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Patterned Linear Systems

e Special category of distributed control

e Broad definition: Collections of identical subsystems with
distinct patterns of interaction.

Landing Tip

Solar Two, US Dept. Energy

DLP Chip, Texas Instruments
ACM-R5, Hirose Fukushima Lab

e Precise definition: LTI control systems with state, input, and
output transformations that are functions of a common base

transformation.
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Applications: Multi-Agent Systems

City Car, MIT Media Lab

Multi-satellite Darwin Mission, ESA
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Applications: Cross-Directional Control

Paper Gloss Control, VIB Systems

Steel Rolling, Ray Jacobs Machinery Plastic Extrusion, Honeywell
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Discretized PDE Models

e Controlled diffusion process

Ox(t,d) k@%:(t, d)
ot Od?

+ u(t, d)

e Lumped approximation

d:v;;t) - % (i1 (t) = 2a5(t) + @1 (8) +ui(t), i=1,...,n—1.

e A.M. Turing, The Chemical Basis of Morphogenesis (1952)
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Circulant Systems

e Linear ring systems are represented by circulant models

e Every circulant matrix is a polynomial of the shift operator II.

01 0 |
A = agl + a1l + aoII? I=|0 0 1
10 0

e Eigenvectors of 1I are eigenvectors of every circulant matrix.
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Patterned Linear Systems

Hierarchies
A broader class of systems:

Triangular Toeplitz

Chains

Any set of matrices that are Circulants
polynomials of a common base
matrix will share the

eigenvectors of the base.
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Main Control Question

Problem. Given a patterned linear system, does there exist a control
theory for synthesis of feedbacks to solve various classical control
synthesis problems, with the requirement that the system pattern is

preserved by the feedback?
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Previous Control Research

e Decentralized Control
— Controllers use only local state information. Global objective
achieved by exploiting dynamic coupling of subsystems.
e Structured Systems

— Studies effect of zero/non-zero entries of system matrices.
Insufficient for solving stabilization problems.
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Previous Control Research

e R. Brockett and J.L. Willems (1974)

— Used block diagonalization property of block circulant systems.

— Studied properties of n modal subsystems in an eigenvector
basis rather than studying full system.

©r = Az + Bu Ti = o;Z; + Bit
—
y = Cx Yi = KiI;, 1=1,...,n.
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Geometric Control Approach
Shared eigenvectors =  Shared invariant subspaces

Patterned linear systems can be studied using linear geometric control

theory.

This entails:
1. Define patterned controllable and unobservable subspaces.

2. Characterize patterned decomposition and patterned pole

placement.

3. Control synthesis with patterned feedback.
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M-Patterned Systems

Given a linear map M : X — X', the set of polynomial functions of M
IS

FM) :={T|(3t; e R) T =tol +t;M+ toM° + ... + ¢, M" '} .

Called the set of M-patterned maps. Members have M-patterned

spectra.

Consider the linear system
xr = Ax+ Bu
y = Cx

If A, B, and C are M-patterned, we call it an M-patterned system.
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Patterned Maps and Invariant Subspaces

Given T € §(M). Then

o If YV C X is M-invariant, then it is T-invariant, but not vice versa.
e ImT and Ker T are M-invariant.
e Spectral subspaces of T are M-invariant and IM-decoupling.

e Ty, the restriction of T to an M-invariant subspace V, belongs to
§(My).

Given V C X, Ty € 3(1\/[1;) Then

e Under certain conditions, there is a lifting procedure to T, an

M-patterned map.
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Example: Invariant Subspaces

4 2 -5

M=|1 2 -2

12 -2
65 0 —4.5 |
T:=2I-05M+05M*=| 15 2 —15
15 0 05

Let v = (1,0,1), ¥V =span {v}. Then Tv = (2,0,2) = 2v , but
Mv = (—=1,—1 —1). Thus V is T-invariant, but not M-invariant.
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First Decomposition Theorem

Theorem. Let V, VW C X be M-decoupling subspaces such that
X =VOW. Let A € F(M). There exists a coordinate

transformation T : X — X such that the representation of A in the
new coordinates is given by

Ay 0
0 Aw

T'AT = : Ay € §(My), Ay € F(Myy).

The spectrum splits into o(A) = o(Ay) W a(Aw).
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System Properties

e Controllable subspace C =Im B

e Patterned controllable subspace:

Cyr :=supD°(M; C) Z S\(B

AEc(B),
A0

In general Cps C C.
e Unobservable subspace N' = Ker C

e Patterned unobservable subspace:
Ny = inf D (M; N) = Sp(C).

