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Abstract

In this paper we solve the general problem of designing a feedback controller to reach a set of facets of an n-dimensional simplex
in finite time, for a system evolving with linear affine dynamics. Necessary and sufficient conditions are presented in the form
of bilinear inequalities on the vertices of the simplex. By exploiting the structure of the problem, the bilinear inequalities are
converted to a series of linear programming problems.
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1 Introduction

In this paper we present reachability results for linear
affine systems defined on a polytope or simplex. We con-
sider the synthesis of controllers that achieve a particular
reachability specification on a simplex and we develop
necessary and sufficient conditions for the existence of
such a controller. The work of this paper is motivated
by previous results on reachability and controllability on
polytopes presented by Habets and van Schuppen [9],
and is related to work on invariance of polyhedral sets
as presented in the survey paper by Blanchini [3, pp.
1754-1756].

Our results have implications for reachability analysis
in hybrid system theory. A hybrid system combines the
continuous model of several systems or subsystems with
discrete transitions that occur in between or within
them. In recent years, the interest in hybrid systems
has grown considerably and various general results have
been presented in proceedings; for example [1]. Our
interest lies specifically with linear affine systems intro-
duced by Sontag [18]. The problem of reaching a partic-
ular facet of an n-dimensional polytope has been exten-
sively studied by Habets and van Schuppen [8,9]. The
present paper is motivated by their results. However, we
relax a key condition in [9], allowing to find necessary
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and sufficient conditions for a more general problem of
steering a state of the system to a set of facets of a sim-
plex. We show through examples that even though the
conditions for reachability of a facet in [9] are infeasible,
we may still be able to find a continuous state feedback
which guarantees the control objective. Similar neces-
sary and sufficient conditions as the ones presented here
are found in [10,15]. The present paper goes further by
presenting a general algorithm that converts the bilinear
inequalities that arise to a series of linear programs.

We have also investigated a special version of the reach-
ability problem that is studied here in [16]. The distinc-
tion between the two investigations is as follows. In [16]
we combine Corollary 9 on necessary and sufficient con-
ditions for existence of a linear affine feedback solving
the reachability problem with the additional restriction
that rank(B) = n− 1. The extra assumption allows one
to overcome the complexity of the bilinear inequalities
appearing in Corollary 9 and replace them by at most n
linear programs. In this way we can bypass the complex-
ity of the general algorithm presented in Section 4. The
combined results suggest that improvements in complex-
ity of the general solution of Section 4 are achievable if
information about the number of control inputs is taken
into account. An example where the method of [16] does
not solve the reachability problem when the number of
inputs is not n − 1 is presented in Section 4.

Several other interesting publications are related to our
work. For instance, Lee and Arapostathis [13] inves-
tigated global controllability of piecewise-linear affine
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hypersurface systems, while Veliov and Krastanov [20]
studied local controllability of a system which is linear
on two half-spaces. Related work on invariant polyhe-
dral sets of linear systems has been studied by Vassilaki
and Bitsoris [19], Castelan and Hennet [4], Gutman and
Cwikel [7], and Blanchini [3]. In [7] invariance of poly-
hedra for discrete time systems is studied, and the ideas
appearing in [9] to derive an affine feedback controller by
using only the values of control at the vertices of a sim-
plex and by exploiting convexity, are proposed in [7]. In
[2], the problem of finding control values at the vertices
to render a polyhedron invariant is formulated as a linear
programming problem. The survey paper by Blanchini
[3] on set invariance in control provides many other re-
lated references. Finally our Corollary 7 is a well-known
result and appears for instance in [6].

1.1 Problem Statement

First, some conventions on notation are required. The
set of vertices of a polytope P will be denoted as V , and
S will denote an n-dimensional simplex. A facet of a
polytope P is an (n− 1)-dimensional intersection of the
polytope with a supporting hyperplane. Associated with
each facet Fi is a normal vector hi that by convention
points out of P . Finally, we use the convention that Fi

is the convex hull of {v1, . . . , vi−1, vi+1, . . . , vn+1} where
vj ∈ V .

Consider a multi-input linear affine system, defined on
a simplex S:

ẋ = Ax + Bu + a , (1)

where x ∈ R
n, u ∈ R

m, and a ∈ R
n. A facet Fi of S

is called restricted if no trajectory of the system exits
through the facet. Let I be a given set of indices of the
facets to be made restricted by proper choice of control
input for the system (1). We assume at least one facet
F1 is unrestricted, i.e. 1 6∈ I. Also, for each v ∈ V , let
Iv = {k | k ∈ I, v ∈ Fk}. We consider the following
problem.

