = {0, 1, . . . , n}.

(I2) There exists r0 > 0 such that {0, 1, . . . , r0} is the set
of all indices that appear in more than one index set
I(wi).

(I3) Each I(wi), i = 1, . . . , p+1, has at least one non-zero
exclusive member.

Further we assume

(N1) Avi + a ∈ C(vi) for all i = 0, . . . , n.
(E1) hj ·(Avi+a) = 0 for all i = 0, . . . , r0, j = r0+1, . . . , n.
(E2) hj · (Awk + a) = 0 for all k = 1, . . . , p + 1, j = r0 +

1, . . . , n, j /∈ I(wk).
(E3) hj · (Awk + a) = 0 for all k = 1, . . . , q + 1, q ≤ p,

j = r0 + 1, . . . , n, j is an exclusive member of I(wk).

Then, rank(A) < n− q.

Proof. Without loss of generality, the vertices v0, . . . , vn
can be ordered according to the non-zero exclusive mem-
bers of I(wk). That is, the indices are ordered as
{0, 1, . . . , r0, r0 + 1, . . . , r1, . . . , rp + 1, . . . , rp+1}, where
rp+1 = n. Here, {0, 1, . . . , r0} appear in more than one
index set I(wk). Indices {rk−1 + 1, . . . , rk} only appear in
I(wk). We assume w.l.o.g. that S is the standard orthog-
onal simplex: v0 = 0, vi = ei, hi = −ei for i = 1, . . . , n.

Now we examine the consequences of (N1), (E1)-(E2) on
the forms of A and a. First consider (E1). Setting i = 0
we have

hj ·(Av0+a) = hj ·a = (−ej)·a = aj = 0, j = r0 + 1, . . . , n.
(4)

Then again from (E1):

hj ·Avi = [A]ji = 0, i = 1, . . . , r0, j = r0 + 1, . . . , n. (5)

Next we examine (N1) and (E2). First we use (4) to
simplify (E2):

hj ·Awk = 0, k = 1, . . . , p+ 1,

j = r0 + 1, . . . , n, j /∈ I(wk).
(6)

Let wk =
∑

i∈I(wk) α
wk

i vi, with αwk

i > 0,
∑

i∈I(wk) α
wk

i =

1. Then for each k = 1, . . . , p+ 1, (6) becomes
∑

i∈I(wk)

αwk

i hj ·Avi = 0, j = r0 + 1, . . . , n, j /∈ I(wk). (7)

By (N1) and (4):

hj · (Avi + a) = hj ·Avi ≤ 0, j = r0 + 1, . . . , n, i 6= j. (8)

Combining (7) and (8) and using αwk

i > 0, we get

hj ·Avi = [A]ji = 0, k = 1, . . . , p+ 1,

i ∈ I(wk), j ∈ {r0 + 1, . . . , n}\I(wk).
(9)

Consider j = rk−1 + 1, . . . , rk, the exclusive indices
of I(wk). By exclusivity, rk−1 + 1, . . . , rk ∈ {r0 +
1, . . . , n}\I(wl) for all l = 1, . . . , p+ 1, l 6= k. Also,

⋃

l 6=k

I(wl) = {0, . . . , n}\{rk−1 + 1, . . . , rk}.

Applying these observations to (9) we get

[A]ji = 0, k = 1, . . . , p+ 1,

i ∈ {0, . . . , n}\{rk−1 + 1, . . . , rk},

j ∈ {rk−1 + 1, . . . , rk}.
(10)

Putting together the information in (4), (5) and (10), the
forms of A and a are:

A =









A00 A01 · · · A0,p+1

A11

. . .
Ap+1,p+1









, a =









a0
0
...
0









. (11)

These forms are obtained as follows:

• The block of zero elements below a0 ∈ R
r0 in a is due

to (4).
• The block of zero elements below A00 ∈ R

r0×r0 in A
is due to (5).

• The off-diagonal zero blocks in the same rows as
A11, . . . , Ap+1,p+1 are due to (10).



• The first r0 rows of A correspond to the values of j
in (5), (10) for which we have no constraints.

• There are p+ 1 blocks of rows corresponding to sets
of indices {rk−1 + 1, . . . , rk}, k = 1, . . . , p+ 1. Thus,
Akk ∈ R

(rk−rk−1)×(rk−rk−1).

