Patterned Linear Systems

Sarah C. Hamilton and Mireille E. Broucke Systems Control Group Department of Electrical and Computer Engineering University of Toronto

December 15, 2010

Patterned Linear Systems

- Special category of distributed control
- **Broad definition**: Collections of identical subsystems with distinct patterns of interaction.

DLP Chip, Texas Instruments

Solar Two, US Dept. Energy

ACM-R5, Hirose Fukushima Lab

• **Precise definition**: LTI control systems with state, input, and output transformations that are functions of a common base transformation.

Applications: Multi-Agent Systems

City Car, MIT Media Lab

Multi-satellite Darwin Mission, ESA

Applications: Cross-Directional Control

Papermaking, Der Grüne Punkt

Paper Gloss Control, VIB Systems

Steel Rolling, Ray Jacobs Machinery

Plastic Extrusion, Honeywell

Discretized PDE Models

• Controlled diffusion process

$$\frac{\partial x(t,d)}{\partial t} = k \frac{\partial^2 x(t,d)}{\partial d^2} + u(t,d)$$

• Lumped approximation

$$\frac{dx_i(t)}{dt} = \frac{k}{h^2} \left(x_{i+1}(t) - 2x_i(t) + x_{i-1}(t) \right) + u_i(t), \quad i = 1, \dots, n-1.$$

• A.M. Turing, The Chemical Basis of Morphogenesis (1952)

Circulant Systems

• Linear ring systems are represented by circulant models

• Every circulant matrix is a polynomial of the shift operator Π .

$$A = a_0 I + a_1 \Pi + a_2 \Pi^2 \qquad \Pi = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

• Eigenvectors of Π are eigenvectors of *every* circulant matrix.

Patterned Linear Systems

A broader class of systems:

Any set of matrices that are polynomials of a common base matrix will share the eigenvectors of the base.

Main Control Question

Problem. Given a patterned linear system, does there exist a control theory for synthesis of feedbacks to solve various classical control synthesis problems, with the requirement that the system pattern is preserved by the feedback?

Previous Control Research

• Decentralized Control

 Controllers use only local state information. Global objective achieved by exploiting dynamic coupling of subsystems.

• Structured Systems

Studies effect of zero/non-zero entries of system matrices.
 Insufficient for solving stabilization problems.

Previous Control Research

• R. Brockett and J.L. Willems (1974)

- Used block diagonalization property of block circulant systems.
- Studied properties of n modal subsystems in an eigenvector basis rather than studying full system.

Geometric Control Approach

Shared eigenvectors \implies Shared invariant subspaces

Patterned linear systems can be studied using linear geometric control theory.

This entails:

- 1. Define patterned controllable and unobservable subspaces.
- 2. Characterize patterned decomposition and patterned pole placement.
- 3. Control synthesis with patterned feedback.

M-Patterned Systems

Given a linear map $\mathbf{M}:\mathcal{X}\to\mathcal{X},$ the set of polynomial functions of \mathbf{M} is

$$\mathfrak{F}(\mathbf{M}) := \left\{ \mathbf{T} \mid (\exists t_i \in \mathbb{R}) \mathbf{T} = t_0 \mathbf{I} + t_1 \mathbf{M} + t_2 \mathbf{M}^2 + \ldots + t_{n-1} \mathbf{M}^{n-1} \right\}$$

Called the set of M-patterned maps. Members have M-patterned spectra.

Consider the linear system

$$\dot{x} = Ax + Bu$$

$$y = Cx$$

If A, B, and C are M-patterned, we call it an M-patterned system.

Patterned Maps and Invariant Subspaces

Given $\mathbf{T}\in\mathfrak{F}(\mathbf{M}).$ Then

- If $\mathcal{V} \subset \mathcal{X}$ is M-invariant, then it is T-invariant, but not vice versa.
- $\operatorname{Im} \mathbf{T}$ and $\operatorname{Ker} \mathbf{T}$ are M-invariant.
- $\bullet\,$ Spectral subspaces of ${\bf T}\,$ are ${\bf M}\text{-invariant}$ and ${\bf M}\text{-decoupling}.$
- $T_{\mathcal{V}}$, the restriction of T to an M-invariant subspace \mathcal{V} , belongs to $\mathfrak{F}(M_{\mathcal{V}})$.

