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A Modular Framework for Motion Planning using Safe-by-Design Motion Primitives

Marijan Vukosavljev, Zachary Kroeze, Angela P. Schoellig, and Mireille E. Broucke

Abstract—We present a modular framework for solving a
motion planning problem among a group of robots. The proposed
framework utilizes a finite set of low level motion primitives
to generate motions in a gridded workspace. The constraints
on allowable sequences of motion primitives are formalized
through a maneuver automaton. At the high level, a control policy
determines which motion primitive is executed in each box of
the gridded workspace. We state general conditions on motion
primitives to obtain provably correct behavior so that a library
of safe-by-design motion primitives can be designed. The overall
framework yields a highly robust design by utilizing feedback
strategies at both the low and high levels. We provide specific
designs for motion primitives and control policies suitable for
multi-robot motion planning; the modularity of our approach
enables one to independently customize the designs of each of
these components. Our approach is experimentally validated on
a group of quadrocopters.

Index Terms—Hybrid systems, motion primitives, planning
and control for multiple mobile robots, aerial robotics

I. INTRODUCTION

This paper presents a modular, hierarchical framework
for motion planning and control of robotic systems. While
motion planning has received a great deal of attention by
many researchers, because the problem is highly complex
especially when there are several robotic agents working
together in a cluttered environment, significant challenges
remain. Hierarchy, in which the control design has several
layers, is an architectural strategy to overcome this complexity.
Almost all hierarchical frameworks for motion planning aim
to balance flexibility in the control specification at the high
level, guarantees on correctness and safety at the low level,
and computational feasibility overall.

Historically motion planning was focused on high level
planning algorithms, while suppressing details on the dynamic
capabilities of the robots at the low level [19]. Taking full
account of low level dynamics in combination with solving
the high level planning problem can lead to a computationally
intractable problem. Despite the wealth of available research
[3], [9], [17], [28], computationally efficient solutions to the
motion planning problem with tight integration of high and
low levels are highly sought after.

We propose a modular hierarchical framework so that one
can independently plug and play both low level controllers and
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Fig. 1. Crazyflie quadrocopters navigate in a cluttered environment. Video
results are available at http://tiny.cc/modular-3alg.

high level planning algorithms in order to realize a balance
between flexibility at the high level, safety at the low level, and
computational feasibility. To make a customizable approach
feasible, we introduce three assumptions. First, the output
space of the underlying dynamical system has translational
symmetry, namely position invariance, a property satisfied
by many robotic models [12]. Second, the output space is
gridded uniformly into rectangular boxes. Finally, the control
capabilities are discretized into a finite set of motion prim-
itives, where the low level describes the implementation of
the motion primitives while the high level selects the motion
primitives. Together, these assumptions imply that motion
primitives can be designed over a single box, so that they
can then be reapplied to any other box.

Now we give an overview of the features and techniques
we employ, and we highlight other frameworks that share
those features. We provide general formulation of motion
primitives for nonlinear systems so that they can be applied to
multi-robot systems. We focus on reach-avoid specifications
in a priori known environments, in which the system must
reach a desired configuration in a safe manner [3], [9], [15],
[20]. Reach-avoid offers a fairly rich behavior set so that, for
instance, a fragment of linear temporal logic (LTL) can be
encoded as a sequence of reach-avoid problems [33], as we
also show in our applications.

As we have mentioned, we abstract the output space into
rectangular regions [28] rather than more general polytopic
regions [9], [11], [17], [20] in order to exploit symmetry. Mo-
tion primitives have been employed in various ways [15], [28]
and we encode feasible sequences of motion primitives by a
maneuver automaton [12]. In contrast to the motion primitive
methods above, our implementation of the low-level control
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design of motion primitives is based on reach control theory
[4], [27], which provides a highly flexible and intuitive set of
design tools that have two notable advantages over tracking:
first, it is not necessary to find feasible open-loop trajectories
to track; second, safety constraints on the system states during
the execution and concatenation of motion primitives can be
guaranteed by design. Finally, planning at the high level is
based on standard shortest path algorithms [5], [19] applied to
the graph arising from the synchronous product of the discrete
part of the maneuver automaton and the graph arising from
the output space partition. The high-level plan generates a
control policy, which selects the motion primitives over the
gridded output space. The modularity of our approach enables
one to employ other closed-loop methods such as potential
methods [9] or vector-field shaping [20] for low-level control
design, and standard or customized graph search algorithms
to generate a high-level plan.

There are three main contributions of this work. First, we
provide the complete theoretical details on the requirements
for the low-level control design and high-level plan, and
show that these two levels operate consistently to solve
the reach-avoid problem. Second, we formulate the parallel
composition of maneuver automata in order to obtain correct-
by-design motion primitives for a system composed of indi-
vidual subsystems, such as in the case of multiple vehicles.
Finally, the modularity and effectiveness of our framework
is experimentally validated on a group of quadrocopters in
several illustrative scenarios. In particular, we feature a novel
and versatile design of motion primitives based on double
integrators and we show how the customizability of the
high level plan generation can be used to easily trade-off
solution quality with computational efficiency. This paper is
an extension of our previous work [31], which now supplies
all the theoretical details along with proofs on correctness,
the parallel composition construction, additional approaches
to generate control policies, and more elaborate experimental
results.

The paper is organized as follows. In the next section
we highlight our contributions relative to the literature. In
Section III we present a formal problem statement. The
modular framework is introduced in Section IV. We define the
output transition system, the maneuver automaton, the product
automaton, and the high level plan, each of which contribute
to realizing a solution of the motion planning problem. In
Section V, we prove that our overall methodology solves the
motion planning problem. In Section VI we give the procedure
for composing motion primitives. In Section VII we present
specific motion primitives for a double integrator system.
In Section VIII we consider several methods to generate
high level plans, which are experimentally demonstrated on
quadrocopters. We conclude the paper in Section IX.

Notation. Let Z denote the integers and R denote the real
numbers. Let | · | denote the cardinality of a set. If A is a
set, we denote its power set as 2A. If A and B are sets, let
A \ B denote the usual set difference. If there are n sets
Ai, let

∏n
i=1Ai denote the usual cartesian product. Given a

function f : A → B, the image of A1 ⊂ A under f and the
preimage of B1 ⊂ B under f are defined the usual way, and
are denoted as f(A1) ⊂ B and f−1(B1) ⊂ A, respectively.
Let co{v1, . . . , vm} denote the convex hull of the vectors
v1, . . . , vm ∈ Rn. Given two vectors v, w ∈ Rn, we denote
the component-wise multiplication (or Hadamard product) as
v ◦w. Let X (Rn) denote the set of globally Lipschitz vector
fields on Rn.

II. RELATED LITERATURE

The literature on motion planning is vast and encompasses
many research communities. As such, we have categorized
some common approaches and discussed how they relate to
our method.

A. Graph Search and Trajectory Planning

Motion planning has often been addressed as a discrete
planning problem, for which many standard graph search
algorithms exist [19]. Recent work on the multi-agent reach-
avoid problem has developed novel algorithms in the context
of applications such as manufacturing and warehouse automa-
tion, aiming to balance computational efficiency with solution
quality. For example, a centralized approach is given in [35],
discretizing the workspace into a lattice and using integer
linear programming to minimize the total time for robots to
traverse in high densities. In [10], a sampling-based roadmap
is constructed in the joint robot space using individual robot
roadmaps, which is shown to be asymptotically optimal. Pri-
oritized planning enables to safely coordinate many vehicles
and is considered in a centralized and decentralized fashion in
[6]. Subdimensional expansion computes mainly decentrally,
but coordinates in the joint search space when agents are
neighboring [32]. While such approaches typically provide
various theoretical guarantees on the proposed algorithms,
dynamical models and application on real robotic systems is
often not considered.

The modularity of our framework is complementary, as it
potentially enables existing multi-agent literature on gridded
workspaces to be used directly or adapted for the generation of
a high-level plan when used in conjunction with our proposed
formulation of motion primitives. However, the consideration
of continuous time dynamics may complicate the application
of discrete planning methods in two ways. First, we must
contend with constraints on successive motion primitives so
that the continuous time behavior is acceptable - for example,
avoiding abrupt changes in velocity. Second, we must con-
tend with non-deterministic transitions to neighboring boxes,
because motion primitives may allow more than one next
box to be reached [18] - for example, modeling the joint
asynchronous motion capabilities of a multi-robot system.

Trajectory tracking methods have also been applied to
the formation change problem on real vehicles with com-
plex dynamics. A sequential convex programming approach
is given in [2], which computes discretized, non-colliding
positional trajectories for a modest number of quadrocopters.
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More recently, an impressive number of quadrocopters were
coordinated in [25], by first computing a sequence of grid-
based waypoints and then refining it into smoother piecewise
polynomials. However, since these open-loop trajectories are
computed offline, deviations from the computed trajectories
could result in crashes. On the other hand, our approach is
more robust as it is completely untimed, carefully monitoring
the progress of vehicles over the grid in a reactive way based
on the measured box transitions.

B. Formal Methods
A growing body of research has explored the use of formal

methods in motion planning. This paper has been particularly
inspired by [17], which provides a general framework for
solving control problems for affine systems with LTL spec-
ifications. Their approach involves constructing a transition
system over a polyhedral partition of the state space that arises
from linear inequality constraints that constitute the atomic
propositions of the LTL specification. Transitions between
states of the transition system can occur if there exists an
affine or piecewise affine feedback steering all continuous
time trajectories from one polyhedral region to a contiguous
one. Similar works to [17] include [9], [14], [20], which
consider the simpler reach-avoid problem. Single and multi-
robot applications followed shortly after in [11] and [3]
respectively.

The appeal of these approaches is derived from their gener-
ality and faithful account of the low level system capabilities.
On the downside, these methods generally do not scale well
to larger state space dimensions, and so they would have lim-
ited applicability to large multi-robot systems. Our approach
specializes these ideas by exploiting symmetry in the system
dynamics and grid partition in order to strike a better balance
between generality and computational efficiency. In particular,
our feedback controllers are given as motion primitives, which
can be designed independently of the obstacle and goal
locations.

More recent works have also built on these formal method
approaches, investigating more complex and realistic multi-
robot problems. For example, service requests by multiple
car robots in a city-like environment with communication
constraints was considered in [7]. A cooperative task for
ground vehicles was addressed in a distributed manner, en-
abling knowledge sharing amongst neighbors and reconfigu-
ration of the motion plan in real time [13]. Tasks such as
picking up objects are considered in conjunction with motion
requirements in [26]. Since these works consider only fairly
simple vehicle dynamics, they place greater emphasis on the
synthesis of discrete plans satisfying the task specification.
On the other hand, this paper considers the simpler reach-
avoid problem in order to develop a formulation of motion
primitives for nonlinear systems with symmetries.

C. Motion Primitives
The usage of motion primitives has become popular re-

cently in robotics, as they serve to simplify the motion

planning problem by using predefined executable motion
segments. Many variations exist, which have designed motion
primitives using timed reference trajectories to control a
formation of quadrocopters [28], paths on a state space lattice
for a mobile robots [8], [24], and funnels in the state space
centered about a reference trajectory for a car [15] and a small
airplane [22].

We have been inspired by ideas in [12], from which we
borrowed the term “maneuver automaton”. They define a
motion primitive either as an equivalence class of trajectories
or a timed maneuver between two classes, whereas we define
a motion primitive as a feedback controller over a polyhedral
region in the state space. In our formulation, concatenations
between motion primitives are possible only across contiguous
boxes in the output space, which provides a strict safety
guarantee during concatenation. Moreover, this enables our
approach to simplify obstacle avoidance to a discrete plan-
ning problem over safe boxes as in [8], bypassing the need
to concatenate motion primitive trajectories using numerical
optimization techniques as in [12].

Our presentation of the maneuver automaton gives explicit
constraints on the design of motion primitives so that they can
used reliably for high level planning. We have also introduced
the notion of parallel composition of maneuver automata to
build motion primitives for multi-robot systems. While our
construction resembles existing methods of parallel compo-
sition [30], [34], we additionally prove that our construction
preserves desired properties that enable consistency between
the low and high levels. To the authors’ best knowledge, this
paper is the first rigorous treatment of feedback-based motion
primitives defined on a uniformly gridded output space.

III. PROBLEM STATEMENT

Consider the general nonlinear control system

ẋ = f(x, u), y = h(x), (1)

where x ∈ Rn is the state, u ∈ Rµ is the input, and y ∈ Rp
is the output. Let φ(·, x0) and y(·, x0) denote the state and
output trajectories of (1) starting at initial condition x0 ∈ Rn
and under some open-loop or feedback control.

Let P ⊂ Rp be a feasible set in the output space and
let G ⊂ P be a goal set. In multi-vehicle motion planning
contexts, P represents the feasible joint output configurations
of the system, which can arise from specifications involving
obstacle avoidance, collision avoidance, communication con-
straints, and others. We consider the following problem.

Problem III.1 (Reach-Avoid). We are given the system (1),
a non-empty feasible set P ⊂ Rp and a non-empty goal set
G ⊂ P . Find a feedback control u(x) and a set of initial
conditions X0 ⊂ Rn such that for each x0 ∈ X0 we have

(i) Avoid: y(t, x0) 6∈ Rp \ P for all t ≥ 0,
(ii) Reach: there exists T ≥ 0 such that for all t ≥ T ,

y(t, x0) ∈ G.
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Fig. 2. Our modular framework consists of five modules.

