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Abstract— A distributed system’s interconnection structure
emerges as a pattern in the system matrices. This pattern must
be preserved through system analysis and control synthesis,
and much has been written on these topics. A problem which
has not received any attention to date is how to identify a
pattern, given the linear system model. This paper proposes
a method for identifying a pattern that is mathematically
encoded through a commuting relationship with a base matrix.
Our method generates the commuting relationship, when it
exists. When it does not exist, our method produces the
closest approximation to the commuting relationship. Further,
it indicates which additional subsystem interconnections would
render it achievable. We provide both an exact solution and an
almost sure polynomial-time solution in the probabilistic sense.
Finally, we give several examples to demonstrate the utility of
this method for finding patterns in distributed systems.

I. INTRODUCTION

A distributed linear system can be modelled by system
matrices partitioned into blocks representing subsystem dy-
namics and their interactions. Typically, the blocks are not
completely arbitrary: some blocks might be equal, some
might be algebraically related, others might be fixed at
zero. We have developed a class of distributed systems
called patterned systems to capture such special structure
[1]. In order for these patterns to be useful for analysis
and synthesis, we require a mathematical characterization of
them. A number of suitable characterization methods have
been introduced in the literature; in particular, patterns can
be described by polynomials of a base matrix [1] and by
commuting relationships with a base matrix [2]. In this paper
we follow the latter approach. As shown in prior work [2],
[3], a number of common patterns in distributed systems can
be encoded by commuting relationships.

This paper addresses the problem of identification of a
distributed system’s pattern. More specifically, given a block
matrix in which certain blocks are equal and others are
zero, we aim to find a commuting relationship that uniquely
determines the pattern. This question of pattern identifica-
tion has not been treated in the literature either in terms
of commuting relationships or in terms of other encoding
methods [1], [4]. Nevertheless, pattern identification remains
one of the major barriers to a complete theory of patterned
linear systems [1, §9.3]. This paper breaks down that barrier
for patterns encoded by commuting relationships: whenever
such an encoding is possible, our method will find it.
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Now we outline the plan for the paper and introduce
key concepts in plain terms. Given a distributed system, we
first partition the system into subsystems and then catalogue
the distinct subsystem matrices. Next we characterize the
pattern through a so-called pattern-generating matrix whose
role is to capture which subsystem blocks are equal. An
instantiation of a pattern-generating matrix is a matrix whose
blocks adhere to the structure of a pattern-generating matrix.
The next step is to encode the resultant patterns in terms of
commuting relationships, following prior work on patterned
systems [2]. A matrix that commutes with all instantiations of
a pattern-generating matrix is called a base matrix. Thus, we
arrive at the fundamental problem considered in this paper.
The Pattern Identification Problem is to find a base matrix
that commutes with all instantiations of a given pattern-
generating matrix, but no others. The Pattern Identification
Problem is not always solvable, but we can nevertheless
always produce a matrix that preserves the given pattern, and
as few other patterns as possible. We provide two solution
approaches: the first is exact while the second is an almost
sure solution in the probabilistic sense.

The paper is organized as follows. In Section II, we
introduce patterned matrices. In Section III, we propose
an algorithm to solve the Pattern Identification Problem.
In Section IV, we provide a measure-theoretic result that
enables us to solve the Pattern Identification Problem almost
surely, in polynomial time. In Section V, we give several
examples, showing how patterns emerge and can be encoded
in commuting relationships.

II. GENERATING AND ENCODING PATTERNED MATRICES

The idea of patterns emerging as repeated blocks in matri-
ces was considered in [2], through examples that showed the
patterns in ring and chain systems. Similar block matrices
have arisen in many analyses of symmetrically intercon-
nected systems (e.g., [5], [6], [7], [8]). In these papers, it
was not necessary to expound the idea behind these repeated
blocks, but in the current work, we need to be precise.
Thus, to begin our study, we will formally define these
patterns; specifically, we give a way to easily characterize
every system with a certain pattern, irrespective of block
size.

Definition 1: Let r, k ∈ N. Matrix Ã ∈ Rr×r is a pattern-
generating matrix with k pattern components if [Ã]ij ∈
{0, 1, . . . , k} for all 1 ≤ i, j ≤ r.

We denote the set of all r× r pattern-generating matrices,
with any number of pattern components, by Pr.

