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Abstract— This paper focuses on control of a multiagent
system of high-altitude balloons, and provides an efficient
method to synthesize decentralized controllers for very large
systems. Feedback laws are synthesized using a novel method
which maintains the distributed structure in the balloon system:
the balloons’ geometry imposes a block circulant pattern in the
system matrices, and the synthesis method guarantees that the
feedback found will also be block circulant. The block circulant
feedback has a clear method of decentralization, and this
decentralized control can then be used on systems much larger
than the one for which the feedback was initially designed. Sim-
ulations affirm that the response time is practically unchanged
between the original system and the larger decentralized system,
so the feedback is both robust and scalable.

1. INTRODUCTION

Google’s Project Loon aims to provide worldwide wireless
Internet access by transmitting a signal through balloons
floating in the upper atmosphere. The signal travels from
balloon to balloon, which means that a global communication
network can be created by spacing the balloons properly
around the globe. In Google’s words, a complete and reliable
method to coordinate balloons will require “some complex
algorithms and lots of computing power” [1]. This paper
will show that formation control in a network of balloons
can be formulated and solved in a direct way, based on the
geometric framework of [2].

A balloon network inherently has a particular structure,
which arises from the fact that the balloons are identical and
should treat each other identically. This structure is encoded
mathematically as a block circulant pattern in the matrices
of the system model. The goal of this work is to demonstrate
a method of block circulant feedback synthesis, and to use
it for formation control of balloons.

A block circulant feedback has three main advantages
over an “unpatterned” feedback. First, the block circulant
pattern mirrors the inherent homogeneity and ring structure
of the balloon system, thereby distributing control action in
a coherent way. Second, the block circulant pattern lends
itself naturally to decentralization by illuminating spatial
localization in the control: small controller gains for faraway
balloons can be set to zero without affecting the system
response. In this way, each balloon only considers its nearest
neighbours in determining its motion, rather than every
balloon in the system. Third, the block circulant pattern
provides scalability, in that new balloons added to the system
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can take this same nearest neighbours approach with the
same controller gains, without affecting the overall system
response. Through these three advantages, a feedback for the
balloon network can be found without “lots of computing
power” but, rather, in under five minutes on an average
household computer.

2. PROBLEM STATEMENT

Consider a system of r balloons, distributed around the
world at a certain latitude ϕ. The balloons all float in the
lower stratosphere (18–25 km above sea level [3]), and
they move on wind currents which are fairly consistent and
predictable at those altitudes. The goal is to keep these
balloons evenly distributed around the latitude line; that is, if
the longitude of balloon i is given by Λi, and ϑ̄ = 2π/r is the
desired angle between balloons1, then Λimod(r)+1 − Λi → ϑ̄
as t→∞ (for each i = 1, . . . , r). With this even distribution,
the balloons are assumed to be close enough to communicate
with their neighbours.

3. BALLOON NETWORK MODEL

The balloons in this system are modelled as superpressure
balloons [4]. The balloons have pumps and vents, which
allow them to use air as ballast. The balloons ride on
wind currents in the stratosphere, and can only control their
longitudinal speeds indirectly by changing their altitudes to
ride on different wind currents.

A. Nonlinear System Model

Each balloon (i = 1, . . . , r) has four state variables: its
longitudinal position si, its altitude hi, its vertical velocity
ḣi, and its internal air pressure Pi. Each balloon has one
control input: the volumetric flow rate of air into or out of
the balloon (via the pump or vents), Qi. The dynamics of
each state variable will briefly be described here.

Longitude Dynamics: The longitudinal position si of bal-
loon i is the “arc distance” of balloon i from a predetermined
reference angle (i − 1)ϑ̄ (see Figure 1), where ϑ̄ is the
desired angle between balloons. The reference frame for si
and (i−1)ϑ̄ rotates at some to-be-determined rotational speed
ω̄; this speed is sufficiently slow that the effects of a rotating
reference frame, such as the centrifugal and Coriolis forces,
can be ignored in the dynamical model.

The relationship between the balloon’s longitudinal posi-
tion si and absolute longitude Λi is given by

Λi(t) = ω̄t+ (i− 1)ϑ̄+
si(t)

(ρ⊕ + hi(t)) cosϕ
, (1)

1In all forthcoming angular calculations, the result θ is interpreted as
(θ + π)mod(2π) − π, which is in the range −π ≤ θ < π.