Problem 1 Let S be an n-dimensional simplex with a
set of restricted facets Fj, j ∈ I. For the system (1),
construct a linear affine feedback u = Kx + g, with K ∈
R

m×n and g ∈ R
m, such that for each initial condition

x0 ∈ S there exist a time t0 ≥ 0 and an ǫ > 0 such that

(1) ∀t ∈ [0, t0], x(t) ∈ S,
(2) x(t0) ∈ Fk, for some k /∈ I
(3) ∀t ∈ (t0, t0 + ǫ), x(t) /∈ S.

The problem states that we must design a linear affine
u to enforce all controlled trajectories originating inside
S to escape S through some Fk, which is not restricted
(notice that nothing is said about the trajectory for t >
(t0 + ǫ)). In contrast with [9], we do not try to restrict
n facets, but rather an arbitrary number. Also, we drop
the restriction that t0 must be the first time at which the

state reaches the exit facet. Thus, the current problem is
a generalization of the one in [9]. The implications of the
extra restriction in [9] will be highlighted in the sequel.

2 Linear Affine Systems Defined on Polytopes

In this section, we present properties of linear affine sys-
tems; in particular, the location of equilibria under state
feedback and we introduce the notion of feasible direc-
tions. Also, three essential results from [9] are reviewed.

Let O be the set of points where the autonomous vector
field Ax + a lies in R(B), the range of B. That is,

O := {x | β · (Ax + a) = 0, β ∈ ker(BT )}

= {x | (Ax + a) ∈ R(B)} .

The following is a basic property about the relationship
between the set O and the equilibria of the system (1).

Lemma 2 Given (1), suppose the control input is of
feedback form u = f(x). If x0 is an equilibrium point of
(1), then x0 ∈ O.

Next, we define the allowable directions of flow at a point
x ∈ R

n

Rx =

{

{y | y = c(Ax + a) + Bu, c > 0, u ∈ R
m} x /∈ O

{y | y = Bu, u ∈ R
m} x ∈ O

.(2)

The cone Rx is called the set of feasible directions at x.

Next we review three results from [9]. The main ideas are
as follows. Given a simplex S, we would like to impose
certain conditions, called restriction conditions and flow
conditions at the vertices of the simplex, which guaran-
tee that trajectories may not leave from the restricted
facets, but may leave from the unrestricted facets. The
restriction conditions, introduced in [9], dictate that the
vector field may not point “out” of a restricted facet.
Lemma 3 shows that the restriction conditions guaran-
tee that no trajectory can exit a restricted facet. The
flow conditions are a new element contributed in this
paper (see also [15,10]), which provide the additional el-
ement to solve the more general reachability problem of
this paper. A flow condition imposes that the vector field
points in a particular direction with respect to a given
vector ξ ∈ R

n. Lemma 4 below says that a restriction
(or flow) condition on a facet (or on a simplex) can be
achieved simply by imposing the restriction or flow con-
dition on the vertices of the simplex. Thus, the procedure
is to write restriction and flow conditions at the vertices
only and solve them for the control values at the vertices.
Lemma 5 shows that once those control values at the
vertices are obtained, one can construct a linear affine
feedback control defined on the entire simplex such that
the closed-loop system achieves the design objective.
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Lemma 3 ([9,15]) Consider the linear affine system
ẋ = Ax + a, a ∈ R

n defined on a polytope P . Suppose
that for facets Fi, i = 1, ...k with normal vectors hi, re-
spectively, the following conditions hold: hi ·(Ax+a) ≤ 0
for all x ∈ Fi. Then all trajectories originating in P that
leave P do so via an unrestricted facet Fj, j /∈ {1, . . . , k}.

Lemma 4 ([9]) Consider system (1) defined on a poly-
tope P with vertices V = {v1, . . . , vk}. Given ξ ∈ R

n,
ξ 6= 0, for all x ∈ P there exists an input u ∈ R

m such
that ξ · (Ax + Bu + a) < 0 if and only if for all vj ∈ V
there exists uj ∈ R

n such that ξ · (Avj + Buj + a) < 0.

