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Abstract— The reachability problem has received significant sufficient conditions for a more general problem of steedang
at_tention in the hybrid co_ntrol literature with many questi ons  state of the system to a set of facets of a Simp|ex_ Moreover,
still left unanswered. In this paper we solve the general prolem e show through examples that even though the conditions
of reaching a set of facets of an n-dimensional simplex in f hability of a facet in [8 infeasibl Istil
finite time, for a system evolving with linear affine dynamics or reacha _' ity ot a gce in [8] are infeasible, yve may|sti
Necessary and sufficient conditions are presented in the for b€ able to find a continuous state feedback which guarantees
of inequalities on the vertices of the simplex, and a linearffine  the control objective.
controller is constructed that solves the reachability prdolem. The paper is organized as follows. The terminology,
adopted from [8], and the problem statement is presented
next. Section Il contains background work related to the

In this paper we present reachability results forear  paper. Next, necessary and sufficient conditions for the
affine systemslefined on a polytope or simplex. We par-existence of a continuous state feedback control which
ticularly consider the synthesis of controllers that aghie achieves the control objectives is presented in Sectian il
a particular reachability specification on a simplex and Wan algorithm for constructing a continuous controller is
develop necessary and sufficient conditions for the exi&tenpresented in Section IV. Finally, several examples arergive
of such a controller. The work of this paper is primarilyin Section V. Concluding remarks follow, summarizing the

motivated by previous results on reachability and cordroll results and outlining our future directions of research.
bility on polytopes presented by Habets and van Schuppen

[8], and is related to work on invariance of polyhedral sets

as presented in the survey paper by Blanchini [5, pp. 1754- Terminology

1756].

Our results have implications for reachability analysis
n h_ybnd system theory. A hybrid system combines th.é: setP, C R", defined as the convex hull of a set of points
continuous model of several systems or subsystems wi
discrete transitions that occur in between or within them, . {v1, o vp | B 2 n+ 1.}' wherew,, ..., vy are cho_sen
In recent years, the interest in hybrid systems has grovvS ch t_hat there does not exist a hyper.planR?ofcqntamlng
considerably and various general results have been pee‘sen?l _pomts of V. A vgrtex of a setP is any .po'n.t of P
in proceedings; for example [1] and [11]. Our interest Iie¥Vh'Ch cannot be written as a convex combination of any

specifically with linear affine systems studied by Habets ar;gfher distinct points of. The set of vertices of” will be

van Schuppen [8], and introduced by Sontag [13], [14], [15 _engted ad’.

In the literature, several interesting publications are re GIVen a set ofm € N vectors{ml,...,x%| z; € R},
lated to our work. For instance, Lee and Arapostathis [102;11 aiz; is called amaffine combinatiorif Zo‘i —1.The
investigated global controllability of piecewise-linegffine =1
hypersurface systems, while Veliov and Krastanov [17] stuckffine hullof a setP is the set of all affine combinations
ied local controllability of a system which is linear on twoOf points in P, denotedaf f(P). A set of ¢ + 1 points
half-spaces. Other related work on invariant polyhedrtd se{v1, ..., vg+1} In R" is said to beaffinely independenif
of linear systems have been studied by Vassilaki and Bgsoritf f({v1; ..., vg+1}) iS ¢ — dimensional. If a set of points
[16] and Castelan and Hennet [6]. The survey paper bfvi,...,vny1} is affinely independent, then its convex hull
Blanchini [5] on set invariance in control provides manys called ann-dimensional simplexdenotedsS,,. In this
other related references. The problem of reaching a p#aticupaper, whenever we sgplytope(simpley, we mean am-
facet of ann-dimensional polytope has been extensivelgimensional polytope (simplex).
studied by Habets and van Schuppen [7], [8]. The presentFor an n-dimensional polytope, there exjst> n + 1
paper is highly motivated by their results. However, walistinct unit lengttnormalsh, ..., h; € R™ and;j non-zero
relax a key condition in [8], allowing to find necessary andealsa;,...,«; € R such that the polytope can be written

