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Reachability of a set of facets for linear affine

systems with n-1 inputs

Bartek Roszak and Mireille E. Broucke

Abstract

This paper provides new necessary and sufficient conditions for an n-dimensional linear affine

system with n − 1 inputs to reach an exit facet (or set of exit facets) of a simplex. The conditions

reduce the original NP -hard necessary and sufficient conditions to a set of at most n LP problems.

Index Terms

hybrid systems; reachability; simplex; linear affine systems.

I. INTRODUCTION

This paper considers linear affine systems defined on a simplex. Piecewise-linear affine systems

were first introduced by Sontag [9]. The motivation for our work originates with the recent,

compelling results obtained by Habets and van Schuppen [4], which have been generalized in

[8], [5]. The goal of that research was to give necessary and sufficient conditions such that all

trajectories initialized in a simplex escape via a facet, using linear affine state feedback.

The Reachability Problem has been recognized as a fundamental problem of hybrid system

theory [1]. One variant of the problem is to consider the synthesis of a hybrid controller to satisfy

a reachability specification for a continuous time system. In this paper we address this problem

for linear affine systems with n − 1 independent inputs. In [8] we showed that the solution

to the problem of reachability of a facet depends on the feasibility of bilinear inequalities.

Unfortunately, in general, the feasibility of Bilinear Matrix Inequalites has been shown by Toker

and Özbay [10] to be an NP -hard problem. By exposing the properties of linear affine systems,
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we present a straightforward procedure for determining when reachability of a set of facets is

possible, thus avoiding the problem of solving the bilinear inequalities directly.

Linear affine systems are of interest for two reasons. First, this class contains linear systems.

Second, this class arises when one linearizes a nonlinear system about a non-equilibrium point.

Our study of systems with n − 1 inputs follows a tradition established in the development of

nonlinear geometric control theory; systems with n−1 inputs have particular geometric structure

which can lead to sharp results [7], [6]. An important assumption in our method that simplifies the

representation of feasible velocity vectors at a point (Lemma 3.2) is that inputs are unbounded.

The introduction of input constraints within the proposed mathematical framework is an area for

future research.

In addition to [4], several interesting publications are related to our work. For instance, Lee

and Arapostathis [7] investigated global controllability of piecewise-linear hypersurface systems

with n − 1 inputs, while Veliov and Krastanov [12] studied local controllability of a system

which is linear on two half-spaces. There is also a body of literature on invariance problems

which can be viewed as a precursor to the recent work on reachability; reachability may be

viewed as dual to invariance. The survey paper by Blanchini [2] on set invariance in control

provides many other related references, such as the work on polyhedral invariance of Vassilaki

and Bitsoris [11] and Castelan and Hennet [3]. While we do not study invariance, it is evident

that the techniques of this paper can be applied to such problems.

The paper is organized as follows. The terminology and the problem statement are presented

next. Section II summarizes the main result of [8] to give necessary and sufficient conditions

to achieve the control objective. Properties of linear affine systems are examined in Section III

leading to the main results of the paper on checking certain flow conditions.

A. Terminology

A subset M of R
n is called an affine set if λx + (1 − λ)y ∈ M for every x, y ∈ M and

λ ∈ R. Given a set M ⊂ R
n, there exists a unique smallest affine set containing M called the

affine hull of M , denoted as aff(M). A set of q + 1 points {v1, . . . , vq+1} in R
n is said to be

affinely independent if aff({v1, . . . , vq+1}) is q-dimensional. The set of vertices of a polytope P

will be denoted as V . If a set of points {v1, . . . , vn+1} is affinely independent, its convex hull

is called an n-dimensional simplex Sn. For an n-dimensional polytope, there exist j ≥ n + 1
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unit length normals h1, . . . , hj ∈ R
n and j non-zero reals α1, . . . , αj ∈ R such that Pn := {x ∈

R
n | hi · x ≤ αi, i = 1, 2, ..., j}. By convention the normal vectors hi point out of Pn. Based

on this description, we define a facet to be the (n− 1)-dimensional intersection of the polytope

with a supporting hyperplane. If Pn is a simplex, then we use the convention that Fi is the

convex hull of {v1, . . . , vi−1, vi+1, . . . , vn+1}.