Given $\mathcal{V} \subset \mathcal{X}$, $\mathbf{T}_{\mathcal{V}} \in \mathfrak{F}(\mathbf{M}_{\mathcal{V}})$. Then

Under certain conditions, there is a lifting procedure to T, an M-patterned map.

Example: Invariant Subspaces

$$\mathbf{M} = \begin{bmatrix} 4 & 2 & -5 \\ 1 & 2 & -2 \\ 1 & 2 & -2 \end{bmatrix}$$

$$T := 2I - 0.5M + 0.5M^{2} = \begin{bmatrix} 6.5 & 0 & -4.5 \\ 1.5 & 2 & -1.5 \\ 1.5 & 0 & 0.5 \end{bmatrix}$$

Let v = (1, 0, 1), $V = \text{span } \{v\}$. Then Tv = (2, 0, 2) = 2v, but Mv = (-1, -1 - 1). Thus V is T-invariant, but not M-invariant.

First Decomposition Theorem

Theorem. Let $\mathcal{V}, \mathcal{W} \subset \mathcal{X}$ be M-decoupling subspaces such that $\mathcal{X} = \mathcal{V} \oplus \mathcal{W}$. Let $\mathbf{A} \in \mathfrak{F}(\mathbf{M})$. There exists a coordinate transformation $\mathbf{T} : \mathcal{X} \to \mathcal{X}$ such that the representation of \mathbf{A} in the new coordinates is given by

$$T^{-1}AT = \begin{bmatrix} A_{\mathcal{V}} & 0\\ 0 & A_{\mathcal{W}} \end{bmatrix}, \qquad A_{\mathcal{V}} \in \mathfrak{F}(M_{\mathcal{V}}), A_{\mathcal{W}} \in \mathfrak{F}(M_{\mathcal{W}}).$$

The spectrum splits into $\sigma(A) = \sigma(A_{\mathcal{V}}) \uplus \sigma(A_{\mathcal{W}})$.

System Properties

- Controllable subspace $\mathcal{C} = \operatorname{Im} \mathbf{B}$
- Patterned controllable subspace:

$$\mathcal{C}_M := \sup \mathfrak{D}^\diamond(\mathbf{M}; \mathcal{C}) = \sum_{\substack{\lambda \in \sigma(\mathbf{B}), \\ \lambda \neq 0}} \mathcal{S}_\lambda(\mathbf{B}).$$

In general $\mathcal{C}_M \subset \mathcal{C}$.

- Unobservable subspace $\mathcal{N} = \operatorname{Ker} \mathbf{C}$
- Patterned unobservable subspace:

 $\mathcal{N}_M := \inf \mathfrak{D}_\diamond(\mathbf{M}; \mathcal{N}) = \mathcal{S}_0(\mathbf{C}).$

In general $\mathcal{N} \subset \mathcal{N}_M$.

Example: Patterned Controllable Subspace

$$\mathbf{M} = \begin{bmatrix} -2 & 0 & 0 & 0 & 0 & 0 & 1 \\ 6 & 1 & 1 & 0 & -4 & 0 & -4 \\ 0 & -1 & -1 & 0 & 2 & 0 & 0 \\ -3 & 0 & 0 & 3 & -2 & 1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 6 & 0 & 0 & -2 & -4 & 1 & -4 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $A \doteq -4I + M + 3.5M^2 - 2.7M^3 - 1.2M^4 + 1.5M^5 - 0.44M^6$ $B \doteq 2M + 3.7M^2 - 3.0M^3 - 1.5M^4 + 1.7M^5 - 0.42M^6.$

Patterned Linear Systems

There exists Ω such that $\Omega^{-1}M\Omega = J$, and

 $\mathcal{X} = \mathcal{J}_1(M) \oplus \mathcal{J}_2(M) \oplus \mathcal{J}_3(M) \oplus \mathcal{J}_4(M) \oplus \mathcal{J}_5(M).$

$$\mathcal{C}_{M} = \mathcal{S}_{1}(\mathbf{B}) + \mathcal{S}_{3+j}(\mathbf{B}) + \mathcal{S}_{3-j}(\mathbf{B})$$
$$= \mathcal{J}_{2}(\mathbf{M}) \oplus \mathcal{J}_{3}(\mathbf{M}) \oplus \mathcal{J}_{4}(\mathbf{M}) \oplus \mathcal{J}_{5}(\mathbf{M})$$
$$\mathcal{C} = \mathrm{Im} \mathbf{B} = \mathcal{C}_{M} \oplus \mathrm{span} \{v_{1}\}.$$