I. INTRODUCTION

The convex hullof a setP c R” is the set of all convex
ombinations of points iP. An n-dimensional polytopés



as an intersection of (n — 1)-dimensional hyperplanes: Il. BACKGROUND

Py={z€R" | hi-z<as, i=12 ..} 1) In this .section, we give bagkground results needed for
the remainder of the paper. First, we present results from
By convention the normal vectots point out of P,. A facet convex analysis concerning separating hyperplanes thiat wi
of a polytopeP, is an (n — 1)-dimensional intersection of be used for our main results. Second, two elements from [8]
the polytope with a supporting hyperplane: are reviewed. First, we show how a linear affine controller
can be constructed using only the input values at the ver-

Fpo={z eR" | hj-z=a;} NP, i=1...,5. (2) tices. Second, we give conditions for preventing trajeetor

. . . originating inside a polytope from leaving via a particular
If P, is a simplex, then we use the convention thais the 9 9 polytop 9 P

facet.
convex hull of{vq, ..., vi—1,Vit1, ..., Unt1} Wherev; € V.
Lastly, we define a multi-inputnear affine systenas A. Convex Sets and Separating Hyperplanes
&= Az +Bu+ta, ©) This subsection presents two important results related to

convex sets and separating hyperplanes. These will be used
wherez € R", v € R™, anda € R™ and alinear affine in a proof of a key result in Section IlI.

state feedback function of the form: Definition 2.1 ([12] pg.95):Let C; andC be non-empty
sets inR™. A hyperplaneH is said toseparateC; andC if
u=Fr+yg, (4)  (©, is contained in one of the closed half-spaces associated

with H, while C5 lies in the opposite closed half-space. Let
B :={z| ||z|| < 1}. If there exists > 0 such thatC; +¢B
is contained in one of the open half-spaces associated with

where ' € R™*™ and g € R™. Notice that with this state
feedback the closed loop system is of affine form

i =(A+ BF)x+ (Bg+a) = Az + a. H andC; +€B is contained in the opposite open half-space,
thenC, andC, are separatesdtrongly.
B. Problem Statement The following theorem gives a condition for the existence

Consider a linear affine systein= Az + a defined on of a hyperplane which separates two non-empty convex sets.
a polytope P,. A facet F; of the polytopeP, is called Theorem 2.1 ([12] pg.98)Let C; and C; be non-empty
restricted or invariant if no trajectory of the system exits CONVeX sets irR™. In order that there exist a hyperplafie
through the facet. (A facet which is not restricted is calledeParating’y andC, strongly, it is necessary and sufficient
unrestricted. Let I be a given set of indices of the facets tothat
be made restricted by proper choice of control input for the i r12 — 4l | 21 € Oy, @ € Co} > 0. (5)
system (3). We assume at least one fdGets not restricted, Notice that if C; and C, are convex and compact, and

Le. 1 ¢ I. Also, for eachv € V, let I, = {k | k € [,v € &, =0, then (5) holds, implying that such di exists.
Fy.}. We consider the following problem.

Problem 1.1:Let P, be ann-dimensional polytope with B. Linear Affine Systems defined on Polytopes

a set of facets;, j € I, with normal vectorsh;. For the  Next we review several results from [8]. The main ideas
system 7(n?’)* construct a continuous feedback f(z), f :  are as follows. Given a simple%,, we would like to impose
P, — R™ such that for each initial condition, € P, there  certain conditions, callednvariance conditionsand flow

exist a timet, > 0 and ane > 0 such that conditionsat the vertices of the simplex, which guarantee
1) Vvt € [0,to], x(t) € Py, that trajectories may not leave from the restricted facets,
2) xz(ty) € Fy, for somek ¢ I but may leave from the unrestricted facets. The invariance
3) Vt € (to,to +€), z(t) ¢ P,. conditions, introduced in [8], dictate that the vector figldy