B. Problem Statement

Consider a multi-input affine system given by

ẋ = Ax + Bu + a (1)

where x ∈ R
n, u ∈ R

n−1, and a ∈ R
n. We assume rank(B) = n − 1. If the system (1)

is defined on a simplex Sn and no trajectory originating in Sn is allowed to escape through

a facet Fj of Sn, then we say that the facet is restricted. To that end, define the set I =

{i | Fi is to be restricted, i 6= 1}. Also, for all v ∈ V , let Iv = {k | k ∈ I, v ∈ Fk}.

Problem 1.1: Let Sn be an n-dimensional simplex with a set of restricted facets {Fj, j ∈ I}.

For the system (1), construct a continuous feedback u = f(x), f : Sn → R
m such that for each

initial condition x0 ∈ Sn there exist a time t0 ≥ 0 and an ε > 0 such that

1) ∀t ∈ [0, t0], x(t) ∈ Sn,

2) x(t0) ∈ Fk, for some k /∈ I

3) ∀t ∈ (t0, t0 + ε), x(t) /∈ Sn.

The problem states that we must design u to enforce all controlled trajectories originating inside

Sn to leave Sn through some Fk which is not restricted.

II. NECESSARY AND SUFFICIENT CONDITIONS

In this section we present necessary and sufficient conditions for the solution of Problem 1.1

by linear affine feedback. The first result pertains to the construction of a linear affine controller

that achieves preselected control values at the vertices of a simplex.

Lemma 2.1 ([4]): Consider two sets of points {v1, . . . , vn+1 | vj ∈ R
n} and {u1, . . . , un+1 | uj ∈

R
m}. Suppose the vj’s are affinely independent. Then there exist unique matrices K ∈ R

m×n

and g ∈ R
m such that for each j ∈ {1, . . . , n + 1}, uj = Kvj + g.
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Since a simplex is defined as the convex hull of n + 1 affinely independent points, from the

above lemma we conclude that if for each vertex vj ∈ V a control value uj is assigned according

to some invariance and other conditions, then it is possible to construct a linear affine feedback

u = Kx + g that achieves those control values at the vertices.

Theorem 2.1 ([8]): Consider the system ẋ = Ax + Bu + a, with x ∈ Sn. There exists a

feedback u = Kx + g, with K ∈ R
m×n and g ∈ R

m, which solves Problem 1.1 if and only if

there exists a set of inputs u1, . . . , un+1 ∈ R
m and a vector ξ such that

1). Invariance Conditions: hi · (Avj + Buj + a) ≤ 0, j ∈ {1, 2, ..., n + 1}, i ∈ Ivj

2). Flow Conditions: ξ · (Avj + Buj + a) < 0, j ∈ {1, 2, ..., n + 1}.

Theorem 2.1 tells us that we only need to satisfy several inequalities at the given vertices of

the simplex. From these inequalities we obtain the control values {u1, . . . , un+1} at the vertices

and thence, from Lemma 2.1, we are able to construct the linear affine feedback u = Kx + g.

However, the inequalities of the Flow conditions are bilinear. In the next two sections we will

exploit the properties of linear affine systems to show that we only need to check n values for

ξ to see if the inequalities of Theorem 2.1 can be met.

III. PROPERTIES OF LINEAR AFFINE SYSTEMS

We define the hyperplane spanned by the columns of B passing through a point x ∈ R
n as

Bx and the normal vector to this hyperplane as βx. The dependence of βx on x is to denote

that a convention on the direction of β will be chosen based on x. That is, βx is one of only

two vectors, depending on the direction chosen. By definition, βx ·B = 0. An important role is

played by the set of points, denoted O, where the autonomous vector field Ax+a lies in R(B),

the range of B. That is,

O := {x | β · (Ax + a) = 0, β ∈ N (BT )} .