Second Decomposition Theorem

Theorem. Let (\mathbf{A}, \mathbf{B}) be an \mathbf{M} -patterned pair. There exists a coordinate transformation $\mathbf{T} : \mathcal{X} \to \mathcal{X}$ for the state and input spaces $(\mathcal{U} \simeq \mathcal{X})$, which decouples the system into two subsystems, $(\mathbf{A}_1, \mathbf{B}_1)$ and $(\mathbf{A}_2, \mathbf{B}_2)$, such that

(1) pair $(\mathbf{A}_1, \mathbf{B}_1)$ is $\mathbf{M}_{\mathcal{C}_M}$ -patterned and controllable,

(2) pair $(\mathbf{A}_2, \mathbf{B}_2)$ is $\mathbf{M}_{\mathcal{R}}$ -patterned,

(3) $\sigma(\mathbf{A}) = \sigma(\mathbf{A}_1) \uplus \sigma(\mathbf{A}_2),$

(4) $\sigma(\mathbf{A}_2)$ is unaffected by patterned state feedback in the class $\mathfrak{F}(\mathbf{M}_{\mathcal{R}})$, (5) $\mathbf{B}_2 = 0$ if $\mathcal{C}_M = \mathcal{C}$.

Patterned Pole Placement

Theorem. The M-patterned pair (\mathbf{A}, \mathbf{B}) is controllable if and only if, for every M-patterned spectrum \mathfrak{L} , there exists a map $\mathbf{F} : \mathcal{X} \to \mathcal{U}$ with $\mathbf{F} \in \mathfrak{F}(\mathbf{M})$ such that $\sigma(\mathbf{A} + \mathbf{BF}) = \mathfrak{L}$.

Patterned Control Synthesis

Given a patterned linear system

$$\dot{x} = Ax + Bu + Ew$$

$$y = Cx$$

$$z = Dx$$
.

• Stabilization:

Find a patterned feedback u = Kx such that $x(t) \longrightarrow 0$.

• Stabilization by Measurement Feedback:

Find a patterned measurement feedback u = Ky such that $x(t) \longrightarrow 0$.

• Output Stabilization:

Find a patterned feedback u = Kx such that $z(t) \longrightarrow 0$.

- Output Stabilization by Measurement Feedback:
 Find a patterned measurement feedback u = Ky such that z(t) → 0.
- Restricted Regulator Problem:

Find a patterned feedback u = Kx such that $\mathcal{N}_M \subset \operatorname{Ker} K$ and $z(t) \longrightarrow 0$.

• Disturbance Decoupling:

Find a patterned feedback u = Kx such that $D \int_0^t e^{(A+BK)(t-\tau)} Ew(\tau) d\tau = 0.$

Patterned Control Synthesis

For all synthesis problems studied, if there exists a general feedback, then there exists a patterned feedback.

Stabilization Problem

Problem. Given a linear system

 $\dot{x} = \mathbf{A}x + \mathbf{B}u.$

Find a state feedback u = Kx such that $x(t) \to 0$ as $t \to \infty$.

Theorem. The SP is solvable if and only if

 $\mathcal{X}^+(\mathbf{A})\subset \mathcal{C}$.

Patterned Linear Systems

• By S.D.T. there exists $(x_1, x_2) = T^{-1}x$ such that

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 & \star \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u.$$

where $A_1 = A_C$, $A_2 = A_{\mathcal{X}/C}$ and (A_1, B_1) is c.c.

• By P.P.T. $\exists \mathbf{K}_1$ such that $\sigma(\mathbf{A}_1 + \mathbf{B}_1\mathbf{K}_1) \subset \mathbb{C}^-$.