Note that in the previous Lemma < can be replaced
with any of {≤, >,≥, =}. In particular, we use ≤ when
dealing with restriction properties.

Lemma 5 ([9]) Consider two sets of points {v1, . . . , vn+1},
vj ∈ R

n and {u1, . . . , un+1}, uj ∈ R
m. Suppose the vj’s

are affinely independent. Then there exists a unique ma-
trix K ∈ R

m×n and a unique vector g ∈ R
m such that

for each vj , uj = Kvj + g.

Since a simplex is the convex hull of n + 1 affinely inde-
pendent points, it is now clear that if we enforce input
values u1, ..., un+1 at the n + 1 vertices of the simplex,
then we can also construct a corresponding linear affine
controller u = Kx + g.

3 Necessary and Sufficient Conditions

This section derives necessary and sufficient conditions
for the general problem of reaching a set of facets of an n-
dimensional simplex in finite time, for a system evolving
with linear affine dynamics. The first result is central to
this development.

Theorem 6 Consider the linear affine system ẋ = Ax+
a with x, a ∈ R

n, and a compact, convex set P . We have
Ax + a 6= 0 for all x ∈ P if and only if there exists a
ξ ∈ R

n such that ξ · ẋ = ξ · (Ax + a) < 0 for all x ∈ P .

PROOF.
(⇐) Since ξ · (Ax+a) < 0 for all x ∈ P , then clearly
for all x ∈ P , Ax + a 6= 0.
(⇒) Since P is compact and convex it follows that
the image of P under the map x 7→ Ax + a, denoted by
C1 = AP + a is also compact and convex and does not
contain the origin, by assumption. Thus, letting C2 =
{0} and using the Separating Hyperplane Theorem [[14]
pg.98] there exists a hyperplane H that separates C1 and
C2 strongly. In other words, there exists ǫ > 0 and some
ξ ∈ R

n such that for all x ∈ P , ξ · (Ax + a) ≤ −ǫ, or
ξ · (Ax + a) < 0. 2

A consequence of the above theorem is the following
corollary, which ensures that all trajectories originating

in a compact, convex set P containing no equilibria even-
tually leave the set.

Corollary 7 Consider the system ẋ = Ax + a, with
x, a ∈ R

n. Let P ⊆ R
n be compact and convex. Sup-

pose that for all x ∈ P , Ax + a 6= 0. Then, for each
x0 ∈ P , the trajectory starting at x0 eventually leaves P ,
i.e. x(t1) /∈ P for some t1 > 0.

The background results and the above observations lead
to the first solution to Problem 1.

Theorem 8 Consider an affine system ẋ = Ax+Bu+a,
with x ∈ S and u ∈ R

m. Problem 1 is solvable if and
only if there exists a linear affine control u with u(v1) =
u1, ... , u(vn+1) = un+1 such that the closed loop system
has no equilibria in S and the restriction conditions

hi · (Avj + Buj + a) ≤ 0 j ∈ {1, ..., n + 1}, i ∈ Ivj
,

are satisfied.

PROOF.
(⇒) It is obvious that the closed loop system will not
have an equilibrium in S if Problem 1 is solved. For the
proof of necessity of the restriction conditions, see [9].

(⇐) By assumption, for the set of vertices {v1, . . . , vn+1}
there exists a corresponding set of inputs {u1, . . . , un+1}.
Invoking Lemma 5, there exists a linear affine control
u = Kx + g, which guarantees that the desired input
values are achieved at each vertex. Now we must show
that the resultant input u = Kx + g solves Problem 1.
First, by substituting for u, we obtain ẋ = (A+BK)x+

(Bg + a) = Ãx + ã, and from the assumption that for

all x ∈ S, Ãx + ã 6= 0, Corollary 7 guarantees that all
trajectories of this system will eventually leave S. That
is, for each initial condition x0 ∈ S, there exists a time
t1 > 0 such that the trajectory starting at x0 satisfies
x(t1) 6∈ S. Now it is evident that this implies there exists
t0 < t1 and ǫ > 0 such that x(t0) ∈ ∂S and x(t) 6∈ S for
all t ∈ (t0, t0 +ǫ). Finally, using Lemma 4 and Lemma 3,
the trajectory cannot leave via the restricted facets. This
concludes the proof. 2

Theorem 8 gives conditions for the solvability of Prob-
lem 1. The restriction conditions agree with the results in
[9], while the equilibrium condition introduces the miss-
ing link for solving the general problem of reaching a de-
sired facet in finite time. However, if we were to construct
an algorithm based on the conditions of Theorem 8, we
would only be able to satisfy the restriction conditions
and hope that the equilibrium condition would hold with
the chosen controller. Instead, from Theorem 6 we can
replace the condition of no equilibria in a compact, con-
vex set by the existence of a ξ ∈ R

n such that for all
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x ∈ P , ξ · (Ax + a) < 0. This observation leads to the
main result of this section.