See also [7] where the same set arises in the study of controllability problems. Notice that

because any n normals hk of the facets of Sn span R
n, in particular, βx can be written as

a linear combination of {h2, . . . , hn+1}1. Now we will choose a convention on the direction

of βx. This choice is made specifically so that using only βx one can determine at a point x

1Vector βx could be chosen as a linear combination of some other n vectors in {h1, . . . , hn+1}. This change would effect

the statements of Lemmas 4.1 and 4.3 below, but the ideas would be the same.
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what are the possible directions of the vector field Ax + Bu + a as a function of u. Thus, βx,

with its sense of direction specified, will provide a shorthand notation to identify what we call

the “feasible directions” at each point (see Section III-A and Lemma 3.2). When x 6∈ O, we

choose the convention that βx · (Ax + a) < 0. When x ∈ O, and βx is spanned by either a

strictly positive or strictly negative combination of {h2, . . . , hn+1}, without loss of generality,

we adopt the convention that βx is spanned by the negative combination rather than the positive2.

In the case when x ∈ O and βx is not spanned by either a strictly postive or strictly negative

combination of {h2, . . . , hn+1}, then either direction for βx may be chosen.

Before proceeding to other properties of linear affine systems we give a lemma which is our

main tool to decide when a set of linear inequalities is trivially infeasible.

Lemma 3.1: Consider a set of k vectors {w1, w2, . . . , wk}, wi ∈ R
n and a vector γ = λ1w1 +

... + λkwk such that λi ≤ 0 for all i = 1, . . . , k. Then the set of inequalities γ · y < 0 and

wi · y ≤ 0, i = 1, . . . , k, has no feasible solution for y ∈ R
n.

Proof: Consider γ · y = λ1w1 · y + ... + λkwk · y. Since wi · y ≤ 0 and λi ≤ 0, we have

γ · y ≥ 0.

A. Feasible Directions and Invariance Conditions

In this section we describe the set of feasible velocity vectors at a point x and we examine

the relationship between this set and the Invariance conditions at a vertex. In Lemma 3.2 we

explore the set of feasible velocity vectors. In Lemma 3.3 we identify a condition on βv1
when

the Invariance conditions are infeasible or the only feasible velocity vector at v1 is zero.

First we define the allowable directions of flow at a point x ∈ R
n

Rx =







{y | y = c(Ax + Bu + a), c > 0, u ∈ R
n−1} x /∈ O

{y | y = c(Ax + Bu + a), c ∈ R, u ∈ R
n−1} x ∈ O

.

If x /∈ O then Rx is an open half space determined by B and Ax + a. If x ∈ O then Rx = Bx.

A vector w that originates at a point x and lies in Rx will be called a feasible direction. The

following lemma gives a characterization of Rx in terms of βx.

2If βx were chosen as the positive combination, one would merely make some adjustments to the statements of Lemmas 4.1

and 4.3.
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Lemma 3.2:

Rx =







{y | βx · y < 0} x /∈ O

{y | βx · y = 0} x ∈ O
.

A useful geometric interpretation of the Invariance conditions of Theorem 2.1 can be obtained

in terms of Rx. The Invariance conditions at v ∈ V dictate that the feasible directions are confined

to lie in a polyhedral set Cv given by Cv =
⋂

k∈Iv
{y | hk · y ≤ 0}. Solvability of the Invariance

conditions at v ∈ V is equivalent to the condition Cv ∩Rv 6= ∅. Solvability of both the Flow and

Invariance conditions at v ∈ V is equivalent to the condition Cv ∩ Rv ∩ {y | ξ · y < 0} 6= ∅. It

may happen that for vi ∈ O, Cvi
∩Rvi

= {0}, so that vi is an equilibrium point. It was shown in

[8] that the presence of an equilibrium of the closed-loop dynamics in the simplex is equivalent

to the failure of the Flow conditions. If we have one facet F1 unrestricted, so I = {2, ..., n+1},

it is seen in the next lemma that vertex v1 may be an equilibrium point of the closed-loop

dynamics. Moreover, the lemma shows that both situations, Cv ∩ Rv = ∅ and Cv ∩ Rv = {0},

can be detected using only βv, v ∈ V .

Lemma 3.3: Consider the system (1) defined on a simplex Sn.

(1) Let I = {2, ..., n + 1} and v1 ∈ O. If βv1
= λ2h2 + · · · + λn+1hn+1 with λk < 0, then

Cv1
∩ Rv1

= {0}.

(2) Let I ⊂ {2, ..., n + 1} and v /∈ O. If βv = λ2h2 + · · ·+ λn+1hn+1 with λk ≤ 0 for k ∈ Iv

and λk = 0 for k 6∈ Iv, then Cv ∩ Rv = ∅.

