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Patterned Linear Systems

• Special category of distributed control

• Broad definition: Collections of identical subsystems with

distinct patterns of interaction.

DLP Chip, Texas Instruments Solar Two, US Dept. Energy
ACM-R5, Hirose Fukushima Lab

• Precise definition: LTI control systems with state, input, and

output transformations that are functions of a common base

transformation.
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Applications: Multi-Agent Systems

City Car, MIT Media Lab

Multi-satellite Darwin Mission, ESA
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Applications: Cross-Directional Control

Papermaking, Der Grüne Punkt

Paper Gloss Control, VIB Systems

Steel Rolling, Ray Jacobs Machinery Plastic Extrusion, Honeywell
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Discretized PDE Models

• Controlled diffusion process

∂x(t, d)

∂t
= k

∂2x(t, d)

∂d2
+ u(t, d)

• Lumped approximation

dxi(t)

dt
=

k

h2
(xi+1(t)− 2xi(t) + xi−1(t))+ui(t) , i = 1, . . . , n−1 .

• A.M. Turing, The Chemical Basis of Morphogenesis (1952)
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Circulant Systems

• Linear ring systems are represented by circulant models

ẋ = Ax =









a0 a1 a2

a2 a0 a1

a1 a2 a0









x

• Every circulant matrix is a polynomial of the shift operator Π.

A = a0I + a1Π+ a2Π
2 Π =









0 1 0

0 0 1

1 0 0









• Eigenvectors of Π are eigenvectors of every circulant matrix.
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Patterned Linear Systems

A broader class of systems:

Any set of matrices that are

polynomials of a common base

matrix will share the

eigenvectors of the base.

Hierarchies

Triangular Toeplitz

Circulants

Circulants

Symmetric

Chains

Trees
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Main Control Question

Problem. Given a patterned linear system, does there exist a control

theory for synthesis of feedbacks to solve various classical control

synthesis problems, with the requirement that the system pattern is

preserved by the feedback?
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Previous Control Research

• Decentralized Control

– Controllers use only local state information. Global objective

achieved by exploiting dynamic coupling of subsystems.

• Structured Systems

– Studies effect of zero/non-zero entries of system matrices.

Insufficient for solving stabilization problems.
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Previous Control Research

• R. Brockett and J.L. Willems (1974)

– Used block diagonalization property of block circulant systems.

– Studied properties of n modal subsystems in an eigenvector

basis rather than studying full system.

ẋ = Ax+Bu

y = Cx
−−−→

˙̃xi = αix̃i + βiũi

ỹi = κix̃i , i = 1, . . . , n .
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Geometric Control Approach

Shared eigenvectors =⇒ Shared invariant subspaces

Patterned linear systems can be studied using linear geometric control

theory.

This entails:

1. Define patterned controllable and unobservable subspaces.

2. Characterize patterned decomposition and patterned pole

placement.

3. Control synthesis with patterned feedback.
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M-Patterned Systems

Given a linear map M : X → X , the set of polynomial functions of M

is

F(M) :=
{

T | (∃ ti ∈ R)T = t0I+ t1M+ t2M
2 + . . .+ tn−1M

n−1
}

.

Called the set of M-patterned maps. Members have M-patterned

spectra.

Consider the linear system

ẋ = Ax+Bu

y = Cx

If A, B, and C are M-patterned, we call it an M-patterned system.
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Patterned Maps and Invariant Subspaces

Given T ∈ F(M). Then

• If V ⊂ X is M-invariant, then it is T-invariant, but not vice versa.

• ImT and KerT are M-invariant.

• Spectral subspaces of T are M-invariant and M-decoupling.

• TV , the restriction of T to an M-invariant subspace V , belongs to

F(MV).

Given V ⊂ X , TV ∈ F(MV). Then

• Under certain conditions, there is a lifting procedure to T, an

M-patterned map.
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Example: Invariant Subspaces

M =









4 2 −5

1 2 −2

1 2 −2









T := 2I− 0.5M+ 0.5M2 =









6.5 0 −4.5

1.5 2 −1.5

1.5 0 0.5









Let v = (1, 0, 1), V = span {v}. Then Tv = (2, 0, 2) = 2v , but

Mv = (−1,−1− 1). Thus V is T-invariant, but not M-invariant.
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First Decomposition Theorem

Theorem. Let V ,W ⊂ X be M-decoupling subspaces such that

X = V ⊕W. Let A ∈ F(M). There exists a coordinate

transformation T : X → X such that the representation of A in the

new coordinates is given by

T−1AT =





AV 0

0 AW



 , AV ∈ F(MV), AW ∈ F(MW).

The spectrum splits into σ(A) = σ(AV) ⊎ σ(AW).
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System Properties

• Controllable subspace C = ImB

• Patterned controllable subspace:

CM := supD⋄(M; C) =
∑

λ∈σ(B),
λ6=0

Sλ(B) .

In general CM ⊂ C.

• Unobservable subspace N = KerC

• Patterned unobservable subspace:

NM := infD⋄(M; N ) = S0(C) .

In general N ⊂ NM .
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Example: Patterned Controllable Subspace

M =

































−2 0 0 0 0 0 1

6 1 1 0 −4 0 −4

0 −1 −1 0 2 0 0

−3 0 0 3 −2 1 −1

0 0 0 0 −1 0 0

6 0 0 −2 −4 1 −4

1 0 0 0 0 0 0

































A
.
= −4I +M+ 3.5M2 − 2.7M3 − 1.2M4 + 1.5M5 − 0.44M6

B
.
= 2M+ 3.7M2 − 3.0M3 − 1.5M4 + 1.7M5 − 0.42M6.
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There exists Ω such that Ω−1MΩ = J, and

X = J1(M)⊕ J2(M)⊕ J3(M)⊕ J4(M)⊕ J5(M).