We make an assumption regarding the outputs of the system
(1) in order to exploit symmetry; see [12] for an exposition
on nonlinear control systems with symmetries.

Assumption III.1. First, we assume that there is an injective
map o : {1, . . . , p} → {1, . . . , n} associating each output to
a distinct state, so that h(x) = (xo(1), . . . , xo(p)). We define
the (injective) insertion map h−1

o : Rp → Rn as h−1
o (y) = x,

which satisfies h(x) = y and xi = 0 for all i ∈ {1, . . . , n} \
{o(1), . . . , o(p)}). Second, we assume that the system has a
translational invariance with respect to its outputs. That is,
for all x ∈ Rn, u ∈ Rµ and y ∈ Rp, we have f(x, u) =
f(x+ h−1

o (y), u). /

The assumption that the outputs of the system are a subset
of the states is used in our framework to be able to design
feedback controllers in the full state space that achieve desir-
able behavior in the output space. The second statement says
that the vector field is invariant to the value of the output.
In the literature this condition is called a symmetry of the
system or translational invariance. This assumption is satisfied
for many robotic systems, for example, when the outputs are
positions. Also, we will see in Section VII that it significantly
simplifies our control design.

IV. MODULAR FRAMEWORK

In this section we present our methodology to solve the
motion planning problem in the form of an architecture that
breaks down Problem III.1. This architecture consists of five
main modules, as depicted in Figure 2.
• The Problem Data include the system (1) with p outputs

satisfying Assumption III.1 and a reach-avoid task to be
executed in the output space.

• The Output Transition System (OTS) is a directed graph
whose nodes (called locations) represent p-dimensional
boxes on a gridded output space and whose edges
describe which boxes in the output space are contiguous.

• The Maneuver Automaton (MA) is a hybrid system
whose modes correspond to so-called motion primitives.
Each motion primitive is associated with a closed-loop
vector field by applying a feedback law to (1). The
edges of the MA represent feasible successive motion

l11
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l2l1 l3 l4

l5 l6 l8

l9 l10

l13l12

y1

y2

goal

obstacle
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(1,−1)(0,−1)(−1,−1)

(−1, 0)

(−1, 1)

σ = (0, 0)

lj

feasible space

Fig. 3. A two output (p = 2) example of a reach-avoid task. Shown on the left
is the feasible space P consisting of 15 non-obstacle boxes (not red) and the
goal region G (green). The output transition system (OTS), which abstracts the
box regions and their neighbour connectivity, is shown on the right. Shown
below, the possible offsets towards a neighbouring box are labelled using
Σ = {−1, 0, 1}2.

primitives. Each motion primitive generates some desired
behavior of the output trajectories of the closed-loop
system over a box in the output space. Because of the
uniform gridding of the output space into boxes and
because of the symmetry in the outputs described in
Assumption III.1, motion primitives can be designed over
only one canonical box Y ∗.

• The Product Automaton (PA) is a graph which is the
synchronous product of the OTS and the discrete part of
the MA. It represents the combined constraints on feasi-
ble motions in the output space and feasible successive
motion primitives.

• The Hybrid Control Strategy is a combination of low
level controllers obtained from the design of motion
primitives, and a high level plan on the product automa-
ton.

Next we describe in greater detail the OTS, MA, and PA.

A. Output Transition System

The OTS provides an abstract description of the workspace
or output space associated with the system (1). It serves
to capture the feasible motions of output trajectories of
the system (1) in a gridded output space, as in Figure 3.
Specifically, we partition the output space into p-dimensional
boxes with lengths d = (d1, . . . , dp), where di > 0 is
the length of i-th edge. We use a finite number of boxes
to under-approximate the feasible set P . Enumerating the
boxes as {Y1, . . . , YnL}, the j-th box can be expressed in
the form Yj :=

∏p
i=1 [ηjidi, (ηji + 1)di], where ηji ∈ Z,

i = 1, . . . , p are constants. We require that
⋃nL
j=1 Yj ⊂ P .

Among these boxes, we assume there is a non-empty set of
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indices Ig ⊂ {1, . . . , nL}, so that we may similarly under-
approximate the goal region as

⋃
j∈Ig Yj ⊂ G ⊂ P . We

define a canonical p-dimensional box with edge lengths di > 0
given by Y ∗ =

∏p
i=1[0, di]. Each box Yj , j = 1, . . . , nL is a

translation of Y ∗ by an amount ηjidi along the i-th axis.

Definition IV.1. Given the lengths d and a non-empty goal
index set Ig , an output transition system (OTS) is a tuple
AOTS = (LOTS,Σ, EOTS, L

g
OTS) with the following components:

State Space LOTS := {l1, . . . , lnL} ⊂ Zp is a finite set of
nodes called locations. Each location lj ∈ LOTS is associated
with a safe box Yj ⊂ P in the output space and hence we
write lj = (ηj1, . . . , ηjp).

Labels Σ := {−1, 0, 1}p ⊂ Zp is a finite set of labels. A label
σ ∈ Σ is used to identify the offset between neighbouring
boxes.

Edges EOTS ⊂ LOTS×Σ×LOTS is a set of directed edges where
(lj , σ, lj′) ∈ EOTS if j 6= j′, Yj ∩Yj′ 6= ∅, and σ = lj′− lj ∈
Σ. Thus, for each i = 1, . . . , p, the neighbouring box lj′ is
either one box to the left (σi = −1), the same box (σi = 0),
or one box to the right (σi = 1). In this manner σ records
the offset between contiguous boxes.

Final Condition LgOTS = {lj ∈ LOTS | j ∈ Ig} denotes the set
of locations associated with goal boxes.

/

Remark IV.1. We observe that the OTS is deterministic. That
is, for a given l ∈ LOTS and σ ∈ Σ, there is at most one
l′ ∈ LOTS such that (l, σ, l′) ∈ EOTS. This follows immediately
from the fact that σ = l′ − l records the offset between the
neighbouring boxes.

Figure 3 shows a sample OTS for a simple scenario. The
OTS locations are associated with 15 feasible boxes, including
a goal box for the reach-avoid task. The OTS edges are shown
as bidirectional arrows; for example, interpreting l1 = (0, 0)
and l6 = (1, 1) on the grid, then e = (l6, (−1,−1), l1) ∈ EOTS.

B. Maneuver Automaton

The maneuver automaton (MA) is a hybrid system consist-
ing of a finite automaton and continuous time dynamics in
each discrete state. The discrete states of the finite automaton
correspond to motion primitives, while transitions between
discrete states correspond to the allowable transitions between
motion primitives. The continuous time dynamics are given by
closed-loop vector fields (1) with a control law designed based
on reach control theory (any other feedback control design
method can be used).

Before presenting the MA, we first explain how this module
is used in the overall framework. To solve Problem III.1, we
assign motion primitives to the boxes Yj of the partitioned
output space such that obstacle regions are avoided and the
goal region is eventually reached. The discrete part of the MA
encodes the constraints on successive motion primitives. Such
constraints might arise from a non-chattering requirement,
continuity requirement, or requirement on correct switching
between regions of the state space. A dynamic programming

algorithm for assignment of motion primitives on boxes is ad-
dressed in Section IV-D; the salient point about this algorithm
at this stage is that it only uses the discrete part of the MA.

In contrast, the continuous time part of the MA is used
both for simulation of the closed-loop dynamics to verify that
the motion primitives are well designed, as well as for the
implementation of the low level feedback in real-time. The
motion primitives are defined only on the canonical box Y ∗ to
simplify the design. This simplification is possible because of
the translational symmetry provided by Assumption III.1 and
the fact that each box Yj is a translation of Y ∗. In simulation,
a given motion primitive can cause output trajectories to
reach certain faces of Y ∗. If a face is reached, the output
trajectory is interpreted as being reset to the opposite face and
another motion primitive is selected to be implemented over
Y ∗ (of course, the real experimental output trajectories do not
undergo resets but move continuously from box to box in the
output space). The selection of the next motion primitive is
constrained by a combination of the previous motion primitive
and the face of Y ∗ that is reached. The discrete transitions in
the MA encode these constraints.

Definition IV.2. Consider the system (1) satisfying
Assumption III.1 and the box Y ∗ with lengths
d. The maneuver automaton (MA) is a tuple
HMA = (QMA,Σ, EMA, XMA, IMA, GMA, RMA, Q

0
MA), where

State Space QMA = M × Rn is the hybrid state space,
where M = {m1, . . . ,mnM } is a finite set of nodes, each
corresponding to a motion primitive.

Labels Σ, the same labels used in the OTS.
Edges EMA ⊂M × Σ×M is a finite set of edges.
Vector Fields XMA : M → X (Rn) is a function assigning a

globally Lipschitz closed-loop vector field to each motion
primitive m ∈ M . That is, for each m ∈ M , we have
XMA(m) = f(·, um(·)) where um(·) is a feedback controller
associated with m ∈M .

Invariants IMA : M → 2R
n

assigns a bounded invariant
set IMA(m) to each m ∈ M . We impose that IMA(m) ⊂
h−1(Y ∗). The set IMA(m) defines the region on which
the vector field XMA(m) is defined. Note that there is no
requirement that the invariant is a closed set.

Enabling Conditions GMA : EMA → {ge}e∈EMA assigns to
each edge e = (m,σ,m′) ∈ EMA, a non-empty enabling or
guard condition ge ⊂ Rn. We require that ge ⊂ IMA(m). We
make an additional requirement that ge lies on a certain
face of Y ∗ determined by the label σ = (σ1, . . . , σp) ∈ Σ.
Defining the face associated with σ as

Fσ =




y ∈ Y ∗

∣∣∣∣∣∣∣





yi = 0, if σi = −1

yi = di, if σi = 1

yi ∈ [0, di], if σi = 0




,

we require that also ge ⊂ h−1(Fσ).
Reset Conditions RMA : EMA → {re}e∈EMA assigns to each

edge e = (m,σ,m′) ∈ EMA a reset map re : Rn → Rn.
We require that re(x) = x − h−1

o (d ◦ σ), where ◦ is the
Hadamard product. This definition says that the i-th output
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Fig. 4. The maneuver automaton edges EMA for the double integrator
dynamics with p = 1. There are three motion primitives: Hold (H ), Forward
(F ), and Backward (B).
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component is reset to the right face of Y ∗, xo(i) = di,
if σi = −1, reset to the left face xo(i) = 0 if σi = 1,
and unchanged otherwise. Overall, resets of states are
determined by the event σ ∈ Σ and only affect the output
coordinates in order to maintain output trajectories inside
the canonical box Y ∗.

Initial Conditions Q0
MA ⊂ QMA is the set of initial conditions

given by Q0
MA = {(m,x) ∈ QMA | x ∈ IMA(m)}.

/

Example IV.1. Suppose the system is a double integrator
and the first state is the translationally invariant output y.
The box Y ∗ is simply a segment. Let M = {H ,F ,B},
where Hold (H ) stabilizes y, Forward (F ) increases y, and
Backward (B) decreases y. Referring to Figure 4, if F is
the current motion primitive and y reaches the right face of
Y ∗, then the event 1 ∈ Σ occurs and we may select H or
F as the next motion primitive. To correctly implement the
discrete evolution of the MA in the continuous state space, an
invariant and feedback control must be associated with each
motion primitive, while an enabling and reset condition must
be associated with each edge; see Figure 5. Formal details
are given in Section VII.

We now formulate assumptions on the motion primitives
so that correct continuous time behavior is ensured at the low
level for consistency with the high level. For each m ∈ M ,
define the set of possible events as

ΣMA(m) := {σ ∈ Σ | (∃m′ ∈M)(m,σ,m′) ∈ EMA} . (2)

Assumption IV.1.

(i) For all m ∈M , ε := (0, . . . , 0) 6∈ ΣMA(m).
(ii) For all e1, e2 ∈ EMA such that e1 = (m1, σ,m2) and

e2 = (m1, σ,m3), ge1 = ge2 .
(iii) For all e1, e2 ∈ EMA such that e1 = (m1, σ1,m2) and

e2 = (m1, σ2,m3), if σ1 6= σ2, then ge1 ∩ ge2 = ∅.
(iv) For all e1, e2 ∈ EMA such that e1 = (m1, σ1,m2) and

e2 = (m2, σ2,m3), re1(ge1) ∩ ge2 = ∅.
(v) For all e = (m1, σ,m2) ∈ EMA, re(ge) ⊂ IMA(m2).

(vi) For all m ∈M , if ΣMA(m) = ∅ then for all x0 ∈ IMA(m)
and t ≥ 0, φMA(t, x0) ∈ IMA(m).

(vii) For all m ∈M , if ΣMA(m) 6= ∅, then for all x0 ∈ IMA(m)
there exist (a unique) σ ∈ ΣMA(m) and (a unique) T ≥ 0
such that for all e = (m,σ,m′) ∈ EMA and for all t ∈
[0, T ], φMA(t, x0) ∈ IMA(m) and φMA(T, x0) ∈ ge.