Corollary 9 Consider the system ẋ = Ax + Bu + a,
with x ∈ S. Problem 1 is solvable if and only if there
exists a set of inputs u1, . . . , un+1 ∈ R

m and a vector ξ
such that the following hold:

1). Restriction Conditions: hi · (Avj + Buj + a) ≤ 0
j ∈ {1, . . . , n + 1}, i ∈ Ivj

2). Flow Conditions: ξ · (Avj + Buj + a) < 0
j ∈ {1, . . . , n + 1}.

Corollary 9 tells us that we only need to check several
inequalities at the given vertices of the simplex. More-
over, if we know what the value of ξ is, then the problem
reduces to solving a set of linear inequalities. In fact, the
sufficient conditions presented in [9] are a specific case
of Corollary 9, with ξ set to −h1, and I = {2, ..., n + 1}.
The example presented next will illustrate a situation
where setting ξ to h1 will not solve the general problem
of leaving via a particular facet or set of facets, but a
different ξ will. The inequalities above are still problem-
atic, as both ξ and ui are unknown, leading to a set of
bilinear inequalities. This problem will be addressed in
Section 4.

4 Algorithm

In [16] it was shown that for systems with n− 1 inputs,
ξ could be selected from the set {h2, ..., hn+1} in order
to obtain linear inequalities for the flow conditions. To
motivate the need for a general algorithm to find ξ, we
first present an example in which ξ 6∈ {h2, ..., hn+1}, in
contrastwith the results of [16], and moreover,S∩O 6= ∅.
The latter condition is relevant, for if S ∩ O = ∅, then
by Lemma 2 and Theorem 8, the problem reduces to
checking only the restriction conditions.

Example 10 Consider the system

ẋ =









−1.5 −0.5 −0.9

0 0 0

0.5 −0.5 −1









x +









0

1

0









u +









1

0

0









defined on a simplex S with vertices v1 = (0, 0, 0), v2 =
(1,−1, 0), v3 = (1, 1, 0) and v4 = (0, 0, 1). Let I =
{2, 3, 4}.

Notice, with the help of software provided by [21], we
obtain

S∩O = {v | v = α(
1

2
,
1

2
, 0)+(1−α)(

11

21
,
−9

21
,
10

21
), α ∈ [0, 1]},

which is clearly non-empty.

Next, let’s show that ξ ∈ {h2, h3, h4} will not satisfy the
flow and restriction conditions simultaneously. First, if
we set ξ = h2 then at vertex v2 the restriction and flow
conditions are

Restriction =

{

h3 · (Av2 + Bu2 + a) ≤ 0 ⇒ u2 ≥ 0

h4 · (Av2 + Bu2 + a) ≤ 0 ⇒ 0 ≤ 2

Flow = h2 · (Av2 + Bu2 + a) ≤ 0 ⇒ u2 < 0

and cannot be satisfied, i.e. 0 ≤ u2 < 0. Next, if we set
ξ = h3, then by the same procedure, at vertex v3 we obtain
1 < u3 ≤ −1. Finally, by setting ξ = h4, once again the
flow condition does not hold at vertex v3, i.e. we obtain
the inequality 0 < 0. Thus, ξ /∈ {h2, h3, h4}. It can also
be verified that the conditions in [9], when ξ = −h1, do
not hold for this example.

The necessary and sufficient conditions of Corollary 9
require the solution of bilinear inequalities. The solution
to bilinear inequalities is in general NP hard; thus a more
computationally tractable solution is sought. In [16] we
showed that ξ ∈ {h2, ..., hn+1}, thereby transforming the
solution of the bilinear inequalities to the solution of at
most n LP problems. Unfortunately, this does not hold in
general, as seen in Example 10. In this section we present
an algorithm to determine ξ for a linear affine system
with m inputs. The analysis begins by interpreting the
flow and restriction conditions geometrically using Rx,
the set of feasible directions.