Finally, we consider (E3). First, partition

wk = (w0
k, w

1
k, . . . , w

p+1
k )

according to {1, . . . , r0, r0+1, . . . , r1, . . . , rp+1, . . . , rp+1}.
Combining (11) and (E3):




A11

. . .
Aq+1,q+1











w1
k

...

wq+1
k






= 0, k = 1, . . . , q + 1.

(12)

Since {rk−1 + 1, . . . , rk} is exactly the set of exclusive
members of I(wk), we know wk

k 6= 0. Thus, Akk is singular
for all k = 1, . . . , q + 1. Hence, from (12), rank(A) < n−q.
�

4. EQUILIBRIUM SET

We now proceed to the main contributions of this paper.
The central result of this section is that dim(ES) = 0. A
characterization of ES was previously explored in Helwa
and Broucke (2014), where it was also shown that ES is
a point. However, Helwa and Broucke (2014) dealt only
with single-input systems, whereas we deal with multi-
input systems. It was shown in Semsar-Kazerooni and
Broucke (2014) that the equilibria in single-input systems
can lie only on the boundary of S. As the set of possible
equilibria in controllable single-input systems is a line
segment, the result of Helwa and Broucke (2014) was
not unreasonable to expect. Our multi-input result, in
contrast, is more surprising, and represents a significant
improvement. Moreover, the fact that ES is a point was
used in Helwa and Broucke (2014) to apply multi-affine
feedback to solve the RCP for single-input systems in the
case when affine feedback fails. Our result may provide an
avenue to apply multi-affine feedback in the multi-affine
case. This may ultimately serve to answer the question of
an appropriate class of feedback for solvability of the RCP.
We remark that there are also other differences from the
result of Helwa and Broucke (2014). In particular, we will
not be assuming thatOS is a simplex and we do not require
assumptions (A2) and (N2).

Theorem 9. Consider the system (1) defined on a simplex
S. Suppose assumptions (A1), (A3) and (N1) hold. If
ES 6= ∅, then dim(ES) = 0.

Proof. Suppose dim(ES) = κ0 > 0. Without loss of gen-

erality, let q ≤ n be such that ∪κ0+1
k=1 I(εk) = {0, 1, . . . , q}.

Let S ′ = co{v0, . . . , vp}.

Let O′
S = O∩S ′ and E ′

S = E ∩S ′. By a variant of Lemma
1 in Semsar-Kazerooni and Broucke (2014), ∂ES ⊆ ∂S ′.

By Lemma 5, ES ∩ int(S ′) 6= ∅, so Lemma 6 applies
with P = ES . By (A3), 0 is not an exclusive member
of any I(εk), k = 1, . . . , κ0 + 1. Thus, by Lemma 6,
the vertices of S can be ordered according to non-zero
exclusive members of I(εk). That is, the indices are ordered
as {0, 1, . . . , r0, r0 + 1, . . . , r1, . . . , rκ0

+ 1, . . . , rκ0+1, q +

1, . . . , n}, with r0 < r1 < . . . < rκ0+1 = q. Here
{0, 1, . . . , r0} are the indices appearing in more than one
index set I(εk), k = 1, . . . , κ0+1. Indices {rk−1+1, . . . , rk}
only appear in I(εk).

Consider any vertex εk ∈ ES , k = 1, . . . , κ0 + 1. We have
Aεk + a = 0, and thus hj · (Aεk + a) = 0, j ∈ I. Let
εk =

∑

i∈I(εk)
αεk
i vi with αεk

i > 0 and
∑

i∈I(εk)
αεk
i = 1.

Then
∑

i∈I(εk)

αεk
i hj · (Avi + a) = 0 , j ∈ I . (13)

By (N1),

hj · (Avi + a) ≤ 0 , i ∈ I(εk), j ∈ I \ I(εk) . (14)

Combining (13), (14), and the fact that αεk
i > 0 for

i ∈ I(εk) we get

hj · (Avi + a) = 0, k = 1, . . . , κ0 + 1

i ∈ I(εk), j ∈ I \ I(εk).
(15)

Consider j = rk−1 + 1, . . . , rk. By exclusivity, rk−1 +
1, . . . , rk ∈ I \ I(εl) for all l = 1, . . . , κ0 + 1, l 6= k. Also,
∪l 6=kI(εl) = {0, . . . , q}\{rk−1+1, . . . , rk}. Applying these
observations to (15) we get

hj · (Avi + a) = 0 , k = 1, . . . , κ0 + 1 ,

i ∈ {0, . . . , q} \ {rk−1 + 1, . . . , rk} ,

j ∈ {rk−1 + 1, . . . , rk} .
(16)

Let us now invoke Lemma 8 for the simplex ES . We note
that Lemma 8 requires assumption (I1). This does not
necessarily apply directly. However, we are interested only
in solutions x ∈ E ∩ aff(S ′). Thus, instead of looking at
the whole simplex S, we will be observing only S ′ =
co{v0, . . . , vq}, which was chosen exactly in a way that
(I1) applies on it. (I2) and (I3) are satisfied.