/

Condition (i) disallows tautological chattering behavior that
arises by erroneously interpreting continuous evolution of
trajectories in the interior of Y ∗ as “discrete transitions” of
the MA (see Section V for definitions). Condition (ii) imposes
that guard sets are independent of the next motion primitive.
Since guard sets arise as the set of exit points of closed-
loop trajectories from Y ∗ under a given motion primitive, it
is reasonable that these exit points should depend only on the
current motion primitive m ∈ M , and not on the choice of
next motion primitive. Condition (iii) imposes that all guard
sets corresponding to different labels are non-overlapping.
This ensures that when the continuous trajectory reaches a
guard ge, then it is unambiguous which edge of the MA is
taken next; namely e ∈ EMA. Conditions (v), (vi), and (vii)
are placed to guarantee that the MA is non-blocking. These
conditions are based on known results in the literature [21];
see Lemma V.1. In order for condition (vii) to make sense,
there must exist a unique label σ ∈ Σ and a unique time T ≥ 0
for an MA trajectory to reach a guard set. First, we have
uniqueness of solutions since the vector fields are globally
Lipschitz. Second, the unique MA trajectory can only reach
one guard set by condition (iii); this in turn means there is
a unique σ. Obviously there exists a unique time to reach
the guard set. Conditions (vi) and (vii) work together to state
that either all trajectories do not leave, or all trajectories do
eventually leave. Referring to Figure 5, all closed-loop state
trajectories within the invariant of F reach the guard set
shown in green on the right. For either choice of next feasible
motion primitive, H or F , trajectories enter the next invariant
on the left due to the reset. Finally, condition (iv) eliminates
potential chattering Zeno behavior, see Remark V.1.

Remark IV.2. We make several further observations about
the MA.

(i) The MA is non-deterministic in the sense that given
m ∈ M and σ ∈ Σ, there may be multiple m′ ∈ M
such that (m,σ,m′) ∈ EMA. The discrete part of the MA
is non-deterministic in a second sense: for each m ∈ M ,
the cardinality of the set ΣMA(m) may be greater than one.
The latter situation corresponds to the fact that for different
initial conditions x1, x2 ∈ IMA(m) of the continuous part, the
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associated output trajectories can reach different guard sets.
In essence, which guard is enabled is interpreted, at the high
level, as an uncontrollable event [34]. Remark IV.3 further
illustrates these two types of non-determinism in the case of
the PA.

(ii) The set of events Σ in the MA correspond to the
same events Σ in the OTS. This correspondence is used in
the product automaton PA, described in the next section, to
synchronize transitions in the MA with transitions in the OTS.
The interpretation is that when a continuous trajectory of the
MA (over the box Y ∗) undergoes a reset with the label σ ∈ Σ,
the associated continuous trajectory of (1) in the box Yj enters
a neighboring box Yj′ with the offset σ = lj′ − lj . Obviously,
this interpretation assumes that the vector of box lengths d is
the same in both OTS and MA. /

C. Product Automaton

In this section we introduce the product automaton (PA). It
is constructed as the synchronous product of the OTS and the
discrete part of the MA, namely (M,Σ, EMA). The purpose
of the PA is to merge the constraints on successive motion
primitives with the constraints on transitions in the OTS in
order to enforce feasible and safe motions. As such, it captures
the overall feasible motions of the system – any high level plan
must adhere to these feasible motions.

Definition IV.3. We are given an OTS AOTS and an MA HMA

satisfying Assumption IV.1. We define the product automaton
(PA) to be the tuple APA = (QPA,Σ, EPA, Q

f
PA), where

State Space QPA ⊂ LOTS ×M is a finite set of PA states. A
PA state q = (l,m) ∈ QPA satisfies the following: if there
exists σ ∈ Σ and m′ ∈ M such that (m,σ,m′) ∈ EMA,
then there exists l′ ∈ LOTS such that (l, σ, l′) ∈ EOTS. That
is, (l,m) ∈ QPA if all faces that can be reached by motion
primitive m ∈ M lead to a neighboring box of the box
associated with location l ∈ LOTS of the OTS.

Labels Σ is the same set of labels used by the OTS and the
MA.

Edges EPA ⊂ QPA×Σ×QPA is a set of directed edges defined
according to the following rule. Let q = (l,m) ∈ QPA,
q′ = (l′,m′) ∈ QPA, and σ ∈ Σ. If (l, σ, l′) ∈ EOTS and
(m,σ,m′) ∈ EMA, then (q, σ, q′) ∈ EPA.

Final Condition QfPA ⊂ LgOTS×M is the set of final PA states.
/

Remark IV.3. Formally an automaton is said to be non-
deterministic if there exists a state with more than one out-
going edge with the same label. The PA is non-deterministic.
First, consider a PA state q = (l,m) ∈ QPA. Because the MA
allows for more than one feasible next motion primitive m′

such that (m,σ,m′) ∈ EMA, the PA will also have multiple
next PA states q′ = (l′,m′) such that (q, σ, q′) ∈ EPA.
Second, there can be multiple possible labels σ ∈ Σ such
that e = (q, σ, q′) ∈ EPA for some q′ ∈ QPA. Thus, the PA
inherits the two types of non-determinism of the MA that
we discussed in Remark IV.2. For example, consider the PA

q1
(l1,m1)

q3
(l2,m3)

q2
(l2,m2)

q4
(l3,m4)

q5
(l3,m5)

σ1 σ2

Fig. 6. A fragment of a generic PA, showing a state and its neighbours.

fragment in Figure 6. For the first type of non-determinism,
observe that there are two PA edges (q1, σ1, q2) ∈ EPA and
(q1, σ1, q3) ∈ EPA with the same label. For the second type,
observe that there are two possible events σ1, σ2 ∈ Σ from
q1, each with its own set of PA edges. Note also some
additional structure: since the OTS is deterministic, the box
state is l2 in both q2 and q3, corresponding to the OTS edge
(l1, σ1, l2) ∈ EOTS. /

D. High-Level Plan

In this section we formulate the notion of a control policy
on the PA, which gives a rule for selecting subsequent PA
states by choosing the next motion primitive. Informally, the
objective of the high level plan is to produce a control policy
and find a set of initial PA states such that a goal PA state is
eventually reached. To this end, in this section we also develop
a Dynamic Programming Principle (DPP) suitable for use on
the PA. Because of the two types of non-determinism of the
PA, existing algorithms cannot be applied directly [5], [33].
By adapting the algorithm in [5], we obtain two formulations
of the DPP, one of which is more computationally efficient
as it exploits certain structure in the PA; further details are
provided in Remark IV.5.

First some notation will be useful. Recall from (2), given
m ∈ M , ΣMA(m) is the set of all labels σ ∈ Σ on outgoing
edges e ∈ EMA starting at m. Similarly, ΣPA(q) is the set of
all labels σ ∈ Σ on outgoing edges e ∈ EPA starting at q. That
is,

ΣPA(q) := {σ ∈ Σ | (∃q′ ∈ QPA)(q, σ, q′) ∈ EPA} .
Now we formalize the semantics of the PA. A state of the

PA is a pair q = (l,m) ∈ QPA where l ∈ LOTS is a location in
the OTS and m ∈ M is a motion primitive. A run π of APA

is a finite or infinite sequence of states π = q0q1q2 . . . , with
qi = (li,mi) ∈ QPA and for each i, there exists σi ∈ ΣPA(qi)
such that (qi, σi, qi+1) ∈ EPA. We define the length of a run
to be nπ; for infinite runs nπ is defined to be∞. We consider
a subset of runs ΠPA(q) starting at q ∈ QPA that satisfy one
further property. If the run π is infinite, then π ∈ ΠPA(q)
if q0 = q. Instead if the run π is finite, then π ∈ ΠPA(q)
if q0 = q and additionally, ΣPA(qnπ ) = ∅. It is the latter
requirement – that the last PA state of a finite run may not
have outgoing edges in the PA – which is of interest. The
interpretation is that we regard the event labels between PA
states as uncontrollable, so if any event is possible, then it
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must occur eventually. Thus without loss of generality, each
run π = q0q1 . . . is the prefix of a run π′ ∈ ΠPA(q0). Further
elaboration is given in Remark IV.4 (ii).

Given q ∈ QPA and σ ∈ ΣPA(q), the set of admissible motion
primitives is

M(q, σ) := {m′ ∈M | (∃q′ = (l′,m′)) (q, σ, q′) ∈ EPA} .
More generally, given q ∈ QPA and ΣPA(q) = {σ1, . . . , σk},
the set of admissible motion primitives at q is

M(q) := {(m1, . . . ,mk) | mi ∈M(q, σi), i = 1, . . . , k},
Next we introduce the notion of a control policy. Given
q ∈ QPA and ΣPA(q) = {σ1, . . . , σk}, an admissible control
assignment at q is a vector

c(q) = (c(q, σ1), . . . , c(q, σk)) ,

where c(q, σi) ∈ M(q, σi), or equivalently c(q) ∈ M(q).
Notice that c(q) is a vector whose dimension varies as a
function of the cardinality of the set ΣPA(q). An admissible
control policy c : QPA × Σ → M is a map that assigns an
admissible control assignment at each q ∈ QPA. Thus, for
each q ∈ QPA and σ ∈ ΣPA, c(q, σ) ∈ M(q, σ). The set of all
admissible control policies is denoted by C.

Consider an admissible control policy c ∈ C and a state
q ∈ QPA. We denote the set of runs in ΠPA(q) induced by c
as Πc(q). Formally, π = q0q1 · · · ∈ Πc(q) if q0 = q, and for
all i ≥ 0 and i < nπ , mi+1 = c(qi, σi). Similarly, we denote
the subset of runs in Πc(q) that eventually reach a state in
QfPA as Πf

c (q). Formally, π ∈ Πf
c (q) if there exists an integer

i ∈ {0, . . . , nπ} such that qi ∈ QfPA. For π ∈ Πf
c (q), we define

rπ := min{i ∈ {0, . . . , nπ} | qi ∈ QfPA} .
Next we define an instantaneous cost DPA : EPA → R, which

satisfies DPA(e) > 0 for all e ∈ EPA, and a terminal cost HPA :
QPA → R. Now consider the run π = q0q1 . . . qnπ ∈ Πf

c (q)
with q0 = q, c(qi, σi) = mi+1, and ei := (qi, σi, qi+1) ∈ EPA.
We define a cost-to-go J : QPA × C → R by

J(q, c) =





max
π∈Πc(q)

ß
rπ−1∑
j=0

DPA(ej) + HPA(qrπ )

™
, Πc(q) = Πfc (q)

∞, otherwise .

Remark IV.4. There are several notable features of our
formula for the cost-to-go.

(i) For a given q ∈ QPA, there may be multiple runs
π ∈ Πc(q) due to the (second, non-standard type of) non-
determinism of the PA. As such, we assume the worst case and
take the maximum over Πc(q) in the cost-to-go. Moreover, we
require Πc(q) = Πf

c (q) for a finite cost-to-go so that rπ is
well-defined and all runs starting at q eventually reach QfPA.

(ii) We have assumed that finite runs must terminate on
PA states that have no outgoing edges. Suppose we included
in Πc(q) finite prefixes of (finite or infinite) runs. These
necessarily would be finite runs with final PA states that have
outgoing edges. Then if we take a finite or infinite run that
eventually reaches a goal PA state, certain finite prefixes of

q1
(l1,F )

1
1

−1
−1

q1

q2

q3

q4

q5

q6

q7

c1 ∈ C c2 ∈ C

q3
(l2,F )

q6
(l3,H )

q7
(l3,B)

q4
(l2,H )

q5
(l2,B)

q2
(l1,H )

q1

q2

q3

q4

q5

q6

q7

Fig. 7. At the top, a PA is depicted for a single output system having three
motion primitives M = {H ,F ,B} over three boxes LOTS = {lj | j =
1, 2, 3}. The numbers 1,−1 ∈ Σ on the edges (shown as arrows) are the
corresponding labels. The bottom pictures show the reduced set of transitions
induced by control polices c1, c2 ∈ C.

that run may not yet have reached a goal PA state, and we
would get Πc(q) 6= Πf

c (q) and an infinite cost-to-go. This
anomaly arises from creating an artificial situation in which
not all runs starting at an initial PA state reach a goal PA state
because we included (unsuccessful) finite prefixes of successful
runs.

(iii) The cost-to-go function also accounts for infinite runs
by using the variable rπ to record the first time a goal PA state
is reached and by taking the cost only over the associated
prefix of the infinite run. Although our primary focus is on
reach-avoid specifications, in which finite runs terminate on
goal PA states with no outgoing edges, infinite runs allow
us to extend our framework to a fragment of LTL where, for
example, a goal PA state is reached always eventually; see
Remark V.3 for further details.

Example IV.2. Consider the PA shown at the top of Figure 7
corresponding to a single output system with the three motion
primitives M = {H ,F ,B} from Example IV.1 over three
boxes LOTS = {lj | j = 1, 2, 3}. Suppose that DPA(e) = 1 for
all e ∈ EPA and that HPA = 0 for all q ∈ QPA.