Proof: (1) Consider y ∈ Cv1
∩Rv1

. According to the Invariance conditions at v1, hi · y ≤ 0

for i ∈ I . Also, by Lemma 3.2 at v1 ∈ O, βv1
· y = 0 for all y ∈ Rv1

. Combined with the

assumption on βv1
it is easily verified that the only solution is y = 0.

(2) Let y ∈ Cv ∩Rv. Consider βv · y =
∑

i∈Iv
λihi · y. According to the Invariance conditions at

v, hi · y ≤ 0, for all i ∈ Iv, so βv · y ≥ 0. But this contradicts Lemma 3.2 that at v 6∈ O and for

all y ∈ Rv , βv · y < 0.

IV. FEASIBILITY OF FLOW & INVARIANCE CONDITIONS

This section contains the main results of the paper. We give checkable conditions for the

existence of ξ such that the Flow and Invariance conditions of Theorem 2.1 can be simultaneously

satisfied. Our strategy is as follows. We replace the bilinear Flow conditions with a set of linear

inequalities by fixing the value of ξ, i.e. the Flow conditions are only in terms of uj. We
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show that if there is no ξ belonging to a particular finite set that yields a feasible solution of

the Flow and Invariance conditions, then the reachability problem is not solvable. Because the

Invariance conditions are necessary to solve the problem, we must assume that they hold in

order to investigate solvability with our particular choices of ξ. For this reason we impose the

following assumption.

Assumption 4.1: Throughout this section we assume that I = {2, ..., n + 1}, unless otherwise

specified. Also, we assume that the Invariance conditions are satisfiable. That is, Cv ∩ Rv 6= ∅.

In light of Lemma 3.3, this implies that if v /∈ O, then βv is not a negative combination of

{hj | j ∈ Iv}.

First, we present a lemma that gives conditions when Problem 1.1 is always solvable. The

setup is as follows. Consider i ∈ {1, . . . , n + 1} and let βvi
= λ2h2 + . . . + λn+1hn+1. Suppose

that we set ξ = hn+1. Then with ξ fixed, the Flow and Invariance conditions translate to solving

a set of linear inequalities at each vertex. More precisely at vertex vi we must find a solution y

to the constraints:

βvi
· y ≤O 0 (2a)

hj · y ≤ 0 j = 2, . . . , i − 1, i + 1, . . . , n (2b)

hn+1 · y < 0 . (2c)

The symbol ≤O is “=” if vi ∈ O and “<” if vi 6∈ O. The first equation follows from Lemma 3.2.

The second equation comprises the Invariance conditions, while the third equation is the Flow

condition. The above conditions are equivalent to Cvi
∩ Rvi

∩ {y | hn+1 · y < 0} 6= ∅. Note that

vector y is understood to be the vector field evaluated at vi. If y satisfies constraints (2), then

by the proof of Lemma 3.2 a control ui can always be found to achieve a vector parallel to y

at vi. Finally, note that if i = 1 or i = n + 1, then we have hj · y ≤ 0 for all j = 2, . . . , n.

Lemma 4.1: Suppose that, after reordering vertices V \ {v1} if necessary, there exists v∗ ∈

V \ {v1}, with βv∗ = λ∗
2h2 + . . . + λ∗

n+1hn+1, such that one of the following conditions holds:

(a) λ∗
n+1 = 0.

(b) λ∗
n+1λ

∗
n < 0.

(c) λ∗
j > 0 for all j = 2, . . . , n + 1 and v1 6∈ O.

Then the Flow and Invariance conditions of Theorem 2.1 with ξ = hn+1 can be simultaneously

satisfied.
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Proof: First, we observe that since vectors {βv}v∈V are parallel, if (a) holds at v∗, then it

holds at all v ∈ V ; if (b) holds at v∗, then it holds at all v ∈ V ; and if (c) holds at v∗, then

for all v ∈ V , either λj < 0 for all j ∈ {2, . . . , n + 1} or λj > 0 for all j ∈ {2, . . . , n + 1}.

We consider the constraints (2) for i ∈ {1, . . . , n + 1} under each of the three cases. Recall that

βvi
= λ2h2 + · · ·λn+1hn+1.