Definition 2: A pattern-generating matrix B̃ ∈ Pr is
sparser than a pattern-generating matrix Ã ∈ Pr if



(i) [Ã]ij = [Ã]i′j′ ⇒ [B̃]ij = [B̃]i′j′ , 1 ≤ i, j, i′, j′ ≤ r,
(ii) [Ã]ij = 0 ⇒ [B̃]ij = 0, 1 ≤ i, j ≤ r.

We denote this by B̃ � Ã, i.e., Ã � B̃.
Definition 3: Let r, n ∈ N such that r divides n (r|n). Let

A ∈ Rn×n be a block matrix given by

A =


A11 A12 · · · A1r

A21 A22 · · · A2r

...
...

. . .
...

Ar1 Ar2 · · · Arr

 ,
with blocks of the same size. A is an instantiation of the
pattern-generating matrix Ã ∈ Pr if the following conditions
are satisfied:

(i) Aij = 0 when [Ã]ij = 0,
(ii) Aij = Ai′j′ when [Ã]ij = [Ã]i′j′ .

Denote by In(Ã) the set of all n × n instantiations of
a pattern-generating matrix Ã. Throughout this paper, we
always assume r|n, as otherwise Definition 3 does not make
sense.

In the sense of Definitions 1 and 3, a pattern denotes
certain matrix entries that are fixed at zero, and certain others
that must be equal but can have any value. While this paper is
restricted to patterns of that form, we note that the following
results can be extended to cases where, for example, some
blocks are linear combinations of others (rather than only
identical or different).

An illustration of the above definitions to a standard
example is provided in Example 4.

Example 4: Let ẋ = Ax+Bu be a block circulant system
with r agents, where each agent has n/r states and n/r
inputs, following the definition of [3], [9]. In other words,

A =


A1 A2 · · · Ar

Ar A1 · · · Ar−1

...
...

. . .
...

A2 A3 · · · A1

 ,

B =


B1 B2 · · · Br

Br B1 · · · Br−1

...
...

. . .
...

B2 B3 · · · B1

 .
(1)

Let Ã ∈ Pr be given by

Ã =


1 2 · · · r
r 1 · · · r − 1
...

...
. . .

...
2 3 · · · 1

 . (2)

By Definition 3, In(Ã) consists exactly of matrices of the
form (1). Thus, a control system ẋ = Ax+Bu with r agents
is block circulant if and only if A,B ∈ In(Ã) for Ã as in
(2), where r|n. /

We note that the results of Example 4 can easily be
extended to agents with n/r states and m/r inputs (where
r|n and r|m).

In order to effectively use methods of linear algebra on
In(Ã), we first show that this set is a vector space. The proof
of this lemma is both intuitive and entirely computational,
and we hence omit it.

Lemma 5: Assume Ã ∈ Pr is a pattern-generating matrix.
Then, In(Ã) is a vector subspace of Rn×n.

Remark 6: The basis vectors for In(Ã) can easily be
found explicitly. Assume that Ã has k pattern components.
Let ` = n/r, and let 1 ≤ i, j ≤ `, and 1 ≤ m ≤ k. Let
eij ∈ R`×` be a matrix with all zeros, except for 1 at position
(i, j).

Now, let emij ∈ Rn×n be a block matrix

emij =


e11mij e12mij · · · e1rmij

e21mij e22mij · · · e2rmij

...
...

. . .
...

er1mij er2mij · · · errmij


where blocks ei

′j′

mij are as follows:

ei
′j′

mij =

®
0 if [Ã]i′j′ = 0 ,

eij if [Ã]i′j′ = m.

It can be shown that

E = {emij | 1 ≤ i, j ≤ `, 1 ≤ m ≤ k, emij 6= 0} (3)

is a basis for In(Ã).
An example of the basis described in Remark 6 is given

in Example 7.
Example 7: Let Ã be the pattern-generating matrix from

Example 4, and let r = 3, n = 6. The basis of In(Ã) is
given by matrices[

eij 0 0
0 eij 0
0 0 eij

]
,

[
0 0 eij
eij 0 0
0 eij 0

]
,

[
0 eij 0
0 0 eij
eij 0 0

]
for 1 ≤ i, j ≤ 2 = n/r. /

Having characterized the block structure that arises
through a pattern, the next step is to encode it algebraically.
We have chosen to encode patterns through commuting
relationships, and the examples in Section V show that this
encoding works for a number of canonical patterns. The
above definitions and following results also hold for other
possible encodings of patterns, namely using polynomials of
matrices [1], [4].