First consider the feasible control policy c1 ∈ C with
the control assignments: c1(q1, 1) = F , c1(q3, 1) = B,
c1(q5,−1) = F , and c1(q7,−1) = B. The bottom left of
Figure 7 shows how the control policy trims away possible
edges in the PA. Now suppose that QfPA = {q7}. Choosing
the initial condition q1 ∈ QPA and under the assumption that
we do not include finite runs that terminate at PA states with
outgoing edges, we can see that Πc1(q1) consists of only the
single infinite run π = q1q3q7q5q1 . . .. Even though this run
is infinite, π ∈ Πf

c1(q1), rπ = 2, and J(q1, c1) = 2. Similarly,
we compute J(q5, c1) = 3, J(q3, c1) = 1, J(q7, c1) = 0,
and J(q2, c1) = J(q4, c1) = J(q6, c1) = ∞. In contrast, the
feasible control policy c2 ∈ C shown on the bottom right of
Figure 7 only contains finite runs. /
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Next we define the value function V : QPA → R to be

V (q) := min
c∈C

J(q, c) .

The value function satisfies a dynamic programming principle
(DPP) that takes into account the non-determinacy of APA; see
[5] where a slightly different result is proved. The proof is
found in the appendix.

Theorem IV.1. Consider q ∈ QPA \ QfPA and suppose
|ΣPA(q)| > 0. Then V satisfies

V (q) = min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
(3)

= max
σ∈ΣPA(q)

ß
min

m̄∈M(q,σ̄)
{DPA(ē) + V (q̄)}

™
, (4)

where q′ = (l′, c(q, σ)) ∈ QPA, e = (q, σ, q′) ∈ EPA, q̄ =
(l̄, m̄) ∈ QPA, and ē = (q, σ, q̄) ∈ EPA.

Notice that for all q ∈ QPA \ QfPA such that |ΣPA(q)| = 0,
V (q) = ∞ (since there can be no paths to the goal). Also,
for all q ∈ QfPA, V (q) = HPA(q).

Remark IV.5. In (3) of Theorem IV.1, it is shown that V (q)
can be computed using the local information ofM(q) instead
of using all of C. In (4), the result is taken one step further
by showing that V (q) can be calculated using only M(q, σ)
for each σ ∈ ΣPA(q). The benefit of (4) becomes clear when
we compare the cardinality of the sets over which the mini-
mizations occur. Given q ∈ QPA, let ΣPA(q) = {σ1, . . . , σk}.
In (3) the minimization is over M(q), and therefore the
cardinality of the minimization set is

∏k
i=1 |M(q, σk)|. In (4)

the minimization is over M(q, σ) for each σ ∈ ΣPA(q), and
therefore the cardinality of the set is |M(q, σ)|. While both
(3) and (4) can be used to compute V (q), in general (4) will
be more computationally efficient.

Corollary IV.1. Consider the control policy c∗ such that for
all q ∈ QPA, and σ ∈ ΣPA(q)

c∗(q, σ) ∈ argmin
m′∈M(q,σ)

{DPA(e) + V (q′)} ,

where q′ = (l′,m′), and e = (q, σ, q′). Then c∗ is an optimal
control policy such that for all q ∈ QPA, V (q) = J(q, c∗).

Figure 8 shows a possible control policy for the scenario
in Figure 3. Since there are two outputs, we use the mo-
tion primitives from Example IV.1 in each output; formal
details are given in Section VI. The control policy was hand-
computed. Notice that different routes may be taken from
the same product state depending on the face reached, but
ultimately the control policy ensures that all paths lead to the
goal.

V. MAIN RESULTS

In this section we present our main results on a solution
to Problem III.1. Our final result combines the notion of
a control policy at the high level with feedback controllers
executing correct continuous time behavior at the low level.

(
F
H

)

(
H
F

)
(

F
H

)

(
F
F

)

(
F
F

)

(
F
F

) (
F
F

) (
F
F

)

(
F
H

)

(
F
H

) (
F
H

)

(
H
F

)

(
H
F

)

(
H
F

)(
H
F

)

(
H
H

)

Fig. 8. This figure shows a discrete control strategy for the scenario shown
in Figure 3.

First, in accordance with the reach-avoid objective (see Re-
mark IV.4 (iii)), we assume the existence of motion primitives
that can stabilize trajectories within a given box, that is, there
exists m ∈ M such that ΣMA(m) = ∅. We restrict the final
PA states to be goal OTS states equipped with such motion
primitives

QfPA = {(l,m) ∈ LgOTS ×M | ΣMA(m) = ∅} . (5)

Now suppose we have an admissible control policy c ∈ C
derived using Theorem IV.1 or otherwise with QfPA as above.
We present a complete solution to Problem III.1 including an
initial condition set X0 ⊂ Rn, a feedback control u(x), and
conditions on the motion primitives so that the reach-avoid
specifications of Problem III.1 are met.

First we specify the initial condition set X0. The set of
feasible initial PA states is

Q0
PA := {q ∈ QPA | Πc(q) = Πf

c (q)} . (6)

That is, a feasible initial PA state satisfies that every run
(induced by the control policy) starting at the PA state
eventually reaches a goal PA state.

Now consider a state x0 ∈ Rn. It can be used as an initial
state of the system if there is some (lj ,m) ∈ Q0

PA for which
the state is both in the box Yj and in the invariant of m. Recall
that for all y ∈ Rp and j ∈ {1, . . . , nL}, y ∈ Y ∗ if and only
if y + d ◦ lj ∈ Yj . With this in mind, we define the set of
initial states to be:

X0 =
⋃

(lj ,m)∈Q0
PA

{
x+ h−1

o (d ◦ lj) | x ∈ IMA(m)
}
. (7)

Next we specify the feedback controllers to solve Prob-
lem III.1. Consider any q = (lj ,m) ∈ Q0

PA. Then for all
x ∈ Rn such that x − h−1

o (d ◦ lj) ∈ IMA(m), we define the
feedback

u(x, q) := um(x− h−1
o (d ◦ lj)) . (8)

This defines a family of feedback controllers parametrized by
x, the state of (1) and by the PA state q = (lj ,m). These
feedbacks work in tandem with the control policy c ∈ C,
which effectively determines the next feasible PA state q′ ∈
Q0

PA. For example, suppose q = (lj ,m) ∈ Q0
PA and suppose
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the label σ ∈ Σ is measured. This event corresponds to x ∈
ge for e = (m,σ, c(q, σ)) ∈ EMA. Let m′ := c(q, σ) and
let l′ ∈ LOTS be the unique location of the OTS such that
(l, σ, l′) ∈ EOTS. Then the next PA state is q′ = (l′,m′) ∈ Q0

PA

and the controller that is applied in the next location l′ ∈ LOTS

is um′(·).
The main result of the paper is the following.

Theorem V.1. Consider the system (1) satisfying Assump-
tion III.1, the non-empty feasible set P ⊂ Rp, and the goal set
G ⊂ P . Let d be the vector of box lengths such that the goal
indices Ig is non-empty. Consider an associated OTS AOTS, an
MA HMA satisfying Assumption IV.1, a PA APA with QfPA as in
(5), and an admissible control policy c ∈ C. Then the initial
condition set X0 given in (7) and the feedback controllers (8)
solve Problem III.1.

In the remainder of this section we prove Theorem V.1.
We now give a roadmap for these results. The verification of
correctness at the low level is broken down into two steps that
we now describe. First, we show that the MA is non-blocking
in Lemma V.1. The key requirements are summarized in
Assumption IV.1. The non-blocking condition ensures that
MA trajectories continually evolve in time and stay within the
invariant regions. We also put conditions to avoid chattering
in which two discrete transitions can occur in immediate
succession. While physical systems never undergo infinite
switching in finite time, if our model predictions diverge from
reality, then we have no grounds to claim that Problem III.1 is
indeed solved. Second, in Lemma V.2 we show that to each
closed-loop trajectory of (1) under the feedback controllers
(8) and a control policy c ∈ C, we can associate a unique
execution of the MA (defined below) and run of the PA.

We begin by describing the semantics of the MA. These
definitions are standard; see [21]. A state of the MA is a pair
(m,x), where m ∈M and x ∈ Rn. Trajectories of the MA are
called executions and are defined over hybrid time domains
that identify the time intervals when the trajectory of a hybrid
system is in a fixed motion primitive m ∈ M . Precisely, a
hybrid time domain of the MA is a finite or infinite sequence
of intervals τ = {I0, . . . , Inτ }, such that

(i) Ii = [τi, τ
′
i ], for all 0 ≤ i < nτ ,

(ii) if nτ < ∞, then either Inτ = [τnτ , τ
′
nτ ] or Inτ =

[τnτ , τ
′
nτ ),

(iii) τi ≤ τ ′i = τi+1, for all 0 ≤ i < nτ .

Definition V.1. An execution of the MA is a collection χ =
(τ,m(·), φMA(·, x0)) such that

(i) the initial condition of the execution satisfies:
(m(0), x0) ∈ Q0

MA.
(ii) the continuous evolution of the execution satisfies: for

all i ∈ {0, . . . , nτ} with τi < τ ′i , then for all
t ∈ [τi, τ

′
i ], m(·) is constant and d

dtφMA(t, x0) =
f(φMA(t, x0), um(t)(φMA(t, x0))), while for all t ∈
[τi, τ

′
i), φMA(t, x0) ∈ IMA(m(t)).

(iii) a discrete transition of the execution satisfies: for all i ∈
{0, . . . , nτ − 1}, there exists σi ∈ ΣMA(m(τ ′i)) such that

(m(τ ′i), σi,m(τi+1)) =: ei ∈ EMA, φMA(τ ′i , x0) ∈ gei ,
and φMA(τi+1, x0) = rei(φMA(τ ′i , x0)).

Given an execution χ = (τ,m(·), φMA(·, x0)), we associate
to it the output trajectory of the MA given by yMA(·, x0) :=
h(φMA(·, x0)) (the subscript MA is included to avoid confu-
sion with output trajectories y(·, x0) of the physical system (1)
which do not undergo resets). The execution time of an exe-
cution χ is defined as T (χ) :=

∑nτ
i=0(τ ′i − τi) = limi→nτ τ

′
i .

An execution is called finite if τ is a finite sequence ending
with a compact time interval. An execution is called infinite
if either τ is an infinite sequence or if T (χ) = ∞. Finally,
an execution is called Zeno if it is infinite but T (χ) <∞.

Remark V.1. There are two types of Zeno behavior. In one
type that we call chattering, transitions are instantaneous. The
second more subtle type is when the times between discrete
transitions of the MA converge to zero, but the transitions are
not instantaneous. Assumptions IV.1 (i) and (iv) ensure that we
cannot have chattering. True Zeno behavior with convergent
transition times is more difficult to identify in the setting when
the MA is formed as a parallel composition. Fortunately, for
our reach-avoid objective, the induced MA executions cannot
be Zeno since there are a finite number of transitions by
construction, see Lemma V.2.

Definition V.2. The MA is non-blocking if for all
(m(0), x0) ∈ Q0

MA, the set of all infinite executions of the
MA with initial condition (m(0), x0) is non-empty.

Lemma V.1. Under Assumption IV.1, the MA is non-blocking.

Proof. Let (m,x) ∈ Q0
MA. If ΣMA(m) = ∅, then by Assump-

tion IV.1 (vi), IMA(m) is invariant, so the trajectory φMA(t, x)
starting at (m,x) remains in IMA(m) for all future time.
Therefore, trivially, the MA is non-blocking for this initial
condition. If ΣMA(m) 6= ∅, then by Assumption IV.1 (vii),
φMA(t, x) remains in IMA(m) until it reaches a guard set.
Additionally, by Assumption IV.1 (v), the trajectory is mapped
under the reset into the next invariant. By Lemma 1 of
[21], the MA is again non-blocking for this initial condition.
Overall, the MA is non-blocking.

The purpose of the Assumptions IV.1 is to guarantee
consistency between low level continuous time behavior and
the high level discrete plan. This consistency is formalized
by way of a one-to-one correspondence between infinite MA
executions and finite PA runs, both starting from the same
initial condition. The proof is found in the appendix.

Lemma V.2. Suppose we have an admissible control policy
c ∈ C, and we have an MA satisfying Assumption IV.1. For
each (l0,m0) ∈ Q0

PA and x0 ∈ IMA(m0) there exist a unique
infinite MA execution χ = (τ,m(·), φMA(·, x0)) and a unique
finite PA run π = q0q1 . . . qN .

Before we can prove Theorem V.1 we need one further
preliminary result stating that because of the translational
invariance of Assumption III.1, the continuous part of an
MA execution has a unique correspondence to a closed-loop
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trajectory of the system (1). The proof is straightforward and
is omitted.

Lemma V.3. Let m ∈ M , x0 ∈ IMA(m), y ∈ Rp, and x̃0 =
x0 + h−1

o (y). Consider the trajectory φ(t, x̃0) of (1) with the
feedback control u(x) = um(x− h−1

o (y)). Also consider the
MA trajectory φMA(t, x0) with feedback control um(x). For
all t ≥ 0 such that φMA(t, x0) ∈ IMA(m),

φ(t, x̃0) = φMA(t, x0) + h−1
o (y).

Finally we are ready to prove Theorem V.1.