Fig. 1. Balloon Positions and Reference Frame

where ρ⊕
.
= 6378 km is the radius of the Earth, and ϕ is

the balloon’s latitude. Hence,

si(t) = (ρ⊕ + hi)(cosϕ)
[
Λi(t)− ω̄t− (i− 1)ϑ̄

]
, (2)

where the angle in square brackets is interpreted as in
Footnote 1.

The rotational longitudinal speed Λ̇i of balloon i is the
speed of the wind current that it is riding on. The wind
currents are assumed here to be a function of altitude only
(while for simulations, a more realistic wind model will be
used — see Section 4). Thus,

Λ̇i = ωwind(hi) =
1

(ρ⊕ + hi) cosϕ
vwind(hi) , (3)

where ωwind(hi) and vwind(hi) are the rotational and transla-
tional/tangential wind speeds at altitude hi.

Let h̄ > 0 be some to-be-determined altitude, and define
v̄ := (ρ⊕ + h̄)(cosϕ)ω̄. Observe that ρ⊕ � hi and ρ⊕ � h̄,
so (ρ⊕+hi)(cosϕ)ω̄ ≈ v̄. Then, taking the derivative of (2)
and substituting (3) gives

ṡi = (vwind(hi)− v̄) +
si

ρ⊕ + hi
ḣi . (4)

Altitude Dynamics: The altitude dynamics of balloon i are
a force balance between buoyancy, air resistance, and gravity.
Let σi be a pump-use indicator, where σi = 1 if air is being
pumped into balloon i, and σi = 0 otherwise. Let mtot,i be
the total mass of balloon i. Then,

mtot,iḧi + σiṁtot,iḣi = Fb,i − Fa,i − Fg,i . (5)

The total mass mtot,i consists of two parts: the balloon
structure and helium inside, which is a constant m0; and the
air inside the balloon, which is calculated using the ideal gas
law. This gives

mtot,i = m0 +
PiVairMair

RTamb
,

where Vair is the constant volume of the balloon’s air cham-
ber, Mair

.
= 29 g/mol is the molar mass of air, R .

= 8.31

J/(mol·K) is the ideal gas constant, and Tamb
.
= 216 K is

the ambient air temperature outside the balloon in the lower
stratosphere.

The rate of change of the mass of balloon i is related to
the volumetric flow rate Qi of air through its pump/vents
using the ideal gas law:

ṁtot,i =
Mair

RTamb
Pamb(hi)Qi ,

where Pamb(hi) is the ambient air pressure outside the
balloon, given by

Pamb(hi) = KP e−ηhi (6)

with KP
.
= 127.76 kPa and η .

= 0.157 m−1 [5].
In (5), the gravity force is given by Fg,i = mtot,ig, where

g
.
= 9.75 m/s2 throughout the lower stratosphere. The air

resistance force is given by Fa,i = βḣi, where β is the
damping coefficient. The buoyancy force is calculated using
Archimedes’ Principle and the ideal gas law, giving

Fb,i =
Pamb(hi)VMair

RTamb
g ,

where V is the total volume of the balloon. Define the con-
stants κ := VairMair/RTamb and ν := V/Vair. Then, substituting
all the above equations into (5) gives

ḧ =
κνg −

(
β + σi

κ
Vair
Pamb(hi)Qi

)
ḣi

m0 + κPi
− g . (7)

Pressure Dynamics: The pressure dynamics of balloon i
are determined by the volumetric flow rate Qi of air into and
out of it. This air flow is controlled by a pump and vents.
Thus,

Ṗi =
Pamb(hi)

Vair
Qi . (8)

State Model: Let xi := col(si, hi, ḣi, Pi) and ui := Qi
be the state and input vectors of balloon i, respectively.
Combining (4), (7), and (8) gives the dynamical equation

ẋi = col(ṡi, ḣi, ḧi, Ṗi) =: fB(xi, ui)

for each balloon i. Stacking the balloons’ state equations
gives the dynamics of the overall system:ẋ1

...
ẋr

 =

fB(x1, u1)
...

fB(xr, ur)

 . (9)

If ui = 0, then balloon i will oscillate about (and eventually
stabilize to) the altitude at which it is neutrally buoyant.