The problem states that we must desigtho enforce all not point “out” of a restricted facet. Lemma 2.5 shows that
controlled trajectories originating insidg, to escapeP,, the invariance conditions indeed guarantee that no t@jgct
through soméy,, which is not invariant (notice that nothing can exit the restricted facet. The flow conditions are a new
is said about the trajectory far > (¢y + €)). In contrast element contributed in this paper. A flow condition imposes
with [8], we do not try to restrictn facets, but rather an that the vector field points in a particular direction with
arbitrary number. Also, we drop the restriction thigtmust respect to a given vectaf € R"™, or equivalently, points
be the first time at which the state reaches the exit facetlong a particular side of a hyperplane with normal veétor
Thus, the current problem is a generalization of the one im Section Il we will show that the flow conditions provide
[8]. The implications of the extra restriction in [8] will be the required additional element to solve the more general
highlighted in the sequel. Since any n-dimensional polgtopreachability problem of this paper. Lemma 2.2 says that an
can be partitioned into simplices via triangulation, theu® invariance (or flow) condition on a facet can be acheived
of this paper will be on solving Problem 1.1 with), assumed simply by imposing the invariance or flow condition on
to be a simplexs,,. For an excellent overview of triangulation the vertices of the simplex. Thus, the procedure is to write
and its complexities, the reader is referred to [8] and thmvariance and flow conditions at the vertices only and solve
references therein. them for the control values at the vertices. Lemma 2.1 shows



that once those control values at the vertices are obtained,Note that in the previous Lemma can be replaced with
one can construct a linear affine feedback control defined @my of {<, >, >, =}. In particular, we use< when dealing
the entire simplex such that the closed-loop system achiewwith invariance properties.

the design objective. The next two preliminary results are needed in order to

The first result of this subsection shows how a linear affinprove Lemma 2.5, which describes when a trajectory cannot
controller can be constructed for the system (3) defined @xit a polytope via a particular facet.

a simplex, from the knowledge of the input values at the Lemma 2.3 ( Comparison principle [9] pg.102):
vertices. The proof parallels the result of [8] and is présén Consider the scalar differential equation
for completeness. . _

Lemma 2.1:Consider two sets of pointu:, . . ., vni1}, w=ft,w),  wto) =wo, ©)
v; € R" and {us,...,un41}, u; € R™. Suppose the;’s  where f(t,w) is continuous int and locally Lipschitz imw,
are affinely independent. Then there exists a unique matrdgr all t > 0 and allw € W C R, WW a non-empty interval.
F e R™*™ and a unique vecto§j € R™ such that for each Let [to,T), T < oo, be the maximal interval of existence of

v;, u; = Fuj +g. the solutionw(t), and supposes(t) € W for all t € [to, T).
Proof: We want to show there exists a unique matrix-et z(¢) be a continuous function whose derivative satisfies

F and a unique vectay such that, in matrix form, the differential inequality

of 1 uf 2t) < f(t,2(1),  z(to) Swo (10)

T T -

v 1 [ E } _| " (6) With () € W for all ¢ € [to, T). Then,z(t) < w(t) for all

: 9 : t e [to,T).

vl 1 ul The next result shows that if we are given a functifin

which is locally Lipschitz, then the maximum of that funeatio
is also locally Lipschitz.
Lemma 2.4 ([3]): Given a functionf(z,y) : R* x Y —

If the (n+ 1) x (n + 1) left-hand matrix is full rank, then
multiplying by its inverse yields the unique solutioAsand

g However, R, with )y a compact metric space, arfdlocally Lipschitz
ol 1 vl —of in z. Theng(z) := max f(z,y) is also locally Lipschitz.
T T T Yye
v 1 vy — v ; ; i
rank | 2 —1+rank| 3 1 —14n We are now ready to introduce an important result provid-

ing conditions for invariance of a facet, which was presénte

;,EH 1 ;,;{H —oT in [8] in a different way. A new proof is given, which
. . . provides an alternate view to the argument in [8].
The last equality follows since the poin{an, ..., v,41}