The restriction conditions at v ∈ V dictate that the
feasible directions are confined to lie in a polyhedral cone
Cv given by

Cv :=
⋂

k∈Iv

{y | hk · y ≤ 0} .

Solvability of the restriction conditions at v ∈ V is equiv-
alent to the condition Cv ∩ Rv 6= ∅. Solvability of both
the flow and restriction conditions at v ∈ V is equiva-
lent to the condition Cv ∩Rv ∩{y | ξ · y < 0} 6= ∅. Thus,
a necessary condition for the solvability of the flow and
restriction conditions at v ∈ V is that Cv ∩ Rv 6= {0}
and Cv ∩Rv 6= ∅. Notice that if v ∈ O, then Cv ∩Rv 6= ∅
by definition of Rv, since 0 ∈ Cv ∩ Rv.

Consider the closed polyhedral cone Cv ∩Rv, where Rv

denotes the closure of Rv. This cone is finitely generated
by a set of extremal vectors, denoted Ev. The following
algorithm finds a legitimate ξ which satisfies the flow
and restriction conditions for a system with an arbitrary
number of inputs. If the algorithm fails to construct a ξ,
then none exists and Problem 1 is infeasible.

Algorithm 1. We are given a linear affine system
ẋ = Ax + Bu + a defined on an n-dimensional simplex
S and a set of restricted facets with indices in I.
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(1) If S ∩ O 6= ∅, proceed to the next step. Otherwise,
check the restriction conditions only. If they do not
hold, stop, as there is no solution to Problem 1.
Otherwise, go to the last step.

(2) At each v ∈ V , construct the cone Cv ∩ Rv and
find the set of extremal vectors Ev. If Ev = ∅, or if
v /∈ O and for all e ∈ Ev, e ∈ R(B), then stop, as
there is no solution.

(3) Find a set Ẽ of extremal vectors composed of one
vector from each Ev, v ∈ V , such that no vector in
Ẽ can be written as a negative combination of any
other vectors in Ẽ. If no set Ẽ exists, then stop, as
there is no solution.

(4) Solve the feasibility LP problem:

evi
· ξ < 0 , evi

∈ Ẽ ∩ Evi
, i = 1, . . . , n + 1 .(3)

(5) Find the ui’s for each vertex vi, by solving the re-
striction and flow conditions of Corollary 9, with ξ
obtained from the previous step.

(6) Construct u = Kx + g using Lemma 5.

Remark 11 For the polyhedral operations needed for the
algorithm one can use software provided by [11] or [21],
among others. Notice that in Step (5), if evi

is a feasible
direction then ui can be found using (2). That is, we can
solve for ui directly by considering

evi
=















[

(Avi + a) B
]

[

c

ui

]

vi /∈ O

Bui vi ∈ O

Theorem 12 Problem 1 is solvable if and only if Algo-
rithm 1 terminates successfully.

The proof involves the following points.

(i) If S ∩ O = ∅, and the restriction conditions can be
satisfied with some {u1, ..., un+1}, then Problem 1 is
solvable. This point follows from Lemma 2 and Theo-
rem 8.

(ii) If Ev = ∅, or if v /∈ O and for all e ∈ Ev, e ∈ R(B),
then Problem 1 is not solvable. This point follows from
the following arguments. First, if Ev = ∅, then Cv ∩
Rv ⊂ Cv ∩ Rv = ∅. Second, suppose v /∈ O and for
all e ∈ Ev, e ∈ R(B). However, with v 6∈ O, for all
u ∈ R

m, Av + Bu + a /∈ R(B). Thus Cv ∩ Rv = ∅.
(iii) If there is a set Ẽ of extremal vectors such that no

vector in Ẽ can be written as a negative combination
of any other vectors in Ẽ, then the linear program (3)
has a solution.

(iv) If there is no set Ẽ with the aforementioned properties,
then there is no ξ ∈ R

n satisfying the restriction and
flow conditions.

(v) The use of Rv rather than Rv is sound. That is, if the
LP problem (3) is solvable using vectors in Cv ∩ Rv,

then it is also solvable with feasible directions in Cv ∩
Rv.