Control Objective: The control objective is for the bal-
loons to be a prescribed distance apart: Λimod(r)+1−Λi → ϑ̄
as t → ∞. Using (1), and noting that ρ⊕ + hi ≈ ρ⊕,
this objective can be stated using output variables zi :=
simod(r)+1 − si, with the goal zi → 0 as t→∞ for each i.



B. Linearized System Model

An operating point for balloon i (at which ẋi = 0 and zi =
0) is given by (x̄i, ūi) = (x̄B, ūB) for every i = 1, . . . , r,
where x̄B = col(0, h̄, 0, P̄ ) and ūB = 0. Furthermore, h̄ and
P̄ are related by

P̄ = νPamb(h̄)− m0

κ
. (10)

Define linearized state and input variables for each balloon
as the deviations from the operating point (e.g., ∆hi =
hi − h̄). The rates of change of these deviations can be
approximated near the operating point by linearizing the state
equations (4), (7), and (8):


∆ṡi
∆ḣi
∆ḧi
∆Ṗi

 =

AB︷ ︸︸ ︷0 α 0 0
0 0 1 0
0 −khh −khḣ −khP
0 0 0 0




∆si
∆hi
∆ḣi
∆Pi

 +

BB︷ ︸︸ ︷ 0
0
0

kPQ

 ∆Qi (11)

where, defining m̄ := m0 + κP̄ , the constants are given by
α := (dvwind/dhi)|h̄, khh = νg/m̄ · (∂Pamb/∂hi)|h̄, khḣ = β/m̄,
khP = νκ2g/m̄2 · Pamb(h̄), and kPQ = Pamb(h̄)/Vair. Stacking
these equations gives a dynamical model for the overall
system:

∆ẋ1

...
∆ẋr

 =

A︷ ︸︸ ︷AB

. . .
AB


∆x1

...
∆xr

 +

B︷ ︸︸ ︷BB

. . .
BB


∆u1

...
∆ur

 (12)

which has the LTI state space form ∆ẋ = A∆x+B∆u.
Measurement: All the states of balloon i can be measured

easily by sensors onboard the balloon’s payload [3]. These
“raw” sensor readings are reduced to two measurements per
balloon; one is the balloon’s internal air pressure, and the
other is a linear combination of the remaining three states.
The measurements are given by

∆yi =

CB︷ ︸︸ ︷[
c1 c2 c3 0
0 0 0 1

]
∆xi , (13)

where c1
.
= 0.47, c2

.
= −9.86 ·10−5, and c3

.
= −0.53. These

values were determined numerically based on the conditions
for solvability of the geometric control problem, which will
be discussed below. From this measurement for each balloon,
the system measurement is given by

∆y1

...
∆yr

 =

C︷ ︸︸ ︷CB

. . .
CB


∆x1

...
∆xr

 (14)

which has the form ∆y = C∆x.
Linearized Control Objective: The nonlinear outputs zi

can immediately be linearized as ∆zi = ∆simod(r)+1−∆si,
giving the linearized output equation


∆z1

...
∆zr−1

∆zr

 =

D︷ ︸︸ ︷
−ς ς

. . .
. . .
−ς ς

ς −ς




∆x1

...
∆xr−1

∆xr

 (15)

where ς := row(1, 0, 0, 0), which has the form ∆z = D∆x.
The control objective for the linearized system is for ∆z → 0
as t→∞, which will space the balloons evenly.

4. WIND MODEL

To test the balloon model developed above, a model of the
stratospheric wind currents is also needed. The wind model
used here is based on data obtained from the NCEP/NCAR2

Reanalysis Project [6], and the wind is assumed to travel
east/west along a single latitude line. This simplification
is not grossly inaccurate — looking at actual stratospheric
winds (such as the visualization in [7]), it can be seen that
most wind currents do follow a general east/west path.

A “slice” of the wind model at latitude 40◦N is displayed
in the left side of Figure 2. The isoclines show that the wind
speed varies as a function of both longitude and altitude.
In contrast, the balloon model (3) assumed that wind speed
varies as a function of altitude only, as displayed in the
right side of Figure 2. The actual longitudinal variations
can affect the balloons’ positions significantly. Fortunately,
the designed feedback controller will provide the needed
robustness to these unmodelled effects — see Section 6.
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Fig. 2. Wind Speeds [m/s] at 40◦N for Varying Longitudes and Altitudes

5. CONTROLLER DESIGN

The control objective for the linearized balloon system, as
stated in Section 3-B, can be converted into the Restricted
Regulator Problem (RRP) from geometric control [8, §6.1].
The RRP was solved for a system of 50 balloons with the
parameters h̄ .