• Define
$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{T}^{-1}$$

$$\dot{x} = \mathbf{T} \begin{bmatrix} \mathbf{A}_1 + \mathbf{B}_1 \mathbf{K}_1 & \star \\ \mathbf{0} & \mathbf{A}_2 \end{bmatrix} \mathbf{T}^{-1} x.$$

• $\mathcal{X}^+(\mathbf{A}) \subset \mathcal{C} \implies \sigma(\mathbf{A}_2) \subset \mathbb{C}^-.$

Patterned Stabilization Problem

Problem. Given a patterned linear system

 $\dot{x} = \mathbf{A}x + \mathbf{B}u \,.$

Find a patterned state feedback u = Kx such that $x(t) \rightarrow 0$ as $t \rightarrow \infty$.

Theorem. The PSP is solvable if and only if

 $\mathcal{X}^+(\mathbf{A})\subset \mathcal{C}$.

• Let $\mathcal{X} = \mathcal{C}_M \oplus \mathcal{R}$. By S.D.T. there exists T such that

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u$$

where $A_1, B_1 \in \mathfrak{F}(M_{\mathcal{C}_M})$, $A_2, B_2 \in \mathfrak{F}(M_{\mathcal{R}})$, and (A_1, B_1) is c.c.

- By P.P.T. $\exists \mathbf{K}_1 \in \mathfrak{F}(\mathbf{M}_{\mathcal{C}_M})$ such that $\sigma(\mathbf{A}_1 + \mathbf{B}_1\mathbf{K}_1) \subset \mathbb{C}^-$.
- Define $\mathbf{K} = \mathbf{S}_{\mathcal{C}_M} \mathbf{K}_1 \mathbf{N}_{\mathcal{C}_M} \in \mathfrak{F}(\mathbf{M}).$

•
$$(\mathbf{A} + \mathbf{B}\mathbf{K})_{\mathcal{C}_M} = \mathbf{A}_1 + \mathbf{B}_1\mathbf{K}_1$$
,

- $(\mathbf{A} + \mathbf{B}\mathbf{K})_{\mathcal{R}} = \mathbf{A}_2.$
- $\mathcal{X}^+(\mathbf{A}) \subset \mathcal{C} \implies \mathcal{X}^+(\mathbf{A}) \subset \mathcal{C}_M \implies \sigma(\mathbf{A}_2) \subset \mathbb{C}^-.$

$$\Pi_{5} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \Sigma_{6} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad H_{r} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Chains and Trees

Example: Multiagent Consensus

Robots model: $\dot{x}_i = u_i$, $i = 1, \ldots, n$.

$$\dot{x} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & & 0 \end{bmatrix} x + \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{bmatrix} u$$

Measurement model: y = Cx, $C \in \mathfrak{F}(\Pi)$

Global objective is rendezvous:

$$z = Dx = \begin{bmatrix} -1 & 1 & \cdots & 0 & 0 \\ 0 & -1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & -1 \end{bmatrix} x.$$

Find u = Ky, $K \in \mathfrak{F}(\Pi)$ such that $z(t) \to 0$ as $t \to \infty$.

Patterned Linear Systems

- This is the Patterned Restricted Regulator Problem.
- Solution exists iff

$$\mathcal{X}^+(\mathbf{A}) \cap \mathcal{N}_M \subset \operatorname{Ker} \mathbf{D}$$

 $\mathcal{X}^+(\mathbf{A}) \subset \mathcal{C} + \mathcal{V}^*$

where $\mathcal{V}^{\star} := \sup \mathfrak{I}(\mathbf{A}, \mathbf{B}; \operatorname{Ker} \mathbf{D}).$

- We have $\mathcal{X}^+(A) = \mathbb{R}^n$, $\mathcal{C} = \mathbb{R}^n$, $\mathcal{N}_M = \text{Ker C}$, and $\mathcal{V}^* = \text{Ker D} = \text{span } \{(1, 1, \dots, 1)\}.$
- A controller exists iff

$$\mathcal{N}_M \subset \text{span} \{(1, 1, \dots, 1)\}$$
.

Future Research Directions

- Patterned Robust Regulator Problem.
- Block patterned systems.
- Infinite dimensional patterned systems.
- Patterned identification problem.