(N1) is satisfied by the assumptions of the theorem, and
it still holds for the reduced system on S ′. (E1) is satisfied
by (16), (E2) is satisfied since Aεk + a = 0 for all k =
1, . . . , κ0 + 1, and (E3) is also satisfied for that reason,
with q from Lemma 8 equalling κ0 in this theorem.

Hence, by Lemma 8 rank(Ã) < q − κ0, where Ã is the
matrix A with rows and columns q + 1, . . . , n removed.
Hence, equation

Ãx̃+ ã = 0 (17)

has at least κ0+1 linearly independent solutions, where x̃
and ã differ from x and a, respectively, by having their rows
q + 1, . . . , n removed. As each x ∈ E ∩ aff(S ′) corresponds
to exactly one solution x̃ of (17), dim(E ∩aff(S ′)) ≥ κ0+1.
This is in contradiction with Lemma 7. �

We note that one of our triangulation assumptions, (A2),
was not strictly necessary for the above theorem, although
its use would have made our invocation of Lemma 8
more elegant, as assumption (I1) in Lemma 7 would have
been automatically satisfied. However, assumption (A3) is
necessary.

From Theorem 9, we know that, under assumptions (A1),
(A3) and (N1), ES is a single point. As mentioned, these
assumptions represent a significant relaxation of the as-
sumptions made in Helwa and Broucke (2014) and Semsar-
Kazerooni and Broucke (2014). However, assumption (A1)
still contains the imposition that ES is a simplex. In a



particular case of controllable single-input systems, which
is the main subject of inquiry of Semsar-Kazerooni and
Broucke (2014), this assumption can be removed as well.
We invoke the following well-known result:

Lemma 10. If (A,B) is controllable, then O is an affine
subspace with dim(O) = m.

Combined with assumption (A2), we can use Lemma 10
to prove the following result for single-input systems.

Proposition 11. Suppose assumptions (A2), (A3) and (N1)
hold. Suppose m = 1 and (A,B) is controllable. Then, ES
is either empty or a single point.

Proof. From Lemma 10, we obtain dim(O) = 1. From
(A2), dim(OS) = dim(O) = 1. Since OS is a polytope, the
only option is that OS is a line segment. Now, if ES is not
empty, we have ES ⊆ OS . Since ES is a polytope as well,
this implies that ES is either a single point or a segment.
In both cases, this implies it is a simplex. Hence, (A1) is
satisfied as well. Now, by Theorem 9, we get that ES = ∅
or ES is a single point. �

5. REACH CONTROLLABILITY

The notion of reach controllability has been defined for
single-input systems in Semsar-Kazerooni and Broucke
(2014). It provides a way to describe the ability of in-
finitesimal control actuation in system (1) to move the
equilibria located on the boundary out of the simplex S.
This is similar to the notion of local controllability, which
also uses infinitesimal control actuation to reach points
in the local neighbourhood. However, in the case of reach
controllability it is not the states of the system that we
are directly interesting in moving. Instead, the desire is to
move the equilibrium set {x ∈ R

n | Ax +Bu(x) + a = 0}
out of the simplex.

The definition we provide here is a slight generalization of
the definition in Semsar-Kazerooni and Broucke (2014).
Our definition allows for the vertices of ES not to be
contained in the vertex set of OS . We will see such a
situation appearing in Example 13.

Definition 12. Suppose (N1) holds, and there exists 0 6=
b ∈ B ∩ cone(OS). We say the triple (A,B, a) is reach
controllable if either ES = ∅, or ES = co{ε1, ..., εκ0+1} with
0 ≤ κ0 < κ, and for each εk ∈ IES

there exists i ∈ I(εk)
and ui > 0 such that Avi + bui + a ∈ C(vi).