= 21 km, V .
= 1415 m3, P̄ .

= 7.43 kPa, Vair
.
=

471 m3, v̄ .
= −4.3 m/s, m0

.
= 50 kg, α .

= −0.0017 s−1, and
β = 0.02 kg/s. The steps in solving the RRP are described in
Section 5-A, and the specific considerations for preserving
the balloon system’s distributed structure are examined in
Section 5-B.

A. Restricted Regulator Problem (RRP)

Consider a linear time-invariant system

∆ẋ = A∆x+B∆u

∆y = C∆x , ∆z = D∆x

2National Centers for Environmental Prediction and National Center for
Atmospheric Research



The goal of the RRP is to find a feedback ∆u = K∆x
that stabilizes the system output ∆z, where K only uses
state information that can be seen in the measurement ∆y.
This constraint is imposed by a subspace L that masks the
unmeasurable states. The RRP can be stated as follows:
Problem 5.1 ([8]). Given a system of the above form with

state space X , and an A-invariant subspace L ⊃ KerC, find
a state feedback ∆u = K∆x such that L ⊂ KerK and
X+(A+BK) ⊂ KerD, where X+(·) denotes the unstable
modal subspace [8, §0.11].

The condition KerC ⊂ L ⊂ KerK in Problem 5.1 en-
sures that the state feedback only uses information that shows
up in the measurement. The condition X+(A + BK) ⊂
KerD guarantees that the control objective to stabilize the
output is met. Generally, L is taken to be 〈A|KerC〉 (the
minimal A-invariant subspace containing KerC), and KerD
is replaced with V (the largest (A,B)-controlled invariant
subspace contained in KerD [8, §4.2]). For the 50-balloon
system with linearized model (11)–(15), these subspaces are
given by3

V = Im

e1 · · · e4

... (×50)
...

e1 · · · e4

 , L .
= V+Im

I50 ⊗

 10 0
0 104

9 −2
0 0


 .

where the ei are the standard basis vectors in R4. Also, the
balloons’ controllable subspace is given by C = R200, and
its unstable subspace is given by

X+(A)
.
= Im

I50 ⊗

 1 0
0 −14
0 0
0 31


 .

Geometric control gives necessary and sufficient condi-
tions for the solvability of the RRP [8, thm. 6.1] based on
the above subspaces; these conditions are satisfied on the
balloon system, and so the RRP is solvable. The RRP can
be solved by placing poles in the part of the system that
shows up in both the measurement and the output — in this
case, in the subspaceR := (L+V)⊥. For the balloon system,

R = Im


e4 p −e4 −p

−e4 −p e4 p
. . .

. . .

−e4 −p e4 p


where p .

= col(−480, 10−2, 535, 0). In general, it is neces-
sary to find a matrix F such that V is (A+ BF )-invariant;
for the balloon system, since V is A-invariant, it suffices
to take F = 0. Also define a transformation matrix T
by concatenating columns that form a basis for L + V ,
followed by columns that form a basis for R. Applying this
transformation to the system matrices gives

T−1(A+BF )T =

[
A1 ∗
0 A2

]
, T−1B =

[
B1

B2

]
(16)

3All numbers in these subspaces are approximate, except for 0 and 1.

and the full system has been decomposed into two in-
dependent subsystems (A1, B1) and (A2, B2). Stabilizing
the second subsystem solves the RRP; further, the original
solvability conditions [8, thm. 6.1] guarantee that this is
possible. Therefore, stabilize (A2, B2) with some feedback
K2, and define K =

[
0 K2

]
T−1 + F . Then, the overall

feedback u = Kx solves the RRP.
The balloon system requires some considerations beyond

the RRP: the feedback should not only solve the RRP, but
should also correspond to the system’s distributed structure.
The RRP does not account for that structure, only providing
“any” feedback that works for the system model.

B. Block Circulant Restricted Regulator Problem (BC RRP)

The matrices of the linearized balloon system (11)–(15)
all have a block circulant pattern [9]. This pattern arises
inherently from the distributed and homogeneous intercon-
nection structure of the balloons — they are identical and
treat each other identically. This distributed structure should
be maintained by a controller for the system, as discussed
in the introduction, and so any feedback synthesized for
the system should also be block circulant. In particular, for
the balloon system, the RRP should be solved by a block
circulant feedback; this is called the Block Circulant RRP
(BC RRP). The BC RRP is solvable whenever the usual
RRP is solvable — that is, if any feedback exists, then a
block circulant feedback exists [2, thm. 8.8].