Point (iii) is addressed by Lemma 13, which is an im-
mediate consequence of the Infeasibility Theorem ([5],
p.52), so its proof is omitted. In fact, the lemma shows
that Step 3 of the algorithm can be skipped and one
could go directly to constructing a Ẽ and solving the LP
problem of Step 4. Point (iv) is addressed by Lemma 14
and point (v) is addressed by Lemma 15.

Lemma 13 Given a set of vectors W := {w1, ..., wk},
wi ∈ R

n, there exists ξ ∈ R
n such that ξ · w < 0, for

all w ∈ W if and only if no w ∈ W can be written as

w =

k
∑

i=1

αiwi with αi ≤ 0.

Lemma 14 Let {yv ∈ Rv ∩ Cv | v ∈ V } be a set of
feasible directions, with one at each v ∈ V . If there exists
ξ ∈ R

n such that ξ ·yv < 0 for all v ∈ V , then there exists
a set of extremal vectors {ev ∈ Ev | v ∈ V }, one at each
v ∈ V , such that ξ · ev < 0, for all v ∈ V .

PROOF. Consider v ∈ V . By the Fundamental The-
orem of Linear Inequalities ([17], p. 86) we can write
yv ∈ Cv ∩ Rv ⊂ Cv ∩ Rv as

yv = α1e
1
v + · · · + αkek

v , ej
v ∈ Ev , αj ≥ 0 .

Note that there exists l such that αl > 0 since yv 6= 0.
Thus we have

ξ ·
(

α1e
1
v + ... + αkek

v

)

< 0.

This implies there exists l such that ξ · el
v < 0. 2

Lemma 15 Consider ξ ∈ R
n and a set {ev ∈ Ev | v ∈

V } of extremal vectors. Suppose that for all v ∈ V , ξ·ev <
0. Then there exists a set of feasible directions {yv | yv ∈
Cv ∩ Rv} such that ξ · yv < 0 for all v ∈ V .

PROOF. If for all v ∈ V , ev ∈ Cv ∩ Rv, then there
is nothing to prove. Suppose instead for some v ∈ V ,
ev /∈ Cv ∩ Rv and ev ∈ Cv ∩ Rv. There exists ǫ > 0
such that ξ · ev < −ǫ. We will show there exists y ∈
Cv ∩ Rv such that ξ · y < 0. From point (ii) we know
that there exists some e′v ∈ Ev ∩Rv. Then by convexity

y = λe′v +(1−λ)ev ∈ Cv ∩Rv, for λ ∈ (0, 1]. Let λ <
ǫ

2
.

W.l.o.g assume ‖ξ‖ = ‖ev‖ = ‖e′v‖ = 1. It now follows:

(λe′v + (1 − λ)ev) · ξ = (λ(e′v − ev)) · ξ + ev · ξ

≤ | (λ(e′v − ev)) · ξ | − ǫ

≤ λ ‖e′v − ev‖ ‖ξ‖ − ǫ

= 2λ − ǫ < 0 .
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Now we are ready to complete the motivating example
presented in the beginning of the section.

Example 16 We continue Example 10. First, by defi-
nition we have

O =

{

x |

[

−1.5 −0.5 −0.9

0.5 −0.5 −1

]

x =

[

−1

0

]}

which results in S ∩ O 6= ∅, as previously shown. The
next step of the algorithm is to construct the Evi

’s. We
obtain

Ev1
= {[1 − 1 0]T , [1 1 0]T }

Ev2
= {[0 1 0]T , [0 0 1]T }

Ev3
= {[−1 − 1 0]T , [0 − 1 0]T }

Ev4
= {[1 1 10]T , [1 − 1 − 10]T} .

Now letting Ẽ = {[1 − 1 0]T , [0 0 1]T , [0 − 1 0]T , [1 −
1 − 10]T} it can easily be verified that ξ = [−1 1 − 0.2]T

will satisfy the restriction and flow conditions simulta-
neously. For instance, checking ξ · ẽ < 0, for all ẽ ∈ Ẽ,
concludes that indeed ξ exists. Once we have found the
needed ξ we can proceed to solve the linear inequalities of
Corollary 9 to obtain the needed inputs ui for each vertex
vi from which a linear affine controller can be constructed
satisfying the restrictions of Problem 1.

Acknowledgements: We thank one of the reviewers
for suggesting the presented versions of Theorem 6 and
Corollary 7.
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