(a) Assume λ∗
n+1 = 0. Let H = [h2 . . . hn+1]

T , a non-singular n×n matrix. Assume w.l.o.g

that λ∗
2, . . . , λ

∗
r 6= 0, and λ∗

r+1 = · · · = λ∗
n+1 = 0, r ≤ n. Let εn+1 > 0 be an arbitrary

constant and define an index j and constant εj as follows. If i ∈ {2, . . . , r} set j := i and

εj := λi 6= 0. If i ∈ {1, r + 1, . . . , n + 1} and vi 6∈ O, by Assumption 4.1 there must exist

j ′ ∈ {2, . . . , r} such that λj′ > 0, so set j := j ′ and εj := λj′ . Now define the vector

ε = [ε2 · · · εn+1]
T as follows:

ε =







[0 . . . 0 − εn+1]
T if vi ∈ O,

[0 . . . 0 − αj 0 . . . − εn+1]
T if vi 6∈ O ,

The constraints (2) are feasible at vi ∈ V if the following (more stringent) constraints are

feasible:

[λ2 λ3 . . . λr 0 ... 0]Hy ≤O 0 (3)

Hy = ε (4)

Note that (3) is exactly (2a). Equation (4) combines (2b)-(2c) with three primary differ-

ences. First, (2c) is replaced by hn+1 · y = −εn+1. Second, (4) includes an extra constraint

on hi · y which does not appear in (2b). In particular, when i ∈ {2, . . . , r} and vi 6∈ O,

the extra constraint is hi · y ≤ −εi (note that the sign of εi is irrelevant). Instead, when

vi ∈ O, or when i ∈ {1, r + 1, . . . , n + 1} and vi 6∈ O, the extra constraint is hi · y ≤ 0.

The third difference occurs when i ∈ {1, r + 1, . . . , n + 1} and vi 6∈ O. Then (4) has the

more stringent constraint hj · y ≤ −εj where εj > 0. In sum, a nonzero solution of (3)-(4)

yields a solution of (2).

Now we solve (4) to obtain y = H−1ε. Then we can verify that (3) also holds since

[λ2 λ3 . . . λr 0 ... 0]ε =







0 if vi ∈ O ,

−ε2
j < 0 if vi 6∈ O .
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(b) Assume λ∗
n+1λ

∗
n < 0. Let H = [h2 . . . hn+1]

T , select some εn+1 > 0, and define εn > 0

as follows. If vi ∈ O, set εn = − εn+1λn+1

λn
> 0. If vi 6∈ O, set εn > − εn+1λn+1

λn
> 0. Finally,

let ε = [0 . . . 0 − εn − εn+1]
T . Then the constraints (2) are feasible if the following

constraints are feasible:

[λ2 λ3 . . . λn+1]Hy ≤O 0 (5)

Hy = ε . (6)

Solving the second equation, we have y = H−1ε. Considering the first constraint, we have

[λ2 λ3 . . . λn+1]ε = −εnλn − εn+1λn+1 . Then the first constraint is satisfied.

(c) λ∗
j > 0 for all j = 2, . . . , n + 1. W.l.o.g we can assume v∗ = vn+1. Notice that vn+1 6∈ O

since if it were, we would have the convention that βvn+1
is a strictly negative combination

of {h2, . . . , hn+1}.

(c1) i = 1 or i = n + 1. If i = 1, by assumption v1 6∈ O, so by Assumption 4.1,

λj > 0, for all j = 2, . . . , n + 1. If i = n + 1, then the same is true for vn+1. Let

H = [h2 . . . hn+1]
T and ε = [0 . . . 0 − λn+1]

T . Then constraints (2) are feasible

if constraints (5)-(6) are feasible. In particular, set y = H−1ε to satisfy the second

constraint. Then for (5), we have [λ2 . . . λn+1]ε = −λ2
n+1 < 0.

(c2) i ∈ {2, . . . , n}. Let H = [βvi
h2 . . . hi−1 hi+1 . . . hn+1]

T , a non-singular matrix as

βvi
is a strictly positive or strictly negative combination of h2, . . . , hn+1. Let ε =

[−εvi
0 . . . 0 − εn+1]

T , with εn+1 > 0, and εvi
= 0 if vi ∈ O, or εvi

> 0 if vi 6∈ O.