The key to solving the BC RRP is a commuting property
inherent in all block circulant matrices: a matrix M ∈
Rrn×rm is block circulant if and only if (Πr ⊗ In)M =
M(Πr ⊗ Im), where “⊗” denotes the Kronecker product
and Πr :=

[
0 Ir−1

1 0

]
is the fundamental permutation matrix

[9, §5.6]. In particular, for the balloon system, (Π50 ⊗
I4)A = A(Π50 ⊗ I4) and (Π50 ⊗ I4)B = B(Π50 ⊗ I). By
exploiting these relationships, and also choosing L and V to
be (Πr⊗In)-invariant (which holds for the balloon system’s
subspaces given above), the solvability of the BC RRP can be
determined by the same conditions as the general RRP, and
can be solved by the same system decomposition as outlined
in Section 5-A [2]. Preserving the block circulant pattern in
the solution requires three additional considerations:

1. The chosen matrix F (such that V is (A+BF )-invariant)
must be block circulant;

2. The chosen complementary subspace R to L + V must
be (Πr ⊗ In)-invariant;

3. The chosen feedback law K2 for the decomposed subsys-
tem must satisfy (Πr ⊗ Im)K2 = K2(Πr ⊗ In)R, where
(Πr ⊗ In)R is the restriction of Πr ⊗ In to R [8, §0.4].

As long as the RRP is solvable, such choices can always be
made, as proven in [2]. In particular, for the balloon system,
F = 0 is block circulant, R is (Π50⊗ I4)-invariant, and K2

can be chosen to satisfy (Π50 ⊗ I)K2 = K2(Π50 ⊗ I4)R.
These choices guarantee that the overall feedback K will be
block circulant [2, thm. 8.8], thus solving the BC RRP.



6. CONTROL OF THE BALLOON NETWORK

Following the control design method of Section 5, a block
circulant feedback ∆u = K∆x was found for the 50-
balloon system by implementing a MATLAB framework
developed for block circulant control (and using the Geomet-
ric Approach Toolbox [10] to perform subspace operations).
This feedback was then decentralized and scaled up to 600
balloons. Synthesizing a controller for the larger system
directly — i.e., finding a 600 × 2400 feedback matrix —
would have been a very daunting computational task; by
exploiting the block circulant pattern, this task was made
markedly simpler and considerably quicker.

A. Linear Feedback

The 50-balloon feedback K is visualized in Figure 3,
which shows the magnitude of each balloon’s “influence” on
others: the block in the ith row and jth column represents
the part of balloon i’s control ui that depends on balloon j’s
states xj , with darker blocks implying larger dependencies.

Fig. 3. BC RRP Feedback Matrix for 50 Balloons (darker blocks have
larger magnitude)

The block circulant pattern in the feedback is inherent
in the diagonal “bands”: each diagonal consists of blocks
of the same shade, meaning that each balloon i considers
balloon (i + k)mod(50) in the same way. These diagonal
bands — and by extension, the block circulant pattern —
encourage a feedback which can readily be decentralized:
by keeping the darkest matrix blocks and zeroing all others,
small controller gains can be removed (similar to [11]). In
Figure 3, the darkest blocks are on and to the right of the
main diagonal. Zeroing all other blocks gives a decentralized
control law in which each balloon’s motion only depends on
its own states and those of the balloon next to it (rather than
all of them), while preserving the same closed-loop system
behaviour. This decentralized feedback is given by

ui · 106 .
=
[
−0.94 (1.96 · 10−4) 1.05 −16.83

]
xi +[

−0.11 (0.23 · 10−4) 0.12 − 0.85
]
ximod(50)+1 .

This decentralized feedback was scaled from 50 to 600
balloons by replicating the above two blocks — each balloon
in the larger system still uses only its own states and those
of the balloon next to it, with the same controller gains as in
the smaller system. This scaling method drastically reduces

the calculation time by circumventing the computational
complexity of pole placement on high-dimensional matrices.
Moreover, this method is possible because of the block
circulant pattern; without identical controller gains, it does
not appear clear how to implement the feedback on a larger
system.