III. PATTERN IDENTIFICATION PROBLEM

Now, we turn to the main problem of taking a specific
pattern, and trying to encode it in a commuting relationship.
Once that encoding is achieved, it can be used to analyze
and control patterned systems while preserving their patterns
(as in [2], [3], [1]). To that end, we define commuting
relationships for pattern-generating matrices:

Definition 8: Let Ã ∈ Pr be a pattern-generating matrix.
Matrix V ∈ Rn×n is an Ã-base matrix if

AV = V A for all A ∈ In(Ã) . (4)

The set of all matrices V that satisfy (4) is denoted Π(Ã).
Our goal is to relate the difficult combinatorial structure of
patterns from Section II with the notion of base matrices, in
order to show that the corresponding commuting relationship
adequately characterizes the underlying pattern. Ideally, we



would like to identify each pattern Ã with a matrix in
Π(Ã). However, this is not possible. For instance, every Ã-
base matrix V ∈ Π(Ã) is also contained in Π(B̃) for all
matrices B̃ � Ã. Additionally, all matrices V ∈ Rn×n are
automatically base matrices for the pattern of the identity
matrix In ∈ Rn×n. Hence, a more attainable goal is to find
V ∈ Π(Ã) that do not preserve any patterns that they do not
automatically need to satisfy as a consequence of (4).

In other words, we want to solve the following problem:
Problem 9 (Pattern Identification Problem): Let r, n ∈

N, and Ã ∈ Pr. Find a matrix V ∈ Rn×n such that

V ∈ Π(Ã) ,

V /∈ Π(B̃) for all B̃ ∈ Pr such that Π(Ã)\Π(B̃) 6= ∅ .

Solving Problem 9 will enable us to distinguish different
patterns through base matrices inasmuch as is possible. In
order to approach Problem 9, we will be using the structure
of spaces Π(Ã), Ã ∈ Pr. The following lemma shows that
these sets are vector spaces.

Lemma 10: Let r, n ∈ N, and B̃ ∈ Pr. Then, Π(Ã) is a
vector space.

Proof: By definition, 0 ∈ Π(Ã) ⊆ Rn×n. Suppose
that V1, V2 ∈ Π(Ã) and α ∈ R. Now, for any A ∈ In(Ã),
we have V1A = AV1, V2A = AV2. Thus, (V1 + V2)A =
A(V1 + V2) and (αV1)A = A(αV1), confirming that Π(Ã)
is a subspace of Rn×n.

Remark 11: Problem 9 can be split into two parts: first, we
seek a matrix V for which AV = V A for any instantiation
A of a pattern-generating matrix; and second, we ensure that
V does not satisfy BV = V B for as many other patterns as
possible. The first part is the common algebraic problem of
finding the centralizer of In(Ã) (e.g., [?, §1.4]), which can
be solved in this case as follows. First, the dimension and a
basis of Π(Ã) can be found using Remark 6. In particular,
by Lemma 5, V A = AV for all A ∈ In(Ã) if and only
if V emij = emijV for the basis matrices emij ∈ In(Ã)
from Remark 6. Then, this commuting relationship can be
rearranged into e′mijvec(V ) = 0, a standard system of linear
equations. Solutions to this equation form a basis for Π(Ã),
from which all its elements can easily be determined. Thus,
only the second part of Problem 9 remains — we need a
way to exclude matrices V ∈ Π(Ã) ∩Π(B̃) for B̃ 6= Ã. /

By Definition 1, Pr is a finite set, as we can always set
k ≤ r2. Let us order the elements of Pr = {B̃1, . . . , B̃g}. We
will do the following: first, pick V ∈ Π(Ã); second, for each
B̃i such that V ∈ Π(B̃i), perturb V in a way which ensures
that the updated matrix is not contained in Π(B̃i). Since the
Π(B̃i) are closed sets, such a small perturbation will not
cause the updated V to belong to any Π(B̃i) that it did not
belong to before. In this way, step by step, we eliminate
the portions of V that correspond to undesired patterns. This
method is shown formally in Algorithm 12.