; . 8 . s Lemma 2.5:Consider the linear affine systein= Az+a,
are affinely independent if and only if the affine hu"aeR” defined onP,. Suppose that for facefs, i = 1,...k

of {v1,...,vn41} is n-dimensional, i.e. the Vectory, — it normal vectorgy;, respectively, the following conditions

v1,...,Un+1 — U1} Must be linearly independent. B o

Since a simplex is the convex hull ef+ 1 affinely indepen- ' _

dent points, it is now clear that if we enforce input values  hi-# <0,  Vx € Fj, ief{l,... k}. (11)
U1, uny1 @t then + 1 vertices of the simplex, then we thep g trajectories originating i, that leaveP, do so
can also construct a corresponding linear affine controll€fi; an unrestricted facet;, j ¢ {1,....k}.

u=Fzr+g. Proof: Fix i € {1,...,k} and w.l.o.g. assume that,

The next preliminary result, proved in [8], shows that onC§es in the subspacéz | z,, = 0}, so thath; is parallel to
a controller is specified on the vertices 8f, its invariance ¢ z, axis. Also, assume that = Az + a holds on the
properties can be extended to every poinsjn An alterate  gnire spac&”, not only onP,. We consider two cases: (1)
interpretation, which is new in our work, is the following: 5 trajectory escaping via an interior point of the facet, and

if a flow condition with respect to a hyperplane holds for &2) a trajectory escaping via a boundary point.
linear affine vector field at the vertices 5f,, then that flow ~ case 1. Let € > 0. Consider the seWV := {z | =, €

condition holds for all points irb),.. Intuitively this statement [ | (2,25, ...,2,,_1,0) € F,} (see Figure 1). We show

means that as long as a vector field has a particular directigiy no trajectory can escape through an interior poirfof

of flow with respect to a hyperplane with normal vector gy way of contradiction, assume there exists a trajectcay th
on all the vertices of5,,, then the vector field also has thatjeayes via the interior of, i.e. there exists a time > 0

direction of flow on_aII points ofS,,. _ and somer > 0 such thatz(t;) € F,, andz(t; + 1) ¢ F,
Lemma 2.2:Consider system (3) defined ona POIYtOP&yith w, (¢ + 7) € (0,¢) (refer to Figure 1). Note that if
P, with verticesV' = {vy, ..., vp}. G'Ve[‘n§ €R" E#0, 1.4 <0onF, by an elementary argument one can show
for all - € P, there exists an input € R™ such that that no trajectory can escag, via F;. So assume that at

€-(Az+ Bu+a) <0 7y (1), hi - & = &, = 0. We define two functions
if and only if for all v; € V there existsu; € R™ such that f(z) = &y and

& (Avj + Buj +a) <0. (8) glan) = {(z1 m?f)( | zeW} f(@).

.....



By definition &,, = f(z) < g(z,), for all z € W. Let image of P under the map — Ax + a, denoted byC; =

w = g(w), with w(0) = x,(t1) = 0. But g(0) = 0 since AP + a is also compact and convex and does not contain

Z, < 0 on F;. Therefore,w(t) = 0,V ¢t > 0, asw is the origin, by assumption. Thus, lettiig; = {0} and using

a scalar function. Now invoking the Comparison principleTheorem 2.1, there exists a hyperpldiiethat separate§’;

Lemma 2.3 with'W = [0,¢) and g(w) locally Lipschitz and C, strongly. In other words, there exists> 0 and

by Lemma 2.4, we obtain that,(t) < w(t) = 0 for all some¢ € R™ such that for alk € P, {- (Ax +a) < —¢, Or

t € [t1,t1 + 7], @ contradiction. ¢ (Az+a) <O. [

Case 2. We show that no trajectory can escape via a A consequence of the above theorem is the following

boundary point ofF; without also escaping vid}, which corollary, which ensures that all trajectories origingtiim

is unrestricted. As before, assume that at a boundary po@tcompact, convex sét containing no equilibria eventually

x(t1) of F;, h; - & = &, = 0. There are two possibilities: leave the set.