An example of a system which satisfies Assumption 3, but
is not reach controllable was provided as Example 3 in
Semsar-Kazerooni and Broucke (2014). We omit it here
for lack of space. Along with our Assumption 3, results
in Semsar-Kazerooni and Broucke (2014) make use of the
following additional assumption:

(A0) OS = co{o1, · · · , oκ+1} is a κ-dimensional simplex
with 1 ≤ κ < n.

Under assumptions (A0)-(A3) and (N1)-(N2), it has been
shown in Semsar-Kazerooni and Broucke (2014) that the
vertices of ES in the single-input case are indeed the
vertices of OS . However, this does not hold if we just
remove the assumption (N2). This is shown in Example
13.

Example 13. Let m = 1 and let

A =

(

−4 0 0
0 −8 0
0 0 −8

)

, B =

(

−1
1
1

)

, a =

(

1
1
1

)

.

Let S be the standard orthogonal simplex. We note that
C(v0) = {x ∈ R

3 | xj ≥ 0, j = 1, 2, 3}, while C(vi) = {x ∈
R

3 | xj ≥ 0, j 6= i}.

It can be verified by direct calculations that (N1) holds,
and we can additionally easily calculate O = {x | Ax +
a ∈ B}: it equals aff{v0/2 + v1/2, v0/2 + v2/4 + v3/4}.
Hence, OS = O∩S = co{v0/2+v1/2, v0/2+v2/4+v3/4}.
Thus, OS clearly satisfies (A0), (A2) and (A3).

Finally, E is given by {x | Ax + a = 0}, and in this
particular case, we can easily calculate E = ES = {v0/2 +
v1/4 + v2/8 + v3/8}. Clearly, ES then satisfies (A1). So,
this system satisfies (A0)-(A3) and (N1). However, ES is
not a vertex of OS . The resulting picture is given in Figure
13.

v0

v2v1

v3o1 o2ε1

Fig. 2. Illustration of Example 13. OS is depicted by a
dashed line, and the exit facet F0 is painted green.

In the remainder of this paper, we will be assuming
(N2). Thus, by Semsar-Kazerooni and Broucke (2014),
we may assume without loss of generality that ES =
{o1, . . . , oκ0+1}, and, by Theorem 9, we know that κ0 = 0.

The main result of Semsar-Kazerooni and Broucke (2014),
which connects reach controllability with solvability of the
RCP, contains the assumption that Aoκ+1 + a ∈ B ∩
cone(OS). Along with being unintuitive, this assumption
seems to significantly constrain the potential values of
Aoκ+1 + a, allowing only those values which lie in the ray
of B that points through cone(OS). We now show that
this assumption is in fact unnecessary. Our proof relies on
the use of assumption (N1) to derive the zero structure of
matrices A and a, and invoke Lemma 8.

Theorem 14. Suppose (A0) and Assumption 3 hold. Sup-
pose m = 1, and ES = {o1, . . . , oκ0+1}. Then, if κ > κ0,
it is impossible that Aok + a /∈ B ∩ cone(OS) for all
k = κ0 + 2, . . . , κ+ 1.

Proof. The conditions of Theorem 9 hold, so κ0 = 0,
ES = {o1} and Aok + a 6= 0, k = 2, . . . , κ+ 1.

Suppose by way of contradiction that Aok + a /∈ B ∩
cone(OS) for all k = 2, . . . , κ+ 1. Since 0 6= Aok + a ∈ B
for k = 2, . . . , κ+ 1 and m = 1, we have

−(Aok + a) ∈ B ∩ cone(OS), k = 2, . . . , κ+ 1. (18)

Assume without loss of generality that S is a standard
orthogonal simplex, i.e., v0 = 0, vi = ei and hi = −ei
for all i ∈ I. Also, assume there exists l ≥ 0 such



that I(o1) ∩ · · · ∩ I(oκ+1) = {0, 1, 2, . . . , l}. By Lemma
4, cone(OS) = {y | hj · y ≤ 0 for all j = l + 1, . . . , n}.
Combining this with (18), we obtain

hj ·(Aok+a) ≥ 0, k = 2, . . . , κ+ 1, j = l + 1, . . . , n. (19)

Since we know I\I(ok) ⊆ {l + 1, . . . , n} for all k =
2, . . . , κ+ 1, (19) gives

hj · (Aok + a) ≥ 0, k = 2, . . . , κ+ 1, j ∈ I\I(ok). (20)

From (N1) we also know

hj · (Avi + a) ≤ 0, i = 0, . . . , n, j ∈ I\{i}.