Theorem 13: Let r, n ∈ N, and Ã ∈ Pr. Algorithm 12
returns a matrix V that solves Problem 9.

Proof: We claim the following: The sequence
V (0), . . . , V (g) satisfies

Algorithm 12:

Let E be the basis of Π(Ã), Ei bases of Π(B̃i);

V (0) := 0;

for i = 1, . . . , g

if Π(Ã)\Π(B̃i) = ∅ or V (i−1) /∈ Π(B̃i)

V (i) := V (i−1);

else
Find V ′ ∈ E such that V /∈ Π(B̃g);

for i′ = 1, . . . , i, Π(Ã)\Π(B̃i′ ) 6= ∅
Find Ei′ ∈ Ei′ such that ‖Ei′V − V Ei′‖ > 0;

end for
if maxi′ ‖Ei′V

′ − V ′Ei′‖ = 0

ε := 1;

else

ε :=
mini′ ‖Ei′V − V Ei′‖

2 maxi′ ‖Ei′V
′ − V ′Ei′‖

;

end if
V (i) = V (i−1) + εV ′;

end if
end for
V := V (g);

(i) V (i) ∈ Π(Ã), i = 0, . . . , g,
(ii) V (i) /∈ Π(B̃i′) for all i = 0, . . . , g, i′ = 1, . . . , i,

Π(Ã)\Π(B̃i′) 6= ∅.
We will prove this claim inductively by i. For i = 0,

V (0) = 0. So, (i) trivially holds, and (ii) is vacuous. Now,
assume that the claim holds for all 0, . . . , i−1. Let us observe
V (i).

If Π(Ã)\Π(B̃i) = ∅, V (i) = V (i−1). Hence, by the
inductive assumption, (i) holds, and we have V (i−1) /∈
Π(B̃i′) for all i′ = 1, . . . , i−1 such that Π(Ã)\Π(B̃i′) 6= ∅.
Since Π(Ã)\Π(B̃i) = ∅, it is also true that V (i) = V (i−1) /∈
Π(B̃i′) for all i′ = 1, . . . , i, Π(Ã)\Π(B̃i′) 6= ∅.

If Π(Ã)\Π(B̃i) 6= ∅ and V (i−1) /∈ Π(B̃i), again V (i) =
V (i−1). Hence, (i) still holds, and as (ii) held for i and
V (i−1), and V (i) = V (i−1) /∈ Π(B̃i), (ii) continues to hold
for V (i) as well.

Assume now Π(Ã)\Π(B̃i) 6= ∅ and V (i−1) ∈ Π(B̃i). As
V (i−1), V ′ ∈ Π(Ã), by Lemma 10,

V (i) = V (i−1) + εV ′ ∈ Π(Ã) .

This verifies (i).
Let now Ei′ be a basis for In(B̃i′), i′ = 1, . . . , i− 1. By

(ii), Ei′V (i−1) 6= V (i−1)Ei′ for some Ei′ ∈ Ei′ . We get

‖Ei′V (i) − V (i)Ei′‖
≥ ‖Ei′V (i−1) − V (i−1)Ei′‖ − ε‖Ei′V ′ − V ′Ei′‖
≥ min
i′=1,...,i−1

‖Ei′V (i−1) − V (i−1)Ei′‖/2 > 0 .

It remains to verify that V (i) /∈ Π(B̃i′) holds for i′ = i. As
V (i−1) ∈ Π(B̃i) and V ′ /∈ Π(B̃i), V (i) = V (i−1) + εV ′ /∈
Π(B̃i). This verifies that (ii) holds for V (i).



Properties (i) and (ii) for V (g) correspond to the conditions
of Problem 9. As V = V (g), we are done.

IV. MEASURE-THEORETIC SOLUTION

Algorithm 12 and Theorem 13 provide an exact solution
to Problem 9. However, this solution requires that one
passes through all possible pattern-generating matrices B̃.
As |Pr| ≥ 2r

2

, this presents problems for larger values of r.
Hence, it is of interest to find a computationally less difficult
alternative to Algorithm 12. In this section, we will use a
measure-theoretic argument to obtain a solution to Problem
9 almost surely (a.s.), in polynomial time. The argument is
based on the fact that proper vector subspaces of a vector
space have Lebesgue measure λ = 0 in that space.