(a) there exists a facek}, j # i, with z(¢1) € F; such Corollary 3.1: Consider the systeni = Az + a, with

thath; - & > 0, or (b) for all facetsF; such that(t1) € F;, x,a € R™. Let P C R™ be compact and convex. Suppose

hj- < 0. In the first case, sinck;-& > 0, then the trajectory that for allz € P, Az + a # 0. Then, for eachr, € P, the

exits P, via Fj. In the second case, we can use a similairajectory starting ato eventually leaves, i.e. z(t1) ¢ P

proof as for an interior point, with a slight modification tofor somet; > 0.

our W set. Details are omitted. Proof: From Theorem 3.1, we know that if for all €

P, Ax+a # 0, then there exists a vectprand a constard >

0 such that for alke € P, £-(Ax+a) > e. Supposex(t) is a

hi trajectory that lies inP for all t > 0. Then¢-(Az(t)+a) > €
and using the Comparison principle Lemma 2.3, this implies

i ) & (Ax(t) +a) > et, for all t > 0. However, this contradicts

W the compactness adPf. [ ]
J € The background results and the above observations lead
Jj(tl)

AT,

A

to the first solution to Problem 1.1.
T1, T, o T Theorem 3.2:Consider an affine systein= Az+ Bu+a,
with x € S,, andu € R™. Problem 1.1 is solvable if and
F, only if there exists a linear affine contral with u(vy) =
U1, ... ,u(vng1) = uny1 sSuch that the closed loop system
Fig. 1. lllustration for the proof of Lemma 2.5. has no equilibria and thimvariance conditions

hi-(Avj + Buj+a) <0 je{l,..n+1}, iel,,
n L
Observe that one can combine the results of Lemma 28J€ satisfied.

and of Lemma 2.5 to conclude that if there exists an input  Proof: _
function guaranteeing that for each restricted faggtthe (=) Itis obvious that the closed loop system will not have

vector field at all vertices of; satisfies the conditioh;-# < @n equilibrium if Problem 1.1 is solved. For the proof of
0, then all trajectories which escape the polytope do so viAECessity of the invariance conditions, see [8].

an unrestricted facet. (<) By assumption, for 'Fhe set of vgrtic@sl, ey Unt1)
there exists a corresponding set of inp{is, ..., un41}.
IIl. NECESSARY ANDSUFFICIENT CONDITIONS Invoking Lemma 2.1, there exists a linear affine contret

This section derives the necessary and sufficient conditiod’z + g, which guarantees that the desired input values are
for the general problem of reaching a set of facets of an mchieved at each vertex. Now we must show that the resultant
dimensional simplex in finite time, for a system evolvinginputu = Fz + g solves Problem 1.1. First, by substituting
with linear affine dynamics. for u, we obtaint = (A + FB)z + (Bg +a) = Az + a,

The first result is central to the development of thend from the assumption that for alle S,,, Az +a # 0,
necessary and sufficient conditions. It says that a syste@orollary 3.1 guarantees that all trajectories of this eyst
2 = Az + a defined on a compact and convex gethas will eventually leavesS,,. That is, for each initial condition
no equilibria in P if and only if there exists a vect@r#0 ¢ € S, there exists a time; > 0 such that the trajectory
such thatf - ¢ =¢ - (Az +a) <0 forall z € P. starting atz, satisfiesz(¢;) ¢ S,. Now it can be seen that

Theorem 3.1:Consider the linear affine systein= Az+ this implies there exist& < t; ande > 0 such that:(¢) €
a with z,a € R™, and a compact, convex sét We have 05 andz(t) ¢ S for all ¢ € (¢, to +¢€). For consider the set
Axz+a # 0forall z € P if and only if there exists § € R™  of timesT = {t € [0,¢1) : z(t) € S} whenz(¢) is in the

such thatt - ¢ = ¢ (Az +a) <0 forall z € P. boundary ofS. Clearly 7 is nonempty and it is bounded.
Proof: It is an elementary argument to show thatis also closed.

(<) Since¢ - (Az +a) < 0 for all x € P, then clearly Thereforety, := sup7 belongs to7. Hencexz(ty) € 05,

forall z € P, Ax +a #0. x(t1) € S, and it is easily seen thas < ¢1. Lete := 1 —to.

(=) Since P is compact and convex it follows that the Sincet, is the last timez(t) is in the boundary of, we also



have thate(t) ¢ S for all t € (to,to+¢), as desired. Finally,  Algorithm 4.1: We are given the linear affine systeim=
using Lemma 2.2 and Lemma 2.5, the trajectory cannot leavkr + Bu + a defined on am-dimensional simplexs,, with
via the restricted facets. This concludes the proof. ® verticesv; € V, and the sef.