Proof of Theorem V.1. We must show that (i) output tra-
jectories of system (1) remain within P , and (ii) output
trajectories eventually reach and remain within the goal set
G. Let x̃0 ∈ X0. Choose any (lj0 ,m

0) ∈ Q0
PA such that

x0 := x̃0 − h−1
o (d ◦ lj0) ∈ IMA(m0). By Lemma V.2, we

may associate a unique MA execution χ and a unique PA run
π to (lj0 ,m

0) ∈ Q0
PA and x0 ∈ IMA(m0). Denote the hybrid

time domain as τ = {I0, . . . , IN} with Ik = [τk, τ
′
k] for

k = 0, . . . , N − 1 (with τ0 = 0) and IN = [τN ,∞). The last
interval follows from the definition of (ljN ,m

N ) ∈ QfPA (5),
since ΣMA(mN ) = ∅ and thus Assumption IV.1 (vi) implies
that we must have that IN = [τN ,∞). As in the proof of
Lemma V.2, denote the corresponding sequence of events as
σ0 · · ·σN−1.

Using Lemma V.3 with y = d◦ lj0 , we have that φ(t, x̃0) =
φMA(t, x0) + h−1

o (d ◦ lj0). We claim that for all k = 0, . . . , N
and t ∈ Ik,

φ(t, x̃0) = φMA(t, x0) + h−1
o (d ◦ ljk). (9)

Clearly the result is true for k = 0.
We derive two facts to assist in proving this claim. Recall

that by definition of the OTS edges, we have that for all k =
0, . . . , N − 1, σk = ljk+1 − ljk . Furthermore, by rearranging,
multiplying component-wise by d, and taking the preimage
h−1
o , we have the first fact: for all k = 0, . . . , N − 1 that
h−1
o (d◦ljk+1) = h−1

o (d◦ljk)+h−1
o (d◦σk). Also by definition

of the reset map and MA execution, we get the second fact:
for all k = 0, . . . , N − 1, rek(φMA(τ ′k, x0)) = φMA(τ ′k, x0) −
h−1
o (d ◦ σk) = φMA(τk+1, x0).
Returning to (9), by induction we assume that it is true for

0 ≤ k < N and show that it is true for k+1. Using the above
facts and (9) for k at t = τ ′k = τk+1 yields

φ(τk+1, x̃0) = φ(τ ′k, x̃0) = φMA(τ ′k, x0) + h−1
o (d ◦ ljk)

= (φMA(τk+1, x0) + h−1
o (d ◦ σk)) + h−1

o (d ◦ ljk)

= φMA(τk+1, x0) + h−1
o (d ◦ ljk+1).

Applying Lemma V.3 with y = h−1
o (d◦ljk+1) at the new initial

condition φMA(τk+1, x0) ∈ IMA(mk+1), we have that for k+1
and for all t ∈ Ik+1 that (9) holds. When k + 1 = N , the
induction terminates and the claim is proven.

Using (9) and projecting to the output space we conclude
that for all k = 0, . . . , N and t ∈ Ik, y(t, x̃0) ∈ Yjk . Since
all the boxes are contained in P by construction, then for all
t ≥ 0 we have (i). Moreover, since ljN ∈ LgOTS implies the

goal box YjN is contained in G and IN = [τN ,∞), we have
(ii).

Remark V.2. The above result does not depend on the method
of construction of the admissible control policy c ∈ C, nor
does it require the control policy to be optimal. This allows
for different path planning techniques on the PA, as we show
in Section VIII-B.

Remark V.3. The extension to a sequence of reach-avoid
problems is straightforward, following the idea in [33].
First, the reach property (ii) of Problem III.1 is relaxed to
y(T, x0) ∈ G. Next, suppose there is a finite sequence of goals
Lg,iOTS, i = 1, ..., ng > 1. In contrast to (5), we set the final PA
states to be Qf,iPA = {(l,m) ∈ Lg,iOTS × M | ΣMA(m) 6= ∅}
for i = 1, . . . , ng − 1. Finally, one must design control
policies ci with associated initial conditions Q0,i

PA (6) such
that Qf,iPA ⊂ Q0,i+1

PA for i = 1, . . . , ng − 1. For i = ng , one
may impose solutions to remain invariant or connect back to
the first goal.

VI. PARALLEL COMPOSITION OF MOTION PRIMITIVES

In this section we describe the operation of parallel compo-
sition of two maneuver automata. By repeated application of
this operation, more complex higher-dimensional MA’s can be
constructed by starting from simple low dimensional atomic
motion primitives, such as those described in Section VII. The
key challenge is to ensure that the resulting parallel composed
MA satisfies Assumptions IV.1, if the two constituent MA’s
do. This is proved in Theorem VI.1. First we give some
preliminary definitions and we fix some notation, followed
by the formal definition of parallel composition of MA’s.

We consider two independent systems

ẋj = f j(xj , uj), yj = hj(xj), (10)

where xj ∈ Rnj , uj ∈ Rµj , and yj ∈ Rpj for j = 1, 2. We use
superscripts to identify the distinct subsystems. Assume that
each system satisfies Assumption III.1. That is, for j = 1, 2,
yji = xji , i = 1, . . . , pj . Associated with each system j = 1, 2
is the MA

HjMA = (QjMA,Σ
j , EjMA, X

j
MA, I

j
MA, G

j
MA, R

j
MA, Q

0,j
MA ). (11)

We additionally assume that H1
MA and H2

MA satisfy Assump-
tion IV.1. Denote the canonical boxes in the respective output
spaces as Y ∗,j =

∏pj

i=1[0, dji ]. The event sets labelling the
faces of Y ∗,j are Σj = {−1, 0, 1}pj . The empty strings are
denoted as εj := (0, . . . , 0) ∈ Σj , j = 1, 2, and the empty
string is ε := (ε1, ε2). Other sets are similarly denoted with a
superscript to identify the system, such as the set of possible
events ΣjMA(mj) for mj ∈M j and the output indices oj . For
the parallel composition we also require some extra notation.
First, for j = 1, 2 and for each mj ∈M j , define the invariant
set minus all the guard sets

Ij(mj) := IjMA(mj) \

Ñ
⋃

ej=(mj ,σj ,mj2)∈EjMA

gej

é
. (12)
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Next, we need three sets: an augmented set of edges that
includes a transition with the empty string, an augmented set
of possible events for a motion primitive m ∈ M j , and an
augmented set of next feasible motion primitives. That is, for
j = 1, 2, we define

E
j

MA := EjMA ∪
{

(mj , εj ,mj
2) | mj ,mj

2 ∈M j ,

Ij(mj) ⊂ IjMA(mj
2) ,

(∀ej2 = (mj
2, σ

j
2,m

j
3) ∈ EjMA)

Ij(mj) ∩ gej2 = ∅
}

Σ
j

MA(mj) := ΣjMA(m) ∪ {εj} , mj ∈M j

M
j
(mj , σj) := {mj

2 ∈M j | (mj , σj ,mj
2) ∈ EjMA} ,

mj ∈M j , σj ∈ Σ
j

MA(mj).

We also define the products of these sets:

ΣMA(m) := Σ
1

MA(m1)× Σ
2

MA(m2) ,

m = (m1,m2) ∈M ,

M(m,σ) := M
1
(m1, σ1)×M2

(m2, σ2) ,

m = (m1,m2) ∈M,

σ = (σ1, σ2) ∈ ΣMA(m) .

Finally, the canonical box in the output space of the parallel
composition is Y ∗ = Y ∗,1 × Y ∗,2. We can now define the
parallel composition of two MA’s.

Definition VI.1. Consider two MA’s H1
MA and H2

MA each sat-
isfying Assumption IV.1. The parallel composition H1

MA || H2
MA

is HMA = (QMA,Σ, EMA, XMA, IMA, GMA, RMA, Q
0
MA) where

State Space QMA = M × Rn with M = M1 × M2 and
n = n1 + n2.

Labels Σ = Σ1 × Σ2 = {−1, 0, 1}p with p = p1 + p2.
Edges EMA ⊂ M × Σ ×M , where e = (m,σ,m′) ∈ EMA if
σ 6= ε, σ ∈ ΣMA(m), and m′ ∈M(m,σ). Observe that for
all m ∈M , ΣMA(m) = ΣMA(m) \ {ε}.

Vector Fields For all m = (m1,m2) ∈ M , XMA(m) =ï
f1(x1, um1(x1))
f2(x2, um2(x2))

ò
. The state is x := (x1, x2) ∈ Rn, the

control input is u := (u1, u2) ∈ Rµ where µ = µ1 + µ2,
and the output is y := (y1, y2) ∈ Rp. The output map is

h(x) =

ï
h1(x1)
h2(x2)

ò
, with o(i) = o1(i) for i = 1, . . . , p1 and

o(i) = n1 + o2(i− p1) for i = p1 + 1, . . . , p.
Invariants For all m = (m1,m2) ∈ M , IMA(m) =
I1

MA(m1)× I2
MA(m2).

Enabling and Reset Conditions Consider an edge e =
(m1, σ,m2) ∈ EMA, where m1 = (m1

1,m
2
1) ∈ M , σ =

(σ1, σ2) ∈ ΣMA(m), m2 = (m1
2,m

2
2) ∈ M(m1, σ), and

ej = (mj
1, σ

j ,mj
2) ∈ EjMA for j = 1, 2. If σj ∈ Σ

j

MA(mj
1)

and σj = εj , then we define

gej := Ij(mj
1), rej (x

j) := xj .

Otherwise if σj ∈ ΣjMA(mj
1), we have gej = GjMA(ej) and

rej = RjMA(ej), corresponding to their definitions in HjMA.

Finally, we define ge = ge1 × ge2 and re(x) =

ï
re1(x1)
re2(x2)

ò
.

Initial Conditions Q0
MA ⊂ QMA is the set of initial conditions

given by Q0
MA = {(m,x) | (mj , xj) ∈ Q0,j

MA , i = 1, 2}.
/

First, notice that for each HjMA and for each mj ∈ M j ,
the definition of E

j

MA automatically includes self-loop edges
(m, εj ,m) ∈ E

j

MA. We include such transitions with εj so
that the parallel composition is properly constructed. For
example, suppose a proper face of Y ∗,1 is crossed by the
first system, but no proper face of Y ∗,2 is crossed by the
second system. To correctly account for such possibilities,
the overall transition for the composed MA must record the
lack of crossing in Y ∗,2 by the empty string ε2. Second,
notice that we have allowed for additional edges with εj to
allow for the possibility of switching to a different motion
primitive over the same box Y ∗,j if the invariants overlap
and are not mapped immediately to a guard set, as can be
observed by the definition of E

j

MA. Referring to Figure 8, an
edge such as ((F ,H ), (1, 0), (H ,F )) ∈ EMA consists of
(F , 1,H ) ∈ E1

MA and (H , 0,F ) ∈ E2

MA, which encodes a
turn from Right to Up.

The main result is now stated; the proof is in the appendix.

Theorem VI.1. We are given H1
MA and H2

MA, two MA’s that
satisfy Assumption IV.1. The parallel composition HMA =
H1

MA || H2
MA defined above is an MA that also satisfies

Assumption IV.1.

Remark VI.1. We have defined the event set as Σ = Σ1×Σ2,
but the usual parallel composition of automata would have
Σ = Σ1 ∪ Σ2 [34]. Given the interpretation of the event set
as crossing faces of Y ∗, the cartesian product is the more
natural choice.

VII. MOTION PRIMITIVES FOR INTEGRATOR SYSTEMS

In this section we give the formal details for the MA
consisting of the three motion primitives Hold (H ), Forward
(F ), and Backward (B) introduced in Example IV.1. This
design is able to be succinctly expressed within the MA
formalism since the underlying double integrator system satis-
fies Assumption III.1. By exploiting the parallel composition
construction from Section VI, the usefulness of this MA is
demonstrated in the context of multi-robot systems in Section
VIII.

Suppose the nonlinear control system is the double integra-
tor system:

ẋ1 = x2, ẋ2 = u2, y = x1, (13)

where x := (x1, x2) ∈ R2, u2 ∈ R, and the output y is
the position. Each motion primitive’s invariant region is a
polytopic set in the state space defined as the convex hull
of vertices vk2 , k ∈ {1, . . . , 6}; see Figure 5. The vertices
are determined by the segment length d > 0, and a pre-
specified maximum control value u∗2 > 0. Let ū1 :=

√
du∗2.

The vertices are v1
2 = (0,−ū1), v2

2 = (0, 0), v3
2 = (0, ū1),
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v4
2 = (d,−ū1), v5

2 = (d, 0), and v6
2 = (d, ū1). For each

motion primitive m ∈M := {H ,F ,B}, we define an affine
feedback

um(x) = Kmx+ gm . (14)

Our specific choices are KH =
[
−2u∗2/d −2u∗2/ū1

]
,

KF = KB =
[
0 −2u∗2/ū1

]
, gH = gF = u∗2, and

gB = −u∗2. These controllers are derived using reach control
theory [4], [27]. One first selects control values at the vertices
of the polytopes so that trajectories remain in the invariant
region (for the Hold primitive) or they exit the polytope
through a certain facet and not through others. In particular,
we have chosen all the control values at the vertices to have
magnitude u∗2. Then the velocity vectors at the vertices are
affinely extended to obtain affine feedbacks over the entire
polytope, yielding the vector fields shown in Figure 5.

Now we construct the MA. The state space is QMA = M ×
R2. The labels are Σ = {−1, 0, 1}. The set of edges EMA are
shown in Figure 4. In the context of parallel composition, one
may compute that the augmented edges are

EMA = EMA ∪ {(m, 0,m)}m∈M ∪ {(H , 0,F ), (H , 0,B)}.