Ω−1BΩ =

































0 2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 3 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 3 + j 0

0 0 0 0 0 0 3− j
































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CM = S1(B) + S3+j(B) + S3−j(B)

= J2(M)⊕ J3(M)⊕ J4(M)⊕ J5(M)

C = ImB = CM ⊕ span {v1} .
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Second Decomposition Theorem

Theorem. Let (A,B) be an M-patterned pair. There exists a

coordinate transformation T : X → X for the state and input spaces

(U ≃ X ), which decouples the system into two subsystems, (A1,B1)

and (A2,B2), such that

(1) pair (A1,B1) is MCM
-patterned and controllable,

(2) pair (A2,B2) is MR-patterned,

(3) σ(A) = σ(A1) ⊎ σ(A2),

(4) σ(A2) is unaffected by patterned state feedback in the class F(MR),

(5)B2 = 0 if CM = C.
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Patterned Pole Placement

Theorem. The M-patterned pair (A,B) is controllable if and only

if, for every M-patterned spectrum L, there exists a map F : X → U

with F ∈ F(M) such that σ(A+BF) = L.
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Patterned Control Synthesis

Given a patterned linear system

ẋ = Ax+Bu+ Ew

y = Cx

z = Dx .

• Stabilization:

Find a patterned feedback u = Kx such that x(t) −→ 0.

• Stabilization by Measurement Feedback:

Find a patterned measurement feedback u = Ky such that

x(t) −→ 0.

• Output Stabilization:

Find a patterned feedback u = Kx such that z(t) −→ 0.
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• Output Stabilization by Measurement Feedback:

Find a patterned measurement feedback u = Ky such that

z(t) −→ 0.

• Restricted Regulator Problem:

Find a patterned feedback u = Kx such that NM ⊂ KerK and

z(t) −→ 0.

• Disturbance Decoupling:

Find a patterned feedback u = Kx such that

D
∫ t

0
e(A+BK)(t−τ)Ew(τ)dτ = 0.
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Patterned Control Synthesis

For all synthesis problems studied, if there exists a general feedback,

then there exists a patterned feedback.
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Stabilization Problem

Problem. Given a linear system

ẋ = Ax+Bu .

Find a state feedback u = Kx such that x(t) → 0 as t → ∞.

Theorem. The SP is solvable if and only if

X+(A) ⊂ C .
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• By S.D.T. there exists (x1, x2) = T−1x such that




ẋ1

ẋ2



 =





A1 ⋆

0 A2









x1

x2



+





B1

0



u .

where A1 = AC, A2 = AX/C and (A1,B1) is c.c.

• By P.P.T. ∃K1 such that σ(A1 +B1K1) ⊂ C
−.

• Define K =





K1 0

0 0



T−1

ẋ = T





A1 +B1K1 ⋆

0 A2



T
−1

x .

• X+(A) ⊂ C =⇒ σ(A2) ⊂ C
−.
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Patterned Stabilization Problem

Problem. Given a patterned linear system

ẋ = Ax+Bu .

Find a patterned state feedback u = Kx such that x(t) → 0 as t → ∞.

Theorem. The PSP is solvable if and only if

X+(A) ⊂ C .
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• Let X = CM ⊕R. By S.D.T. there exists T such that




ẋ1

ẋ2



 =





A1 0

0 A2









x1

x2



+





B1

B2



u

where A1,B1 ∈ F(MCM
), A2,B2 ∈ F(MR), and (A1,B1) is c.c.

• By P.P.P.T. ∃K1 ∈ F(MCM
) such that σ(A1 +B1K1) ⊂ C

−.

• Define K = SCM
K1NCM

∈ F(M).

• (A+BK)CM
= A1 +B1K1,

• (A+BK)R = A2.

• X+(A) ⊂ C =⇒ X+(A) ⊂ CM =⇒ σ(A2) ⊂ C−.
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Rings

General Rings Symmetric Rings
Hierarchy of Rings

Π5 =



















0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 0 0 1

1 0 0 0 0



















Σ6 =

























0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

























Hr =

























0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 1 0 0 0 0

1 0 0 0 0 0
























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Chains and Trees

N =















0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0















H =



































0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0


































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Example: Multiagent Consensus

Robots model: ẋi = ui, i = 1, . . . , n.

ẋ =

















0 0 · · · 0

0 0 0

.

.

.
. . .

0 0 0

















x+

















1 0 · · · 0

0 1 0

.

.

.
. . .

0 0 1

















u

Measurement model: y = Cx, C ∈ F(Π)

Global objective is rendezvous:

z = Dx =

















−1 1 · · · 0 0

0 −1 0 0

.

.

.
.
.
.

1 0 · · · 0 −1

















x.

Find u = Ky, K ∈ F(Π) such that z(t) → 0 as t → ∞.
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• This is the Patterned Restricted Regulator Problem.

• Solution exists iff

X+(A) ∩NM ⊂ KerD

X+(A) ⊂ C + V⋆

where V⋆ := supI(A, B; KerD).

• We have X+(A) = Rn, C = Rn, NM = KerC, and

V∗ = KerD = span {(1, 1, . . . , 1)}.

• A controller exists iff

NM ⊂ span {(1, 1, . . . , 1)} .
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Future Research Directions

• Patterned Robust Regulator Problem.

• Block patterned systems.

• Infinite dimensional patterned systems.

• Patterned identification problem.
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