Then the constraints (2) are satisfied if the constraint Hy = ε is satisfied. The latter

can be solved to obtain y = H
−1

ε.

The next goal is to capture all the cases where Problem 1.1 is not solvable. Before doing so,

a supporting lemma is needed.

Lemma 4.2: Consider n linearly independent vectors {w1, . . . , wn} and a vector wn+1 that is

a negative linear combination of the preceding n vectors. Then any vector γ ∈ R
n can be written

as a negative combination of some n or less vectors among {w1, . . . , wn}.

Proof: First, since wn+1 = −α1w1−α2w2− ...−αnwn, with αj > 0 for all j ∈ {1, . . . , n},

then any wi, i ∈ {1, 2, ..., n} can be written as a negative combination of the other vectors. That
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is,

wi =
−α1w1 · · · − αi−1wi−1 − αi+1wi+1 · · · − αnwn − wn+1

αi

. (7)

Also, since any n vectors among {w1, . . . , wn+1} are linearly independent, we can express γ

as a linear combination of any n vectors. Suppose, w.l.o.g. that, after renumbering indices, if

necessary, γ = λ2w2 + · · · + λn+1wn+1, where either all λj < 0 or there is j ∈ {2, . . . , n + 1}

such that λj > 0, and λk < 0 for all k < j. Then we can substitute the expression (7) for wj to

obtain γ = λ2w2 + · · ·+λj−1wj−1 +λj(
−α1w1−···−αj−1wj−1−αj+1wj+1−···−αnwn−wn+1

αj
)+λj+1wj+1 +

· · ·+ λn+1wn+1. This is a linear combination of n vectors w1, . . . , wj−1, wj+1, . . . , wn+1 and the

coefficients for wk up to k = j − 1 are negative. Iterating on this process, at each successive

step a new linear combination of vectors among {w1, . . . , wn+1} appears, but importantly, one

additional positive coefficient is replaced by negative coefficients. Thus, the process terminates

in a finite number of steps when we obtain a negative combination of at most n vectors.

Lemma 4.1 gives the normal vector ξ that satisfies the Flow conditions of Theorem 2.1. The

next Lemma provides conditions when no ξ can be found.

Lemma 4.3: Suppose that for all v ∈ V \{v1}, βv = λ∗
2h2 + . . .+λ∗

n+1hn+1 is such that λi < 0

for all i ∈ {2, . . . , n + 1}. Then there does not exist ξ ∈ R
n such that at each v ∈ V , the

Invariance and Flow conditions simultaneously have a solution.

Proof: By contradiction, suppose there exists ξ ∈ R
n such that the Invariance conditions

and ξ ·y < 0 are simultaneously solvable at each v ∈ V . Let hn+2 := βvi
. Consider the following

three conditions at vi ∈ V : conditions (2b), ξ · y < 0 and hn+2 · y ≤ 0. If these conditions

cannot be solved, then neither can the Flow and Invariance conditions. To that end, we write

ξ as a linear combination of at most n vectors among {h2, . . . , hn+2}. Since, by assumption

for all i ∈ {2, . . . , n + 1}, hn+2 is a negative combination of the preceding n vectors, we can

invoke Lemma 4.2 to rewrite ξ as ξ = −α2h2 − ...−αk−1hk−1 −αk+1hk+1 − ...−αn+2hn+2. Let

H := [h2 . . . hk−1 hk+1 . . . hn+2]
T . Suppose k ∈ {2, . . . , n + 1}. Then the constraints at vk are

Hy ≤ 0 and ξ ·y < 0. By Lemma 3.1 these constraints have no solution. Similarly, if k = n+2,

we obtain a set of constraints at v1 which have no solution. This provides the contradiction.

The following is the main result of the paper.