This implies

hj · (Avi + a) ≤ 0, k = 1, . . . , κ+ 1,

i ∈ I(ok), j ∈ I\I(ok).
(21)

Combining (20), (21) and convexity, we obtain

hj · (Aok + a) = hj · (A
∑

i∈I(ok)

αok
i vi + a) =

=
∑

i∈I(ok)

hj · (Avi + a) = 0, k = 1, . . . , κ+ 1, j ∈ I\I(ok).

(22)

Note that we include k = 1 here because Ao1 + a = 0.

Then, since αok
i > 0, reapplying (21) we get

hj · (Avi + a) = 0, k = 1, . . . , κ+ 1,

i ∈ I(ok), j ∈ I\I(ok).
(23)

Now, assume that {0, 1, . . . , r0} is the set of all indices that
appear in more than one index set I(ok). Hence, for any
j = r0 +1, . . . , n, j is an exclusive member of some I(ok′),
k′ = 1, . . . , κ+1. For any i = 0, . . . , r0, i is not an exclusive
member of I(ok′ ). Thus, there exists k ∈ {1, . . . , κ+1} such
that i ∈ I(ok) and j ∈ I\I(ok). From (23) we get

hj · (Avi + a) = 0, i = 0, . . . , r0, j = r0 + 1, . . . , n. (24)

We first invoke Lemma 6. By Lemma 1 in Semsar-
Kazerooni and Broucke (2014), ∂OS ⊆ ∂S. Thus, the
assumptions for Lemma 6 are satisfied. Hence, each index
set I(ok), k = 1, . . . , κ+ 1, has an exclusive member.

We now invoke Lemma 8 for P = OS . (I1) is satisfied by
assumption (A2). (I2) is also satisfied by definition of r0.
(I3) is satisfied by our invocation of Lemma 6. Assumption
(N1) holds. (E1) holds by (24). (E2) is satisfied by (22).

We now distinguish between two cases. First, suppose
κ + 1 = 2. (E3) is certainly satisfied for at least q = 0,
as Ao1 + a = 0. Hence, by Lemma 8 rank(A) ≤ n −
1 = n − κ. This implies dim(E) ≥ κ. However, by (A2)
dim(O) = dim(OS) = κ, and E ⊆ O. As both E and O
are affine spaces, this implies E = O, i.e., OS = ES . This
means κ = κ0, and we reach a contradiction.

Suppose now that κ + 1 > 2. Then, without loss of
generality we may assume

I(o2) ∩ · · · ∩ I(oκ+1) = {0, 1, 2, . . . , l′} (25)

for some l′ ≥ l.

As B ∋ Aok + a 6= 0 for k = 2, . . . , κ + 1, we know
Aok + a = λkb for some λk 6= 0, k = 2, . . . , κ + 1. By
(22) we get

hj · b = 0, k = 2, . . . , κ+ 1, j ∈ I\I(oi). (26)

By (25) and (26), hj · b = 0, j = l′ + 1, . . . , n.

Hence, hj · (Aok + a) = 0, for all k = 2, . . . , κ+1, j = l′ +
1, . . . , n.

By (25) and κ + 1 > 2, all exclusive members of I(ok),
k = 2, . . . , κ + 1 are contained in {l′ + 1, . . . , n} Thus,
hj · (Aok + a) = 0 for all k = 1, . . . , κ + 1 and j which
are exclusive members of I(ok). We again included k = 1
above as Ao1 + a = 0.

We can now take q = κ in (E3) of Lemma 8. By Lemma 8,
rank(A) ≤ n−κ−1. This implies κ = dim(O) ≥ dim(E) ≥
κ+ 1. �

A generalization of Theorem 4 of Semsar-Kazerooni and
Broucke (2014) follows immediately.

Theorem 15. Let m = 1, and let (A0) and Assumption 3
hold. System (1) is RCP solvable by affine feedback if and
only if (A,B, a) is reach controllable.

Proof. The theorem was proved in Semsar-Kazerooni and
Broucke (2014) under the assumption that Aoκ+1+a ∈ B∩
cone(OS). Clearly, by renaming vertices this is equivalent
to stating Aos + a ∈ B ∩ cone(OS) for any s > κ0 + 1.
Assume otherwise: then, Aos + a /∈ B ∩ cone(OS) for all
s > κ0 + 1. However, this was shown to be impossible by
the previous theorem. We are done. �
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