For each m ∈ M , the closed-loop vector fields are given
by [XMA(m)](x) = (x2, um(x)), which are clearly globally
Lipschitz. The invariants are given by the convex hull of
vertices, as seen in Figure 5, and excluding the two points
(0, 0) and (d, 0), so the invariants are clearly bounded. For
example, IMA(H ) = co{vk2}5k=2 \ {(0, 0), (d, 0)}. The en-
abling conditions are constructed by taking the convex hull of
vertices of the exit facet and excluding again (0, 0) or (d, 0).
Specifically, the edges (F , 1,H ), (F , 1,F ) ∈ EMA both
have guard sets ge = co{v5

2 , v
6
2}\{(d, 0)} = {d}× (0, ū1], as

shown highlighted in green on the invariant region of F in
Figure 5, whereas (B,−1,H ), (B,−1,B) ∈ EMA both have
guard sets ge = co{v1

2 , v
2
2} \ {(0, 0)} = {0} × [−ū1, 0). The

reset conditions are constructed according to their definition.
The proof of the following result is found in the appendix.

Lemma VII.1. The double integrator MA satisfies Assump-
tion IV.1.

Remark VII.1. We noted in Remark V.1 that Zeno executions
do not arise for reach-avoid specifications that, by construc-
tion, involve only finite MA executions. However, one may
be interested in analyzing whether an MA is non-Zeno in its
own right, independently of the high level plan or control
specification for which it is used. It can be verified rather
easily that the p = 1 double integrator MA design we have
presented above is non-Zeno. The situation is considerably
more complicated when considering an MA that is a parallel
composition of these MA’s or when considering an arbitrary
MA. Generic conditions when hybrid systems have a Zeno
execution have been studied in [16], [36]. However, further
study of this problem is needed in our context since existing
results do not apply to all the situations that can arise in our
MA.

VIII. QUADROCOPTER APPLICATIONS

In this section we apply our methodology to a group
of quadrocopters. We first explain how motion primitives
can be applied to the system, how to specify the reach-
avoid objective, and the overall solution pipeline. Next, we
compare and contrast three algorithms for computing a control
policy. Then we present experimental results on three different
scenarios. Lastly, we provide a discussion.

A. Interfacing Multiple Quadrocopters

The standard quadrotor dynamical model has six degrees
of freedom, which can be described by the inertial linear
positions (xw, yw, zw) and the roll-pitch-yaw Euler angles
(φ, θ, ψ) [23], [25]. It is well known that this system is
differentially flat, relating the full state and motor inputs of
the quadrotor to the flat outputs (xw, yw, zw, ψ) and their
derivatives [23]. Rather than specifying positional reference
trajectories, we use the motion primitives from Section VII
independently in the (xw, yw, zw) directions to compute the
linear accelerations as a feedback on the linear position and
velocity states. Specifying an arbitrary yaw reference, differ-
ential flatness maps these linear accelerations to the (φ, θ)
angles and the total vehicle thrust, which through the use of
an attitude tracking controller can be converted to motor inputs
[23]. Although we have avoided computing motion primitives
on the high dimensional nonlinear model, our experiments
show that the quadrotor is fairly well approximated as double
integrators in the (xw, yw, zw) directions using our proposed
motion primitives.

We consider a centralized reach-avoid objective among
N quadrocopters. A copy of the gridded 3D workspace
must be associated with each vehicle, resulting in a total of
p = 3N outputs. The p-dimensional MA representing the
asynchronous motion capabilities of the multi-vehicle system
is obtained by parallel composing p times the single-output
MA from Section VII.

To specify the reach-avoid objective, we must identify the
obstacle and goal boxes in p = 3N dimensions. First we
assume that the physical obstacles and goals for each vehicle
are labelled on the physical 3D grid. Obstacle boxes in the
output space correspond to any vehicle occupying a physical
obstacle box or any two or more vehicles occupying the
same physical box simultaneously. To avoid the effects of
downwash, we do not allow vehicles to simultaneously occupy
boxes that are displaced only in the zw direction. Goal boxes
in the output space correspond to all the combinations of
individual vehicle 3D goal boxes. For simplicity, we assume
that each vehicle has a single 3D goal box.

The multi-vehicle reach-avoid problem is solved offline
using our proposed methodology. The runtime workflow is
depicted in Figure 9. Each runtime component requires neg-
ligible computation, even for a large number of vehicles and
outputs.
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Fig. 9. Interface between multiple vehicles and the framework with p =
3N outputs. The hybrid controller internal state consists of the joint state
measurement of all the vehicles and includes the current (joint) box, l, and
the current (joint) motion primitive, m. The internal state is updated via
external state measurements (assumed to be given) and is used to compute
the feedback controls.

B. Control Policy Generation

We highlight three options for generating a control policy
in the context of the multi-vehicle reach-avoid problem. For
each, we give some implementation details and discuss its
computational complexity. These are then compared in the
experiments.

1) Exhaustive Non-Deterministic Dijkstra (NDD): The first
strategy follows the proposed methodology of Section IV. We
highlight our main implementation steps. First, we compute
the OTS states and edges for the associated output space
obstacle boxes described earlier. Second, the p times parallel
composed MA states and edges are computed. Third, the PA
states and edges are computed. Fourth, the value function V
is computed using (4). This is done by initializing the value
function to be zero at goal states and infinite elsewhere, and
then propagating backwards along PA edges using a non-
deterministic Dijkstra (NDD) algorithm [5], [33]. Once the
value function is computed at all states, we compute the
optimal control policy c? using Corollary IV.1. The initial PA
states (6) correspond precisely to those states q ∈ QPA with
V (q) <∞.

The computational complexity grows exponentially as the
number of inputs p = 3N increases. Suppose that the physical
grid has (nx, ny, nz) boxes in the (xw, yw, zw) directions.
Since there are 3p motion primitives, the number of PA states
is bounded by |QPA| < (nxnynz)

N3p =: k1. The number of
edges from an OTS state is bounded by 3p−1 (the neighboring
directions), whereas the number of edges from a MA state is
bounded by (2p−1)3p =: k2 (the neighboring directions times
the possible next motion primitives). Since the MA neigh-
boring directions are more restrictive, we have the number
of PA edges is bounded by |EPA| < k1k2. The presence of
obstacles can dramatically reduce the number of PA states
and edges. The NDD algorithm generally must inspect all the
PA states and edges to compute the value function. As a result,
it is optimal and complete (with respect to the selected grid
resolution and motion primitive capabilities), which results in
the largest possible set of initial conditions X0.

2) Deterministic A∗: In this strategy, we make two simpli-
fying assumptions to compromise the quality of the control
policy in exchange for better computational efficiency. First,
we take the p times composed MA and prune out motion

primitives enabling simultaneous motion. Second, we forego
computing the largest possible set of initial conditions and
instead assume that a single physical initial box is specified
for each vehicle. As such, it is sufficient to compute a single
path of boxes in the OTS connecting the initial and goal
boxes in the p = 3N dimensional output space. From this
path the control policy is immediately extracted, by assigning
to each box the unique motion primitive leading to the next
neighboring box along the path. The path is computed using a
standard A∗ algorithm [19], which starts from the initial box
and propagates outwards until the goal box is reached. The
(admissible) heuristic function is chosen to be the Manhattan
distance, which is the sum of distances along each output
direction from the current box to the goal box.

The number of nodes that A∗ must investigate is bounded
by the maximum number of OTS boxes, (nxnynz)

N , which
still has exponential complexity in the number of robots. The
pruned MA has 2p + 1 motion primitives, corresponding to
F or B in a single output component with H elsewhere,
plus the motion primitive (H , . . . ,H ). Thus from the current
box, we must check the 2p neighboring directions to select
a feasible direction, taking into account out-of-bounds and
obstacle configurations. In this implementation, the OTS, MA,
and PA serve more as conceptual constructs, and do not need
to be precomputed explicitly as it is expensive. In the worst
case, the A∗ algorithm may investigate all boxes; as a result,
it also produces a control policy that is complete with respect
to the chosen grid and pruned MA motion capabilities. The
policy produced by A∗ is of minimal length, but may have a
long runtime execution.

3) Deterministic Greedy Search: This strategy also makes
use of the two simplifying assumptions as with A∗ above, but
differs in how the path is constructed. In greedy (best first)
search [19], the path is constructed by starting from the initial
box in the output space and then extending it from the current
box into any feasible neighboring direction that decreases the
Manhattan distance to the goal box. Greedy search can often
find a path very quickly, although not necessarily an optimal
one. Moreover, since greedy search may fail to find a path, it
is not complete.

C. Experimental Results

Our experimental platform is the Crazyflie 2.0; see Figure
1. We used a VICON motion capture system to obtain the
state estimates of the vehicles. Our implementation was done
in Python 2.7.10 and ROS Kinetic, and computations were
performed on a 64-bit Lenovo ThinkPad with an 8 core
3.0 GHz Intel Xeon processor and 15.4 GiB RAM. We
illustrate three different scenarios and consider the three policy
generation strategies on each of them. The corresponding
video results are available at http://tiny.cc/modular-3alg.

1) Open Space: The first representative scenario involves
an open 3D space partitioned into a 7 × 7 × 2 grid and
a sparse collection of pillar-shaped obstacles. The left plot
of Figure 10 compares the resulting 3D trajectories in the



15

xw (m)
-1 -0.5 0 0.5

y
w
(m

)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

xw-yw plane

Goal

Start

A*

NDD

Greedy
search

xw (m)
-1 -0.5 0 0.5

y
w
(m

)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

xw-yw plane

xw (m)
-1 -0.5 0 0.5

y
w
(m

)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

xw-yw plane

Fig. 10. Experimental results for the open scenario, projected onto the (xw, yw) plane. In all plots, all the vehicles must swap corners of the room. The left
plot compares trajectories for a single vehicle using the three different control policy generation strategies. The middle plot shows the resulting trajectories
for two vehicles using non-deterministic Dijkstra. The right plot shows the resulting trajectories for four vehicles using greedy search, see also Figure 1.
Although difficult to depict, the maneuvers are safe, as the trajectories do not occupy the same physical boxes at the same time.

(xw, yw) plane for the three strategies in the case of a single
vehicle. The computation times were 40.63 milliseconds,
1.59 milliseconds, and 0.27 milliseconds for NDD, A∗, and
greedy search, respectively. The NDD algorithm offers the
best quality control policy in that there is simultaneous motion
in the different degrees of freedom whenever possible and the
same policy can be used from any starting box. The A∗ and
greedy search algorithms offer similar results to each other,
with both producing an optimal path of length 14. Both yield
less efficient grid-like motion that is defined only along a
single path from the initial box, although a new policy can
quickly be recomputed from different starting boxes. Based on
simulation tests for a single vehicle, each of these algorithms
scale well to larger spaces or finer grids; even NDD is able
to compute a solution on a 100× 100× 10 grid in about two
minutes in the worst cases. Next we compare each strategy
on more vehicles.

The middle plot of Figure 10 shows the resulting trajec-
tories for two vehicles using NDD. The control policy was
computed in about 18 minutes and is defined on about PA
180000 states. While the resulting control policy yields highly
efficient motion defined over a large set of initial conditions,
adding more vehicles or more boxes generally explodes the
computation time and memory requirements. Thus NDD is
best suited for small scenarios involving a modest number of
vehicles, when one can afford to spend time precomputing the
control policy.

The right plot of Figure 10 shows the resulting trajectories
for four vehicles swapping corners of the room using greedy
search. Since the vehicles and physical obstacles occupy
a single box, greedy search performs well, as each action
typically results in one vehicle making progress towards the
goal. The computation time was about four milliseconds.
Simulation results on a 100×100×10 grid with eight vehicles
placed randomly demonstrate that greedy search is usually
able to find a solution on the order of one second. As one
would expect, greedy search typically fails to find a solution

if long wall-like or non-convex obstacles are introduced, or
if the goals are not spaced out sufficiently. Furthermore, the
time to execute the entire maneuver scales with the number
of vehicles.

Finally we consider the deterministic A∗ algorithm. Al-
though the resulting trajectories follow a path of optimal
length, they look quite similar to those found by greedy search
and thus are not shown. Moreover, the method quickly be-
comes more computationally expensive beyond three vehicles.

2) Channel Swapping: The second representative scenario
involves two rooms connected by a channel, defined over a 5×
2×1 grid, see Figure 11. Two of the vehicles must continually
swap places, while the third is required to act as a gatekeeper.
We specify this objective as an infinitely looping sequence of
two distinct reach-avoid problems. This illustrates that reach-
avoid is a useful building block for addressing more complex
specifications.

The NDD algorithm produced both control policies in about
10 seconds, while the A∗ algorithm took about 0.03 seconds.
Greedy search fails to find a solution because it is unable to
coordinate the third vehicle away from its goal to make space
for the other two. Since the resulting trajectories overlap in
physical space, Figure 12 shows the trajectories as a function
of time using the policy computed with NDD. The trajectories
are highly non-trivial, but show that the objective is satisfied
for at least one cycle of both reach-avoids. Although not
shown, the trajectories computed using A∗ are similar but take
a few seconds longer to execute the objective since the motion
primitives are deterministic.