Lemma 14: Suppose Ã, B̃1, . . . , B̃f ∈ Pr are pattern-
generating matrices such that Π(Ã)\Π(B̃i) 6= ∅ for all
i = 1, . . . , f . Let λ be the Lebesgue measure on Π(Ã). Then

λ

(
Π(Ã) ∩

(
f⋃
i=1

Π(B̃i)

))
= 0 .

Proof: Let i = 1, . . . , f . By Lemma 10, Π(Ã),Π(B̃i)
are vector subspaces of Rn×n. Hence, Π(Ã) ∩ Π(B̃i) is a
vector subspace of Π(Ã). By the assumption Π(Ã)\Π(B̃i) 6=
∅, we get

dim
Ä
Π(Ã) ∩Π(B̃i)

ä
< dim(Π(Ã)) . (5)

From (5), it is well-known (see, e.g., [10]) that

λ
Ä
Π(Ã) ∩Π(B̃i)

ä
= 0 . (6)

Using the finite subadditivity of λ, it follows from (6) that

λ

(
Π(Ã) ∩

(
f⋃
i=1

Π(B̃i)

))
≤

f∑
i=1

λ
Ä
Π(Ã) ∩Π(B̃i)

ä
= 0 .

The above lemma shows that almost all elements of Π(Ã)
will satisfy the conditions of Problem 9. In other words,
choosing elements of Π(Ã) in any way (with respect to
the Lebesgue measure) will produce a solution of Problem
9. Thus, by Lemma 14 and the definition of a probability
density function, we immediately obtain the following result:

Theorem 15: Let {V1, . . . , Vκ} be a basis for Π(Ã). Let
(α1, . . . , ακ) ∈ Rp be a point selected according to any
probability density function on Rp, and define

V :=
κ∑
i=1

αiVi .

V is a solution to Problem 9 (a.s.).
The computational complexity of the procedure in Theo-

rem 15 is significantly lower than the complexity of Algo-
rithm 12 from Section III. The only computationally heavy
step is choosing a basis for Π(Ã). However, as in Remark
11, Π(Ã) is obtained as a kernel of matrix D, where D ∈
R(n2 dim(In(Ã)))×n2

. By Remark 6,

dim
Ä
In(Ã)

ä
≤ k(n/r)2 ≤ n2 .

Hence, D has at most n4 rows, and Ker(D) can be found
in polynomial time using, for example, QR or SVD de-
compositions [11]. The price paid for this computationally
feasible solution is that V is no longer a definite solution,
but only a solution almost surely (in the probabilistic sense).
Nevertheless, it will be shown in the examples in Section V
that this approach works in practice.

V. EXAMPLES

In this section, we discuss the patterns that emerge in
common distributed systems, and show how solutions to
Problem 9 can provide algebraic relationships to characterize
those patterns. In each case, we focus on the matrix structure
in the linearized system dynamics ẋ = Ax. This structure
carries over to system inputs, measurements, etc. — all
aspects used in linear control.

We begin by showing that patterns and commuting rela-
tionships are equivalent for two canonical distributed sys-
tems, the ring and the unidirectional chain.

Example 16: Consider a ring system, as shown in Figure
1 for three agents, each of which has ` states.

1

2

3

Fig. 1. Ring System

It is well known [12] that the ring structure manifests as
block circulant matrices, with the pattern

Ãring =

[
1 2 3
3 1 2
2 3 1

]
⇒ A =

[
A1 A2 A3

A3 A1 A2

A2 A3 A1

]
, Ai ∈ R`×`

so A ∈ I`(Ãring), as in Example 4. Now, take ` = 2. Running
Ãring through Algorithm 12 gives solutions to the equation
V A = AV of the form

V =


v1 0 v2 0 v3 0
0 v1 0 v2 0 v3
v3 0 v1 0 v2 0
0 v3 0 v1 0 v2
v2 0 v3 0 v1 0
0 v2 0 v3 0 v1

 .
A particular basis of solutions {V1, V2, V3} can be found by
taking vi = 1 and all other vj = 0 for each i = 1, 2, 3. By
Theorem 15, a random linear combination of these solutions
will almost surely solve the Pattern Identification Problem
for the ring system. Here, we focus on the particular solution
V2, which is the block fundamental permutation matrix. It is
well known that a matrix is block circulant if and only if
it commutes with the block fundamental permutation matrix
[9]. Thus, imposing that system matrices commute with V2
ensures that they preserve the ring structure, and so our



algorithm correctly produces a way to encode the pattern
in a ring system. /

Example 17: Consider a chain system, as shown in Figure
2 for three agents, each of which has ` states.