B. Unmodelled Wind Effects

For proper balloon spacing to be maintained over time, the
balloons must all be travelling at the same longitudinal speed
— that is, they must all be on same-speed wind currents.
The wind currents were assumed in (3) to be a function of
altitude only; thus, in the system model, balloons at the same
altitude all travel at the same speed. In contrast, the actual
wind currents are a function of both altitude and longitude
(as seen on the left side of Figure 2), so balloons at the
same altitude do not always travel at the same speed; rather,
balloons on the same isocline (in the figure) travel at the same
speed. In particular, if the balloons are all at altitude h̄, they
will not all travel at speed v̄. Therefore, for at least some
balloons, ṡi 6= 0 at h̄, so x̄B is no longer a valid operating
point. Instead, balloon i must take h̄i as the altitude at which
the wind speed at its current longitude is v̄. Then, the h̄i will
all lie on the v̄ isocline. It is important to note that the h̄i
are no longer the same for all i.

In the sequel, the balloons do not have immediate access
to actual wind data. In lieu of such data, h̄i cannot be
perfectly aligned with the v̄ isocline. Rather, balloon i
approximates h̄i by estimating the altitude of the v̄ isocline
at its current longitude Λi as h̄i = hi − α−1(ṡi − v̄), where
α is the linearized wind gradient from (11). Furthermore, as
Λi changes (as the balloon traverses the Earth), the local
altitude of v̄ at Λi also changes according to Figure 2,
and so h̄i will be a worse approximation of the v̄ isocline
over time. Therefore, h̄i must be recalculated periodically in
order to keep it near the v̄ isocline. Lastly, whenever h̄i is
recalculated, so should P̄i be recalculated according to (10).

C. Simulation Results

The balloon network was simulated using the feedback
described above, in the wind currents described in Section 4.
The nonlinear control law is given by u = ū + K(x − x̄),
where x̄ uses the most recently calculated values for the
h̄i and P̄i, as in Section 6-B. Figure 4 shows the states
and inputs for 50 of the 600 balloons4. The “steps” seen
in the control inputs are the operating point recalculations
(as described in Section 6-B), which were performed every
30 simulated minutes. Over time, the system approaches a
steady state: each balloon’s altitude and internal air pressure
stabilize, and the control input tends to 0.

Figure 5 shows the distances between adjacent balloons,
for 150 of the 600. This plot confirms that at the system’s
steady state, the control objective is met: the balloons are all
about 50 km apart, which spaces them evenly at 40◦N.

4The upper- and lower-bounding state responses are included in Figure 4.
The plot of ḣi only shows four balloons, because of the high oscillations.
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Figure 6 compares the output response of the original 50-
balloon system to the decentralized and scaled 600-balloon
system, showing the outputs zi for four selected balloons.
Most important, it can be seen that the decentralization and
scaling process barely affects the overall response of the
balloons; while the balloons in the smaller system tend to
have slightly shorter settling times, the differences are small
when considering that the larger system has 12 times as
many balloons, whereas the feedback remains unmodified.
The similarity between the system responses shows that the
synthesized feedback is both robust and scalable.

In reality, the system behaviour could be affected by
physical limits; for example, the balloon’s air chamber can
only support a certain pressure range, and the pump can
only operate up to a maximum flow rate. These operating
ranges could cause the balloons to saturate at the upper and
lower bounds of pressure and flow rate, thereby affecting
the system’s response time. However, the response itself
would not change as a result of these unmodelled limits;
the balloons would still space themselves evenly.
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7. CONCLUDING REMARKS

Formation control of balloons has been formulated and
solved in a very direct way. Our results show that maintaining
the system’s inherent block circulant pattern in the feedback
accomplishes three significant outcomes: the balloons can
be coordinated through complicated wind currents; the feed-
back can be decentralized, enabling the balloons to space
themselves properly with very limited information; and the
feedback can be scaled up to control at least an order of
magnitude more balloons than the synthesis involved.

Our findings extend well beyond their application to high-
altitude balloons. Synthesizing feedback laws for large multi-
agent systems is often difficult and time-consuming, but these
results show that it need not be: by preserving a system’s
inherent pattern, feedbacks can be decentralized and scaled
efficiently and intuitively. Our simulations demonstrate that
this technique can be robust enough to control many more
agents without affecting the overall system behaviour.
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