In general N' C N}y
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Example: Patterned Controllable Subspace

—2 0 0 0 0 O 1
6 1 1 0 -4 0 -4
0 -1 -1 0 2 0 0
M= -3 0 0 3 =2 1 -1
0 0 0 0O —1 O 0
6 0 0O -2 -4 1 -4
1 0 0 0 0 O 0

A= 4T+ M4+ 3.5M2 —2.7M3 — 1.2M* + 1.5M° — 0.44M°
B = 2M + 3.7M? — 3.0M3 — 1.5M* + 1.7M° — 0.42M°.
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There exists  such that Q= 1MQ = J, and

X=TJM)® (M) ® T3(M)® T4(M) & T (M

O 'BO =

o O o o o O

o o o o o|lo o
S O O O oo W
o o olo ~|lo o
o o ol w|lo o
o o|lr|lo o o o
o|l4+ o o o o o
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Patterned Linear Systems

S1(B) + S344(B) + S3—3(B)
T2 (M) ® J3(M) @ Ja(M) ® J5(M)
ImB = Cys @ span {v1} .
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Second Decomposition Theorem

Theorem. Let (A,B) be an M-patterned pair. There exists a
coordinate transformation T : X — X for the state and input spaces

(U ~ X ), which decouples the system into two subsystems, (A1, B1)
and (As,Bs), such that

pair (A1,B1) is M¢,,-patterned and controllable,
pair (Ao, Bso) is My -patterned,
o(A) =

o(A1) ¥ g(Aa),

A,) is unaffected by patterned state feedback in the class §(Mp),
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Patterned Pole Placement

Theorem. The M-patterned pair (A, B) is controllable if and only
if, for every M-patterned spectrum £, there exists a map F : X — U
with F € §(M) such that (A + BF) = £.
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Patterned Control Synthesis

Given a patterned linear system

r = Ax -+ Bu-+ Fw
y = Cx
z = Du=x.

e Stabilization:
Find a patterned feedback v = Kx such that z(t) — 0.

e Stabilization by Measurement Feedback:
Find a patterned measurement feedback u = Ky such that
x(t) — 0.

e Output Stabilization:
Find a patterned feedback u = Kz such that z(¢) — 0.
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e Output Stabilization by Measurement Feedback:
Find a patterned measurement feedback u = Ky such that
z(t) — 0.

e Restricted Regulator Problem:
Find a patterned feedback v = K« such that N3; C Ker K and
z(t) — 0.

e Disturbance Decoupling:
Find a patterned feedback u = Kz such that
D fot e(ATBE)(t=7) Ba(1)dr = 0.
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Patterned Control Synthesis

For all synthesis problems studied, if there exists a general feedback,

then there exists a patterned feedback.
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Stabilization Problem

Problem. Given a linear system
x = Az + Bu.

Find a state feedback uw = Kz such that x(t) — 0 ast — oo.

Theorem. The SP is solvable if and only if

XT(A)cC.

Patterned Linear Systems
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e By S.D.T. there exists (z1,z2) = T 'z such that

T1 A1 * L1 B1
= -+ U .
o 0 Ao To 0

where A = Ac, Ay = Ay/c and (Aq,By) is c.c.

e By P.P.T. dK; such that O'(A1 + BlKl) c C.

e Define K = [ B 0 ] T-1
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Patterned Stabilization Problem

Problem. Given a patterned linear system
r = Az + Bu.

Find a patterned state feedback u = Kz such that x(t) — 0 ast — o0.

Theorem. The PSP is solvable if and only if

XT(A)cC.

Patterned Linear Systems
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o Let ¥ =Cp ®'R. By S.D.T. there exists T such that

T1 Al 0 L1 Bl
— + u
T2 0 A2 i) Bo

where A1, B; € §(Mg¢,,), A2,Bs € §(Mg), and (A1,B;) is c.c.

e By PPP.T. JK; € §(Mg,,) such that o(A; + B1K;) C C™.
o Define K =S¢, K N¢,, € §(M).

e (A+BK)c, =A; +BKj,

e (A+BK)r =A,.

e Y"(A)cC = XT"(A)CCy = o(Ay)CC .
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Hierarchy of Rings

Symmetric Rings

General Rings

Hfr-:

28
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Chains and Trees

29

Patterned Linear Systems



Example: Multiagent Consensus

Robots model: z; = u;, 1 =1,...,n.
0 0 0 | 1 0 0 |
0O O 0 0 1 0
xr = x + U
0 0 0 0 0 1

Measurement model: y = Cz, C € F(II)

Global objective is rendezvous:

11 0 0 |
0 —1 0 0
10 0 -1 |

Find u = Ky, K € §(II) such that z(t) — 0 as t — oc.
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e This is the Patterned Restricted Regulator Problem.
e Solution exists iff
XT(A)N Ny C KerD
XT(A)cC+V*
where V* :=supJ(A, B; KerD).

e We have X*(A) =R", C =R", Ny = KerC, and
V* = KerD = span {(1,1,...,1)}.

e A controller exists iff

N Cspan {(1,1,...,1)}.
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Future Research Directions

e Patterned Robust Regulator Problem.
e Block patterned systems.
e Infinite dimensional patterned systems.

e Patterned identification problem.
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