1 2 3

Fig. 2. Unidirectional Chain System

The structure of this chain, in which each agent can only
get information from those to its left, manifests as lower
triangular Toeplitz matrices, with the pattern

Ãchain =

[
1 0 0
2 1 0
3 2 1

]
⇒ A =

[
A1 0 0
A2 A1 0
A3 A2 A1

]
, Ai ∈ R`×`

so A ∈ I`(Ãchain). Now, take ` = 2. Running Ãchain through
Algorithm 12 gives solutions to the equation V A = AV of
the form

V =


v1 0 0 0 0 0
0 v1 0 0 0 0
v2 0 v1 0 0 0
0 v2 0 v1 0 0
v3 0 v2 0 v1 0
0 v3 0 v2 0 v1

 .

As before, a basis of solutions {V1, V2, V3} can be found by
taking vi = 1 and all other vj = 0 for each i = 1, 2, 3.
By Theorem 15, almost all linear combinations of these
solutions solve the Pattern Identification Problem for the
chain system. Here, we focus on the particular solution V2
— the block fundamental nilpotent matrix — which is well
known to commute with all block lower triangular Toeplitz
matrices [1]. It can also easily be shown that a matrix is block
lower triangular Toeplitz if and only if it commutes with
the block fundamental nilpotent matrix. Thus, imposing that
system matrices commute with V2 ensures that they preserve
the chain structure, and so our algorithm again correctly
produces a way to encode the system’s pattern. /

Next, we find commuting relationships for some other
common patterns. In these cases, we find that the specific
form of the pattern matters for recovering a commuting
relationship.

Example 18: Consider a bidirectional chain system, as
shown in Figure 1 for three agents, each of which has ` states.
Unlike the unidirectional chain of Example 17, every agent
can send information to and receive information from every
other agent; unlike the ring of Example 16, all information
shared must pass through agent 2, rather than moving around
the cycle.

1 2 3

Fig. 3. Bidirectional Chain System

There are a few possible ways to characterize the bidirec-
tional chain. Here, we look at the pattern

Ãchain2 =

[
1 2 3
2 1 2
3 2 1

]
⇒ A =

[
A1 A2 A3

A2 A1 A2

A3 A2 A1

]
, Ai ∈ R`×`

(7)
so A ∈ I`(Ãchain2), signifying that each agent’s internal
dynamics are the same, all first-level interconnections (1→2,
2→1, 2→3, 3→2) operate in the same way, and all second-
level interconnections (1→3, 3→1) also operate in the same
way. Now, take ` = 1. Running Ãchain2 through Algorithm
12 gives solutions to the equation V A = AV of the form

V =

v1 0 v2
0 v1 + v2 0
v2 0 v1

 .
Again, a basis of solutions {V1, V2} can be found by taking
vi = 1 and all other vj = 0 for each i = 1, 2, and
by Theorem 15, almost all linear combinations of these
solutions solve the Pattern Identification Problem for the
bidirectional chain system. In this case, though, the recovered
commutating relationship has a more general form than that
specified by Ãchain2: for any choice of v1 and v2 6= 0, V
commutes with any matrix of the form

Arecovered =

[
a1 a2 a3

a4 a5 a4

a3 a2 a1

]
where the differences from (7) are in red, and it can clearly
be seen that our algorithm recovers a denser pattern — in
other words, any found V must commute with more matrices
than originally asked. In terms of the underlying system, the
pattern in Arecovered means that the middle agent of the chain
in Figure 3 can have different dynamics than the outer two
agents, and its outgoing interconnections can be different
than those incoming. Thus, unlike in the previous two
examples, a single commuting relationship cannot uniquely
recover the pattern in (7), but it can still recover a valid
pattern for a bidirectional chain. /

Example 19: Consider the three-agent tree system on the
left side of Figure 4, where each agent has ` states.