Theorem 4.1: Problem 1.1 is solvable if and only if there exists ξ ∈ {h2, . . . , hn+1} such that

for all vi ∈ V , Cvi
∩ Rvi

∩ {y | ξ · y < 0} 6= ∅.
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Proof: (⇐) Trivial. (⇒) If the Flow and Invariance conditions are simultaneously

solvable for some ξ ∈ R
n, then by Lemma 4.3, there is some i ∈ {2, . . . , n + 1} such that βvi

is not a strictly negative combination of {h2, . . . , hn+1}. Then one of the cases of Lemma 4.1

is applicable. If case (c) applies and v1 ∈ O, then by the convention on direction of βv1
and

by Lemma 3.3, the Flow conditions fail, a contradiction. Instead, it must be that v1 6∈ O. In

that case, applying Lemma 4.1 and after renumbering indices if necessary, ξ = hn+1 satisfies all

constraints at each vertex.

Note that in the previous theorem, ξ may not be unique. So far we have concentrated on

showing when it is possible to satisfy Problem 1.1 with n restricted facets. The next theorem

shows that if fewer than n facets are restricted and the Invariance conditions can be satisfied,

then there always exists ξ ∈ {h2, . . . , hn+1} such that the Flow and Invariance conditions can

be satisfied and Problem 1.1 solved.

Theorem 4.2: If the cardinality of I is less than n, then under Assumption 4.1, Problem 1.1 is

solvable and there exists ξ ∈ {h2, . . . , hn+1} such that for all vi ∈ V , Cvi
∩Rvi

∩{y | ξ·y < 0} 6= ∅.

Proof: We will show there exists ξ ∈ {h2, . . . , hn+1} such that for all v ∈ V , Cv ∩

Rv ∩ {y | ξ · y < 0} 6= ∅, from which it follows that Problem 1.1 is solvable. Assume w.l.o.g

I = {2, ..., k | 2 ≤ k ≤ n} or ∅ (i.e at least F1 and Fn+1 are unrestricted). Denote βv =

λ2h2 + · · · + λn+1hn+1. We can assume λj 6= 0 for all j ∈ {2, . . . , n + 1}; otherwise we can

proceed as in Lemma 4.1, case (a). Let ξ = h2. If we can satisfy the following inequalities at

v ∈ V :

βv · y ≤O 0

h2 · y ≤ −ε2

hj · y ≤ 0 j = 3, . . . , n

hn+1 · y = εn+1

where ε2 > 0 and the sign of εn+1 is irrelevant, then Cv ∩ Rv ∩ {y | h2 · y < 0} 6= ∅. Let

H = [h2 h3 ... hn+1]
T and ε = [−ε2 0 ... 0 εn+1]

T . Then the last three inequalities are satisfied

by y = H−1ε. Checking the first inequality, we have βv · y = [λ2 ... λn+1]Hy = −ε2λ2 +

λn+1εn+1 ≤O 0, so solving for εn+1 yields the result.

The following algorithm finds an affine feedback controller that solves Problem 1.1.

Algorithm 4.1: Given a linear affine system ẋ = Ax + Bu + a defined on an n-dimensional
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simplex Sn with vertices vi ∈ V , and the set I .

1) Check if the Invariance and Flow conditions of Theorem 2.1 can be satisfied for some

ξ ∈ {h2, ..., hn+1}, and solve the LP problem for the control values {u1, . . . , un+1} at the

vertices. If for each ξ no solution of the LP problem exists, then the reachability problem

is unsolvable.

2) Using the control values {u1, . . . , un+1} obtained in the previous step, solve














vT
1 1

vT
2 1

...

vT
n+1 1



















KT

gT



 =















uT
1

uT
2

...

uT
n+1















. (8)

for K and g and construct the linear affine controller u = Kx + g. See [4] for the origin

of this equation.

Remark 4.1: If I = {2, ..., n + 1}, then from Assumption 4.1 and Lemma 4.3 the expression

βvj
= λ2h2 + ... + λn+1hn+1 at each vj tells us whether Problem 1.1 is feasible. If it is feasible,

then Lemma 4.1 tells us how to pick the value of ξ for step one of the algorithm above. In

particular, we can select ξ = hj if the corresponding βvj
has coefficients satisfying either (a)

λj = 0, (b) λjλk < 0 for some k, or (c) λk > 0 for all k ∈ I . Instead, if the cardinality of I is

less than n, I is not empty, and Assumption 4.1 is satisfied, we can let ξ = hi for any i ∈ I

(this follows from the proof of Theorem 4.2). If I is the empty set then any hi will work for ξ.
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