Theorem 3.2 gives conditions for the solvability of Prob- 1) Check if the invariance and flow conditions of Corol-
lem 1.1. The invariance conditions agree with the results in lary 3.2 can be satisfied, and the inputs ..., 1,1
[8], while the equilibrium condition introduces the misgin obtained. If not, the problem is unsolvable; otherwise
link for solving the general problem of reaching a desired go to the next step.
facet in finite time. However, if we were to construct an 2) Solve (6) forF and g and construct the linear affine
algorithm based on the conditions of Theorem 3.2, we would controlleru = Fz + g.
only be able to satisfy the invariance conditions and hopehe drawback of the algorithm, as previously mentioned,
that the equilibrium condition would hold with the chosenis that we need to solve nonlinear inequalities in Step 1.
controller. If not, then we would have to choose a differenHowever, from Theorem 3.2 we know that if we satisfy the
set of inputs{u/,...,u;,;} to construct a different input invariance conditions and find the input= Fz + g, such
function v’ = F'z + ¢’ and check if the equilibrium lies that the closed-loop system has no equilibria, then Problem
outsidesS,,. In general this process does not give a guaranteei is solved. This method may not always yield the desired
that we can find a linear affine input function that solvesnput, but as will be illustrated in the next section, it can
the problem. However, from Lemma 3.1 we can replacgvoid the effort of finding a feasible solution to the nonéine
the condition of no equilibria in a compact, convex sefnequalities of step one.
by the existence of & € R"™ such that for allx € P,
¢ - (Az + a) < 0. Thus, with this observation a corollary to V. EXAMPLES
Theorem 3.2 is obtained that remedies the difficulty arising To illustrate the results of the previous sections two exam-

from checking the equilibrium condition. ples are given. In both examples the conditions presented in
Corollary 3.2: Consider the systent = Az + Bu +a, [8] fail, but reachability of the desired facet is still aehed.

with z € S,,. There exists a linear affine feedback= Fx+ Example 5.1:Consider the system

g, with F* € R™*™ andg € R™, which solves Problem 1.1 G = 0 1 4+ 0 u—+ 4 }

if and only if there exists a set of inpuis, . .., u,+1 € R™ 00 1 1

defined on a simplexX, with verticesv; = (-1, —3), vo =

and a vectog such that the following hold:
(4,-1) andvs = (3,—6), and normals; =[5 — 1], hy =

1). Invariance Conditionsh; - (Av; + Bu; +a) <0

jell,2, . n+1}, iel, [—_3. - 1.1] and hs = [-2 5]. We require t.hat al! trajectories
’ originating in .S, leave viaF;. The conditions in [8] orvs
2). Flow Conditions% - (Av; + Buj +a) < 0 are
je{l,2,..n+1} 1) hi Bus > —h{ (Avs +a) = ug < —11

Corollary 3.2 tells us that we only need to check several ~ h3 Bus < —hj3 (Avz +a) = uz > 3
inequalities at the given vertices of the simplex. Morepveflearly the conditions on vertex fail. However, by check-
if we know what the value of is, then the problem reducesing the invariance conditions of Theorem 3.2, and ensuring
to solving a set of linear inequalities. In fact, the suffitie there is no equilibrium for the closed loop system inside
conditions presented in [8] are a specific case of Corollanye notice that reaching; without leaving through any other
3.2, with ¢ set tohy, andI = {2,...,n + 1}. It is clear facetis possible. The conditions for restricting the tweets
that for our problem we don’t have to restri¢tto be h,. result in the satisfaction of the four conditions below
The examples at the end of the paper will illustrate several 1) hl Buy < —hI(Avs +a) = us < 0.2

situations where setting to h; will not solve the general h¥Bu; < —h1(Avi +a) = u < 0.6

problem of leaving via a particular facet or set of facets,@ou ~ 2) hl'Bu; < —hl(Avy +a) = ug > —-1.75

different ¢ will. The inequalities presented in the Corollary h¥ Bus < —hI(Avs 4+ a) = uz > 0.5.