3) 8-Puzzle: We conclude our experimental results with the
well-known 8-puzzle. On a 3× 3× 1 grid, eight vehicles are
placed randomly and must return to an ordered configuration.
For this application, the A∗ algorithm is the most suitable,
computing the control policy in 0.32 seconds. The NDD
approach would spend too much time precomputing edges
in the high dimensional output space, while greedy search
would never make progress. Results are available to view in
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Vehicle 1

Vehicle 2

Vehicle 3

Fig. 11. This figure shows the channel swapping experiment involving three
vehicles. In particular, it shows the specification for the first reach-avoid,
where goals are shown as the colored boxes. For the second reach-avoid, the
initial and goal boxes of vehicle 1 and 2 are swapped.
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Fig. 12. Trajectories using non-deterministic Dijkstra for the channel exper-
iment. The alternating grey and white areas reflect the size of the grid boxes.
The duration for each of the two reach-avoid specifications is highlighted.

the video.

D. Discussion

Throughout the various experimental scenarios presented,
we have demonstrated the modularity offered by our approach.
The designer can customize their own algorithms for generat-
ing a control policy in order to trade-off solution quality with
computational efficiency. Depending on the specific applica-
tion scenario, a different control policy generation strategy
may be more suitable.

In our analysis, all of the complexity was associated with
the generation of the control policy for a given MA. The
MA formalism enables us to generate control policies with
no further regard to the continuous time trajectories that may
result, due to the guarantees on discrete behavior encoded
in the MA edges. On the other hand, the generation of a
MA for an arbitrary system is a difficult challenge in its own
right and is left to the discretion of the designer, although
the design we have presented in Section VII can potentially
be applied to control systems that are feedback-linearizable
into a collection of double integrators. Taking care that the
outputs are translationally invariant and that obstacle boxes
can be computed, this includes end effector control of fully
actuated robotic manipulators [29] and some wheeled vehicles
through the use of look-ahead points [1].

Our approach offers robustness through the use of feedback-
based motion primitives, as the construction of invariant
regions ensures a wide range of initial conditions for which
output trajectories exit through appropriate guard sets into
subsequent boxes. Since the motion primitives are updated
during execution based on the measured box transitions and
control policy, we do not require timing estimates for complet-
ing box transitions, which can be difficult to compute. These
features are advantageous under model uncertainty, which we

must contend with since we base our motion primitive design
on the double integrator model rather than the more complex
quadrocopter model, and since aerodynamic effects arise when
multiple quadrocopters fly in close proximity. Our previous
work also demonstrated similar robustness of operation under
wind disturbances generated by a fan on a larger quadrocopter
[31]. Finally, we note that our framework can easily be applied
to a heterogeneous team of robots; if each vehicle has its
own MA, the parallel composition automatically constructs
the overall MA for the multi-vehicle system.

Of course, our solution to Problem III.1 is conservative
because we have restricted ourselves to a particular discretiza-
tion, namely the choice of a partition into boxes and the
use of motion primitives. As we have demonstrated, this is
a reasonable trade-off, especially since the resolution of the
output space discretization, the richness of motion primitives,
and the complexity of the control policy are all design
parameters.

IX. CONCLUSION

We have developed a modular, hierarchical framework for
motion planning of multiple robots in known environments.
It consists of several modules. An output transition system
(OTS) models the allowable motions of the robots by parti-
tioning their workspace into boxes. A set of motion primitives
is designed based on reach control on polytopes. A maneuver
automaton (MA) captures constraints on successive motion
primitives. Finally, a control policy is generated based on
the synchronous product of the OTS and the discrete part
of the MA. Overall we obtain a two-level control design
which is highly robust, modular, and conceptually elegant.
We presented a specific maneuver automaton for the dou-
ble integrator system, and we showed how this design can
be composed to obtain maneuver automata for multi-robot
systems. The methodology was experimentally validated on
a group of quadrocopters. Future work includes application
of our methodology to different vehicle classes such as
robotic manipulators or wheeled vehicles, and integration with
more advanced multi-robot planning algorithms in dynamic
environments.

APPENDIX

Proof of Theorem IV.1. First we prove (3). Consider q =
(l,m) ∈ QPA\QfPA and suppose |ΣPA(q)| > 0. By the definition
of J , for any c ∈ C,

J(q, c) = max
e=(q,σ,q′)∈EPA

{DPA(e) + J(q′, c)} , (15)

where q′ = (l′, c(q, σ)) ∈ QPA. Observe that given q =
(l,m) ∈ QPA and σ ∈ ΣPA(q), there exists a unique l′ ∈ LOTS

such that (l, σ, l′) ∈ EOTS (since the OTS is a deterministic
automaton). Therefore, when we take the maximum over
e = (q, σ, q′) ∈ EPA in (15) with q′ = (l′, c(q, σ)), the only
free variable to maximize over is σ ∈ ΣPA(q). Therefore, (15)
is equivalent to

J(q, c) = max
σ∈ΣPA(q)

{DPA(e) + J(q′, c)} , (16)
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where, as before, q′ = (l′, c(q, σ)) ∈ QPA and e = (q, σ, q′) ∈
EPA. By definition of V

J(q, c) ≥ max
σ∈ΣPA(q)

{DPA(e) + V (q′)} .

Again by definition of V

V (q) = min
c∈C

J(q, c) ≥ min
c∈C

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
.

Thus,

V (q) ≥ min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
.

To prove the reverse inequality, suppose by the way of con-
tradiction that there exists an admissible control assignment
at q ∈ QPA, ĉ(q) ∈M(q), such that

V (q) > max
σ∈ΣPA(q)

{DPA(ê) + V (q̂)}

≥ min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
,

where q̂ = (l̂, ĉ(q, σ)) ∈ QPA, ê = (q, σ, q̂) ∈ EPA, q′ =
(l′, c(q, σ)) ∈ QPA, and e = (q, σ, q′) ∈ EPA. Suppose the
maximum for ĉ(q) is achieved with σ∗ ∈ ΣPA(q). We define
q∗ = (l∗, ĉ(q, σ∗)), and e∗ = (q, σ∗, q∗) ∈ EPA. Then

V (q) > DPA(e∗) + V (q∗) .

Suppose an admissible optimal control policy for q∗ to achieve
V (q∗) is c∗ ∈ C. Define a new policy c = c∗ on QPA \ {q}
and c(q) = ĉ(q). Then

J(q, c) = max
σ∈ΣPA(q)

{DPA(e) + V (q′)}

= DPA(e∗) + V (q∗) < V (q) ,

a contradiction. Hence, it must be that

V (q) ≤ min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
,

as desired. This proves (3).

Second we prove (4). Consider q = (l,m) ∈ QPA \ QfPA

and suppose |ΣPA(q)| > 0. Let c̄(q) ∈M(q) be an admissible
control assignment at q such that for all σ ∈ ΣPA(q),

c̄(q, σ) ∈ argmin
m̄∈M(q,σ)

{DPA(ē) + V (q̄)} , (17)

where q̄ = (l̄, m̄) ∈ QPA, and ē = (q, σ, q̄) ∈ EPA. We will
show that

max
σ∈ΣPA(q)

{DPA(ē) + V (q̄)} ≤ (18)

min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
,

where q̄ = (l̄, c̄(q, σ)) ∈ QPA, ē = (q, σ, q̄) ∈ EPA,
q′ = (l′, c(q, σ)) ∈ QPA, and e = (q, σ, q′) ∈ EPA. Suppose
the minimum and maximum on the r.h.s. are achieved with
c∗(q) ∈M(q) and σ∗ ∈ ΣPA(q). Also, suppose the maximum

on the l.h.s. is achieved with σ̄∗ ∈ ΣPA(q). Then (18) becomes

DPA(ē∗) + V (q̄∗) ≤ DPA(e∗) + V (q∗) , (19)

where q∗ = (l
∗
, c(q, σ∗)) ∈ QPA, e∗ = (q, σ∗, q∗) ∈ EPA, q∗ =

(l∗, c∗(q, σ∗)) ∈ QPA, and e∗ = (q, σ∗, q∗) ∈ EPA. Suppose by
way of contradiction that (18) does not hold. Then (19) does
not hold. That is,

DPA(ē∗) + V (q̄∗) > DPA(e∗) + V (q∗) .

By the maximality of σ∗ ∈ ΣPA(q) we have

DPA(e∗) + V (q∗)

= DPA((q, σ∗, (l∗, c∗(q, σ∗)))) + V ((l∗, c∗(q, σ∗)))

≥ DPA((q, σ∗, (l
∗
, c∗(q, σ∗)))) + V ((l

∗
, c∗(q, σ∗))) .

Therefore

DPA(ē∗) + V (q̄∗)

= DPA((q, σ∗, (l
∗
, c(q, σ∗)))) + V ((l

∗
, c(q, σ∗)))

> DPA((q, σ∗, (l
∗
, c∗(q, σ∗)))) + V ((l

∗
, c∗(q, σ∗))) .

This contradicts the definition of c̄(q, σ̄∗) in (17). We conclude
that (18) must hold.

Now consider c̄∗ ∈ C such that c̄∗(q) = c̄(q) and c̄∗ is any
admissible optimal control policy for q′ 6= q. Using (16) we
have

J(q, c̄∗) = max
σ∈ΣPA(q)

{DPA(ē) + J(q̄, c̄∗)}

= max
σ∈ΣPA(q)

{DPA(ē) + V (q̄)} ,

where q̄ = (l, c̄∗(q, σ)) = (l, c̄(q, σ)) ∈ QPA and ē =
(q, σ, q̄) ∈ EPA. Now by (3) and (18) we have

J(q, c̄∗) = max
σ∈ΣPA(q)

{DPA(ē) + V (q̄)}

≤ min
c(q)∈M(q)

ß
max

σ∈ΣPA(q)
{DPA(e) + V (q′)}

™
= V (q) .

By definition of V , we obtain that J(q, c̄∗) = V (q). That is,

J(q, c̄∗) = V (q) = max
σ∈ΣPA(q)

{DPA(ē) + V (q̄)} (20)

with q̄ = (l, c̄(q, σ)) ∈ QPA and ē = (q, σ, q̄) ∈ EPA. However,
we know c̄∗(q) = c̄(q), and c̄(q) satisfies (17). Therefore,

V (q) = max
σ∈ΣPA(q)

ß
min

m∈M(q,σ)
{DPA(ē) + V (q̄)}

™
,

where now q̄ = (l,m) ∈ QPA, and this proves (4).

Proof of Lemma V.2. Let (l0,m0) ∈ Q0
PA and x0 ∈ IMA(m0).

The initial MA state of the MA execution is (m(0), x0) =
(m0, x0) ∈ Q0

MA, and the initial PA state of the PA run π is
q0 = (l0,m0). The hybrid time domain of χ will be denoted
as τ = {Ii}nτi=0, and is initialized as τ = {I0}, where I0 =
{τ0} and τ0 = 0. With the base case k = 0 established, we
construct the remainder of the MA execution and PA run by
induction.
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The run so far is π = q0 . . . qk, where qi = (li,mi)
for i = 0, . . . , k, and Ik = {τk}. Suppose ΣMA(mk) = ∅.
Then by Assumption IV.1 (vi), φMA(t, x0) ∈ IMA(mk) for
all t in the extended interval Ik = [τk,∞). The complete
PA run is π = q0 · · · qk and the induction terminates.
Suppose instead ΣMA(mk) 6= ∅. Then by Assumption IV.1
(vii), there exist unique σk ∈ ΣMA(mk) and T k ≥ 0,
such that φMA(t, x0) ∈ IMA(mk) for all t in the extended
interval Ik = [τk, τ

′
k], τ ′k := τk + T k. Also, for each

e = (mk, σk,m′) ∈ EMA, there exists a guard set ge such
that φMA(τ ′k, x0) ∈ ge. Assumption IV.1 (ii) tells us that for
all such m′, the guard set is the same. Also, Assumption IV.1
(iii) ensures that σk is unique. Now we invoke the control
policy to select a specific m′. Let mk+1 := c(qk, σk) so
that ek := (mk, σk,mk+1) ∈ EMA and φMA(τ ′k, x0) ∈ gek .
Define xk+1

0 := rek(φMA(τ ′k, x0)). By Assumption IV.1 (iv),
xk+1

0 6∈ ge for any e = (mk+1, σ,m′) ∈ EMA. The next PA
state is qk+1 = (lk+1,mk+1), where lk+1 ∈ LOTS is uniquely
determined through (lk, σk, lk+1) ∈ EOTS, by the determinism
of the OTS. The PA run so far is π = q0 · · · qk+1 and the new
interval Ik+1 = {τ ′k} is added to τ .

The above inductive process is guaranteed to terminate with
a finite PA run by definition of Q0

PA. That is, since (l0,m0) ∈
Q0

PA there will be a smallest N such that (lN ,mN ) ∈ QfPA.
Moreover, by definition of QfPA (5), we have that ΣMA(mN ) =
∅ and so the run cannot be extended further. The resulting MA
execution is infinite with a finite number of intervals in the
hybrid time domain τ , and it is non-blocking by Lemma V.1.