1

2 3

1

2 3

4

Fig. 4. Two Tree Systems

A pattern for this tree system is given by

Ãtree =

[
1 0 0
2 1 0
2 0 1

]
⇒ A =

[
A1 0 0
A2 A1 0
A2 0 A1

]
, Ai ∈ R`×`

(8)



so A ∈ I`(Ãtree), and the interconnections 1→2 and 1→3 are
identical. Now, take ` = 1. Running Ãtree through Algorithm
12 gives solutions to the equation V A = AV of the form

V =

[
v1 0 0
v2 v4 v1 − v4
v3 v1 − v5 v5

]
.

A particular basis of solutions {V1, . . . , V5} can be found by
taking vi = 1 and all other vj = 0 for each i = 1, . . . , 5,
and by Theorem 15, a random linear combination of these
solutions will almost surely solve the Pattern Identification
Problem for the tree system. However, once again, any choice
of v1, . . . , v5 allows V to commute with matrices instantiated
by a denser pattern than that of Ãchain. In particular, taking
v1 = v2 = v3 = 1 and v4 = v5 = 0 allows V to commute
with any matrix of the form

Arecovered =

[
a3 0 0
a2 a1 a3 − a1

a2 a3 − a1 a1

]
where the differences from (8) are in red. (Different choices
for the vi will, in this case, give different forms for the matrix
Arecovered.) In terms of the underlying system, the pattern in
Arecovered means that the root agent (1) can have different
internal dynamics than those of the second-level agents (2
and 3), and the difference between these dynamics appears
in the coupling terms between the second-level agents. It is
important to note that a system in the form (8) still fits the
form of Arecovered; however, imposing only commutation with
the chosen V does not uniquely translate back to the pattern
Ãtree. Again, the commuting relationship requires a denser
pattern than that initially asked, while still fitting the overall
tree structure. /

Example 20: In Example 19, we saw that while the pat-
tern in a simple tree system is not recovered, a similar but
denser pattern can be found. Now, consider the slightly more
complicated four-agent tree system on the right side of Figure
4. Notably, in addition to having an extra agent, this system
is not symmetric about its root agent. A pattern for this tree
system is given by

Ãtree2 =

1 0 0 0
2 1 0 0
2 0 1 0
3 2 0 1

 ⇒ A =

A1 0 0 0
A2 A1 0 0
A2 0 A1 0
A3 A2 0 A1

 (9)

again with Ai ∈ R`×`, so A ∈ I`(Ãtree2) and all first-level
interconnections are identical. Now, take ` = 1. Running
Ãtree2 through Algorithm 12 gives solutions to the equation
V A = AV of the form

V =

v1 0 0 0
v2 v1 0 0
v3 v1 − v5 v5 0
v4 v6 v2 − v6 v1

 .
As in all previous examples, a random linear combination of
the solutions V1, . . . , V6 (with, in turn, vi = 1 and all other
vj = 0) will almost surely solve the Pattern Identification
Problem for this tree system by Theorem 15. However, as
in the simpler tree in Example 19, any choice of v1, . . . , v6

allows V to commute with matrices instantiated by a denser
pattern than that of Ãchain2. In particular, taking v2 = v3 =
v5 = v6 = 1 and v1 = v4 = 0 gives commutation with any
matrix of the form

Arecovered =

a1 0 0 0
a2 a1 0 0
a2 a1 − a4 a4 0
a3 a2 0 a1


where the differences from (9) are in red. (Again, different
choices for the vi will give different forms for Arecovered.)
The asymmetry in the underlying tree system is reflected in
the found Arecovered: in this case, the dynamics and intercon-
nections in the 1→2→4 chain must be identical (as in the
unidirectional chain in Example 17), whereas the dynamics
in the 1→3 chain can be different. As with the simpler tree,
a system in the form (9) still fits the form of Arecovered, and
the found pattern (while different from the initial pattern)
still translates to the desired tree structure. /

VI. CONCLUDING REMARKS

This paper addresses an open problem of pattern iden-
tification in distributed systems. The pattern is encoded
algebraically via commuting relationships with a base matrix.
Heretofore, there has been no algorithmic method to deter-
mine these commuting relationships. We propose a solution
that recovers the best choice of base matrix, in the sense that
the found base matrix commutes with all system matrices
that have the desired pattern, and with as few other patterns
as possible. Through this procedure, we provide a solid
mathematical foundation for patterned control design.
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