are still problematic, as the value gfand the values for wjith the arbitrary choice of,, = —1.175, us = 0.2 and

u; are unknown, making the feasibility of the inequalities a,; — (.5, we can construct the linear affine controller
nonlinear problem. However, with the tools and algorithms, — Fz + ¢, with F = [0.325 — 0.125] andg = —1.225,
presented in the literature on nonlinear programming (fafhich results in the overall closed loop system having
instance [4] and references within), one can attempt tan equilibrium at approximately—0.8462 4.0]. With this

find the solution to the above inequalities. This non“neaéontroner we are guaranteed not to exit throu@h or Fy
programming problem is beyond the scope of this paper anghce the invariance conditions hold; moreover, by theltgsu
we leave the details to those interested. of the previous sections we are guaranteed to leave the
simplex via Fi, i.e. I = {2,3}. The phase portrait of the

IV. ALGORITHM . L
. . . o closed loop system is illustrated in Figure 2.
In this section, we present an algorithm for finding an Example 5.2:Consider the system

affine feedback controller that solves Problem 1.1. The 1 2 0 1 2
algorithm parallels the steps outlined in [8], and is shown =10 =1 0 laz+]| 1 |u+]3
primarily for completeness. 0o 0 1 0 1



defined on a simplexS; with verticesv; = (0,0,0),
vy = (1,2,0), v3 = (-2,—1,0), andvy = (0,0,1), and
corresponding normalg; = [-3 3 3], ha = [1 — 2 0],
hs =12 —10],andhy = [0 0 — 1]. We require that all
trajectories originating irbs leave viaFy, i.e. I = {2,3,4}.

and usefulness of the results presented in the paper. In both
situations an arbitrary choice of the input resulted in an
adequate controller; namely, a controller that enforces th
equilibrium to lie outside of the simplex. In general, one
might not be able to make an arbitrary choice for the control,

Once again, by verifying the condition presented in [8] orand instead one must work with the nonlinear constraints

vo We must satisfy

1) hT Bus > —nT(Ave + a), implying that0 > 15
which is infeasible. However, the invariance conditiongpliyn
that —4 <ur < -1, us < =13, ug > —10 and —4 <uy <

given by Corollary 3.2.

With convexity and linearity of the problem in mind, the
authors are currently pursuing the idea of transforming the
nonlinear conditions into linear ones by finding a legitienat

—1. Choosingu; = —2, up = —15, ug = 12 anduy = —2
we can construct the linear affine controller= Fz + g,
with 7' =[-5 — 4 0] andg = —2. The closed loop system
has an equilibrium at—0.2,0.4,—1). Since all the facets
have been restricted and the equilibrium lies outsid&pf
we can guarantee all trajectories leave through the desire
facet

The reason that the conditions presented in [8] failed in[l]
these examples is becauseannot be set té; in Corollary
3.2. Of course, it should be noted that in [8] the goal was not
to solve the general problem of leaving via a particular face (2]
but to solve a specific problem with all trajectories flowing [3]
in a particular direction with respect fo, . ”

(5]
The results presented in this paper have been heauvil

influenced by the work of Habets and van Schuppen [8].6]
We have presented a generalization of their problem by
considering an arbitrary number of restricted facets and by7]
dropping the restriction that in Problem 1.1 must be the
first time instant at which the state reaches the exit facet.
The results illustrate that through a test on the vertices of
the polytope one can derive a controller that restricts thd®l
flow of the system. Moreover, by checking that the closed-
loop system contains no equilibria, we have shown that thé®]
system will always leave through the desired facet in finit€"]
time. The results presented thus bridge the gap with the work
of [8], showing that the necessary and sufficient conditiong1]
presented in [8] are too restrictive if reachability of adtis

the only goal. Finally, the examples illustrate the simplic [12]

V1. CONCLUSION

[13]

[14]

[15]

[16]

[17]

equi l i brium

Fig. 2. Phase portrait of the closed loop system for Example 5
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