Proof of Theorem VI.1. We employ the following two stan-
dard facts regarding products, intersections, and subsets of
sets. Formally, if A,B,C,D are sets, then

(A ∩ C)× (B ∩D) = (A×B) ∩ (C ×D), (21)
A ⊂ C and B ⊂ D ⇒ (A×B) ⊂ (C ×D). (22)

First we show that the resulting HMA is in fact an MA
according to the definition. Clearly the composed vector fields
are also globally Lipschitz and the composed invariants are
bounded. The non-trivial points to show are that (a) the
stacked system satisfies Assumption III.1, (b) the invariants
project within the canonical box, (c) the enabling conditions
lie both within the invariant and on an appropriate face
determined by σ ∈ Σ, (d) the reset conditions are determined
only by the event σ ∈ Σ, and (e) the initial conditions are the
entire invariants. We prove each of these in turn.

(a) We show that Assumption III.1 for the stacked system
holds. For the first condition, it can be verified by direct
expansion that the definition of h necessarily produces the
injective output map o : {1, . . . , p} → {1, . . . , n} defined
earlier. For the second condition, letting x = (x1, x2),
u = (u1, u2) and y = (y1, y2), we must show that f(x, u) =
f(x+h−1(y), u). First, by Assumption III.1 on each system,
f j(xj , uj) = f j(xj+(hjoj )

−1(yj), uj). Second, it is easy (but
tedious) to show that h−1

o (y) = ((h1
o1)−1(y1), (h2

o2)−1(y2)).
Putting these two facts together gives the desired result.

(b) We show that for all m ∈ M , IMA(m) ⊂ h−1(Y ∗).
Letting m = (m1,m2) ∈ M , we have by the fact that each
system is an MA that IjMA(mj) ⊂ (hj)−1(Y ∗,j) for j = 1, 2. It
is easy (but tedious) to show that h−1(Y ∗) = (h1)−1(Y ∗,1)×
(h2)−1(Y ∗,2). The result then follows by applying (22).

(c) We show that for all e = (m1, σ,m2) ∈ EMA,
ge ⊂ h−1(Fσ) ∩ IMA(m1). Let e = (m1, σ,m2) ∈ EMA and
decompose it as ej = (mj

1, σ
j ,mj

2) ∈ EjMA for j = 1, 2. For
j = 1, 2, if σj 6= εj , then gej ⊂ (hj)−1(Fσj )∩IjMA(mj

1) since
each system is an MA. Otherwise, if σj = εj , observe that
Fεj = Y ∗,j and gej = Ij(mj

1) ⊂ IjMA(mj
1) ⊂ (hj)−1(Y ∗,j)

by construction. Consequently gej ⊂ (hj)−1(Fσj )∩ IjMA(mj
1)

again. Next, by definition ge = ge1 × ge2 and IMA(m) =
I1

MA(m1
1) × I2

MA(m2
1). It is also easy (but tedious) to show

that h−1(Fσ) = (h1)−1(Fσ1)× (h2)−1(Fσ2). The result then
follows by applying (21) and (22).

(d) We show that for all e = (m1, σ,m2) ∈ EMA, re(x) =
x−h−1

o (d◦σ). Let e = (m1, σ,m2) ∈ EMA and decompose it
as ej = (mj

1, σ
j ,mj

2) ∈ EjMA for j = 1, 2. First, by definition
re(x) = (re1(x1), re2(x2)). Then for j = 1, 2, if σj 6= εj ,
then rej (xj) = xj − (hjoj )

−1(dj ◦σj) since each system is an
MA. This is also the case when σj = εj because rej (xj) =
xj and (hjoj )

−1(dj ◦ εj) = 0. Next, since d = (d1, d2) and
σ = (σ1, σ2), component-wise multiplication gives d ◦ σ =
(d1 ◦ σ1, d2 ◦ σ2). Using x = (x1, x2) and the decomposition
h−1
o (y) = ((h1

o1)−1(y1), (h2
o2)−1(y2)) established in (a) with

y = d ◦ σ proves the result.
(e) We must show that Q0

MA = {(m,x) ∈ QMA | x ∈
IMA(m)}. This follows immediately from the definitions of
QMA, IMA, and Q0

MA.
Next we prove that (i)-(vii) of Assumption IV.1 hold.
(i) We must show that for all m ∈ M , ε 6∈ ΣMA(m). This

follows immediately from the definition of the edges since for
all m ∈M , ΣMA(m) = ΣMA(m) \ {ε}.

(ii) We must show that for all e1, e2 ∈ EMA such that e1 =
(m1, σ,m2) and e2 = (m1, σ,m3), ge1 = ge2 . To that end,
we write ej1 = (mj

1, σ
j ,mj

2) ∈ EjMA and ej2 = (mj
1, σ

j ,mj
3) ∈

E
j

MA for j = 1, 2. To show that ge1 = ge2 , we must show
that gej1 = gej2

for j = 1, 2. Let j ∈ {1, 2}. If σj = εj , then

by construction gej1 = Ij(mj
1) = gej2

. Otherwise, if σj 6= εj ,
then gej1 = gej2

follows from Assumption IV.1 (ii) on the j-th
system.

(iii) We must show that for all e1, e2 ∈ EMA such that e =
(m1, σ1,m2) and e2 = (m1, σ2,m3), if σ1 6= σ2, then ge1 ∩
ge2 = ∅. To that end, we write ej1 = (mj

1, σ
j
1,m

j
2) ∈ E

j

MA

and ej2 = (mj
1, σ

j
2,m

j
3) ∈ E

j

MA for j = 1, 2. If σ1 6= σ2,
then suppose w.l.o.g. that σ1

1 6= σ1
2 . To show ge1 ∩ ge2 = ∅,

by (21) it suffices to show that ge11 ∩ ge12 = ∅. If both σ1
1

and σ1
2 are not equal to ε1, then by Assumption IV.1 (iii)

ge11 ∩ ge12 = ∅. If one of σ1
1 or σ1

2 is ε1, say σ1
1 , then we

cannot invoke Assumption IV.1 (iii). However, by definition
ge11 = I1(m1

1) is not intersecting with any other guards, so
that ge11 ∩ ge12 = ∅, as desired.

(iv) We must show that for all e1, e2 ∈ EMA such that e1 =
(m1, σ1,m2) and e2 = (m2, σ2,m3), re1(ge1) ∩ ge2 = ∅.
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To that end, we write ej1 = (mj
1, σ

j
1,m

j
2) ∈ E

j

MA and ej2 =

(mj
2, σ

j
2,m

j
3) ∈ EjMA for j = 1, 2. By (21), it suffices to show

that rej1(gej1
) ∩ gej2 = ∅ for at least one of j = 1, 2. Since

ε cannot be an event by Assumption IV.1 (i), at least one of
j1 = 1, 2 must have σj11 6= εj1 , and at least one of j2 = 1, 2
must have σj22 6= εj2 . Formally, there are several cases, but
they can be summarized as follows. If there is at least one
matching j = j1 = j2, where both σj1, σ

j
2 6= εj , then both

ej1, e
j
2 ∈ EjMA, and we invoke Assumption IV.1 (iv) to get

rej1
(gej1

) ∩ gej2 = ∅. There are two remaining cases which are
similar so we only look at one of them. Suppose σ1

1 = ε1 and
σ2

2 = ε2. Then e1
1 6∈ E1

MA and e2
2 6∈ E2

MA so we cannot invoke
Assumption IV.1 (iv). However, by construction e1

1 ∈ E
1

MA

implies that re11(ge11) = I1(m1
1) is not intersecting with any

guards in E1
MA. In particular, e1

2 ∈ E1
MA since it must be that

σ1
2 6= ε1, and so re11(ge11) ∩ ge12 = ∅.
(v) We must show that for all e = (m1, σ,m2) ∈ EMA,

re(ge) ⊂ IMA(m2). To that end, we write ej = (mj
1, σ

j ,mj
2) ∈

E
j

MA for j = 1, 2. For j = 1, 2, if σj 6= εj , then rej (gej ) ⊂
IjMA(mj

2) follows from Assumption IV.1 (v) on the individual
system. This is also the case when σj = εj , since by definition
of E

j

MA we have rej (gej ) = Ij(mj
1) ⊂ IjMA(mj

2). Next by
definition we have that IMA(m2) = I1

MA(m1
2)× I2

MA(m2
2). Also,

it is easy to verify that re(ge) = re1(ge1) × re2(ge2). The
result follows by applying (22).

(vi) We must show that for all m ∈ M , if ΣMA(m) =
∅ then IMA(m) is invariant. Let m = (m1,m2) ∈ M ,
x0 = (x1

0, x
2
0) ∈ IMA(m), and suppose that ΣMA(m) = ∅.

Then for j = 1, 2, ΣjMA(mj) = ∅. To see this, suppose
one was not empty, say σ1 ∈ Σ1

MA(m1) ⊂ Σ
1

MA(m1),
where by Assumption IV.1 (i) σ1 6= ε1. By construction,
ε2 ∈ Σ

2

MA(m2) and by Assumption IV.1 (i) proven above
(σ1, ε2) ∈ ΣMA(m)\{ε} = ΣMA(m), so we get a contradiction.
Appealing to the Assumption IV.1 (vi) for j = 1, 2, for all
t ≥ 0 the individual trajectories satisfy φjMA(t, xj0) ∈ IjMA(mj).
Thus for all t ≥ 0, φMA(t, x0) ∈ IMA(m).

(vii) We must show that for all m ∈ M , if ΣMA(m) 6= ∅
then IMA(m) forces all trajectories to exit in finite time through
some guard. Let m = (m1,m2) ∈ M , x0 = (x1

0, x
2
0) ∈

IMA(m), and suppose that ΣMA(m) 6= ∅. Reversing the argu-
ment used in Assumption IV.1 (vi), now we can conclude for
at least one of j = 1, 2 that ΣjMA(mj) 6= ∅. Suppose first
that only Σ1

MA(m1) 6= ∅, then applying Assumption IV.1 (vii)
for j = 1 and Assumption IV.1 (vi) for j = 2 furnishes the
event σ = (σ1, ε2) ∈ ΣMA(m), with exit time T 1. A similar
argument holds if only Σ2

MA(m2) 6= ∅. If for both j = 1, 2,
ΣjMA(mj) 6= ∅, then Assumption IV.1 (vii) for both j = 1, 2
furnishes the event σ = (σ1, σ2) with σj ∈ ΣjMA(mj), with
exit times T j . If T 1 < T 2, then the overall exit time is T = T 1

with event σ = (σ1, ε2) ∈ ΣMA(m). If T 1 > T 2, then the exit
time is T = T 2 with event σ = (ε1, σ2) ∈ ΣMA(m). Other-
wise, T = T 1 = T 2, and the event is σ = (σ1, σ2) ∈ ΣMA(m).
In all the cases above, it is then easy (but tedious) to verify
that for all e = (m,σ,m′) ∈ EMA and for all t ∈ [0, T ],
φMA(t, x0) ∈ IMA(m) and φMA(T, x0) ∈ ge.

Proof of Lemma VII.1. (i) We must show that for all m ∈M ,
0 6∈ ΣMA(m). This is clearly true since there is no edge in EMA

containing the label 0.
(ii) We must show that for all e1, e2 ∈ EMA such that

e1 = (m1, σ,m2) and e2 = (m1, σ,m3), ge1 = ge2 . This
is clearly true since we have designed g(F ,1,H ) = g(F ,1,F)

and g(B,−1,H ) = g(B,−1,B).
(iii) We must show that for all e1, e2 ∈ EMA such that

e = (m1, σ1,m2) and e2 = (m1, σ2,m3), if σ1 6= σ2, then
ge1 ∩ ge2 = ∅. This is trivially true since for all m ∈ M ,
|ΣMA(m)| < 2.

(iv) We must show that for all e1, e2 ∈ EMA such that e1 =
(m1, σ1,m2) and e2 = (m2, σ2,m3), re1(ge1) ∩ ge2 = ∅.
Using Assumption IV.1 (ii) above, we only need to check
two cases, that is, e1 = e2 = (F , 1,F ) and e1 = e2 =
(B,−1,B). Both cases satisfy the condition because of the
reset action on the first coordinate; for example, the first case
gives re1({d} × (0, ū1]) ∩ {d} × (0, ū1] = ∅.

(v) We must show that for all e = (m1, σ,m2) ∈ EMA,
re(ge) ⊂ IMA(m2). This is easily verified for all four edges
in EMA, for example, if e = (F , 1,H ), clearly re1({d} ×
(0, ū1]) ⊂ IMA(H ).

(vi) We must show that for all m ∈ M , if ΣMA(m) = ∅
then IMA(m) is invariant. We have that only ΣMA(H ) = ∅. As
can be seen in Figure 5, the closed-loop vector field does not
allow trajectories to cross outside of IMA(H ), and therefore
for all x0 ∈ IMA(H ), and for all t ≥ 0, φMA(t, x0) ∈ IMA(H ).

(vii) We must show that for all m ∈ M , if ΣMA(m) 6= ∅
then IMA(m) forces all trajectories to exit in finite time through
some guard. Consider F with ΣMA(F ) = {1}. As can be seen
in Figure 5, for all x0 ∈ IMA(F ), there exists T ≥ 0 such that
for all t ∈ [0, T ], φMA(t, x0) ∈ IMA(F ), and φMA(T, x0) ∈
{d} × (0, ū1]. Since both g(F ,1,H ) = g(F ,1,F) = {d} ×
(0, ū1], the assumption holds. A similar argument can be made
for B.
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