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Abstract— In distributed systems, a common question is
how to synthesize a control law that adheres to the system’s
distributed interconnection structure. One promising synthesis
approach involves encoding the system’s interconnections as
a pattern in the system matrices, and carrying this pattern
through all steps of a control design. To date, though, all
control results on this front have had limitations on which
distributed structures are admissible. In this paper, we provide
a pole placement result that is valid for more general system
patterns. We also show that a system’s controllability does not
imply patterned pole placement, so we introduce a novel notion
of controllability for patterned distributed systems.

I. INTRODUCTION

The focus of control systems is shifting from centralization
to distribution — rather than doing all decision making and
information processing in one place, many systems spread
these jobs among a number of parts of the system. While
system architectures move in this direction, control methods
lag behind. In this paper, we work towards bridging this
gap by providing a pole placement method for controlling
a distributed system with some “pattern” using a feedback
with the same pattern. Surprisingly, pole placement with a
patterned feedback law cannot be guaranteed by the standard
notion of controllability (somewhat like the decentralized
fixed modes introduced by [1]). We provide a stronger
notion of controllability that enforces a system’s pattern and
preserves its distributed structure.

In most previous work on distributed control, a system’s
distributed structure is represented as constraints in the
matrices of the system model. One common approach involves
fixing some matrix entries at zero [2, 3, 4]; the role of
controllability was explored, but a full framework for control
has not yet been produced. A more general approach to
decentralized control [5] synthesizes a separate dynamic
controller for each agent, though the analysis is complex.

A recent approach to distributed control is patterned
linear systems, in which the distributed structure and matrix
constraints are encoded as a pattern in the system’s matrices
via an algebraic relationship. In particular, [6, 7] encode
the pattern as polynomials of a “base matrix”, and [8, 9]
encode the pattern by commuting relationships with a base
matrix. We follow the latter approach here. All previous
work on patterned systems places restrictions on the allowed
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patterns, constraining the base matrix to be, for instance,
diagonalizable or unitary. These constraints cannot be met by
many common distributed structures — most notably, chains
— and so these methods are as of yet unusable for control of
distributed systems in a general sense. This paper is the first
to consider patterned control without these constraints: any
pattern can be carried through our pole placement method
without restriction.

This paper is organized as follows. In Section II, patterned
systems are introduced. In Section III, we provide a counterex-
ample to show that controllability is not a sufficient condition
for patterned pole placement. In Section IV, another example
shows how patterned pole placement works. In Sections V–
VI , we develop the method of patterned pole placement
and the notion of “patterned controllability”. These results
are formalized in the appendix; some proofs are suppressed
because of space limitations.

II. PATTERNED SYSTEMS

A patterned matrix is a matrix M that satisfies a commuting
relationship UM = MV for some matrices U and V . This
commuting relationship is denoted by M ∈ C(U, V ). As
a shorthand, if U = V , then C(U) := C(U,U). Standard
operations on patterned matrices preserve the patterns:

• M,N ∈ C(U, V ) and α ∈ R⇒ αM +N ∈ C(U, V ).
• M ∈ C(U, V ) and N ∈ C(V,W )⇒MN ∈ C(U,W ).

A U -patterned system is a linear control system of the
form ẋ = Ax+ Bu where A ∈ C(U) and B ∈ C(U, V ). U
is called the base matrix of the system. A patterned feedback
for this system is of the form u = Kx with K ∈ C(V,U). A
pattern often prescribes a specific form in system matrices,
which lends itself to use in distributed systems. Two examples
are given here.

Example 2.1: Consider the ring system in Figure 1 (left),
whose parts each have n states and m inputs, are identical,
and have identical interconnections (so part “1” is coupled
to “2” in the same way as “2” is coupled to “3”, and so
on). This manifests as a block circulant pattern in the system
matrices:

A =

A1 A2 A3

A3 A1 A2

A2 A3 A1

, B =

B1 B2 B3

B3 B1 B2

B2 B3 B1

; Π3 =

0 1 0
0 0 1
1 0 0


where each Ai ∈ Rn×n and Bi ∈ Rn×m. Every block circu-
lant matrix commutes with the block fundamental permutation
matrix: A(Π3 ⊗ In) = (Π3 ⊗ In)A and B(Π3 ⊗ Im) =
(Π3⊗ In)B. Therefore, this system is (Π3⊗ In)-patterned. A
full treatment of control of ring systems is given in [8]. J



Example 2.2: Consider the chain system in Figure 1 (right),
where again, the parts of the system are identical and have
identical interconnections. This manifests as a block lower
triangular Toeplitz pattern in the system matrices:

A =

A1 0 0
A2 A1 0
A3 A2 A1

, B =

B1 0 0
B2 B1 0
B3 B2 B1

; N3 =

0 0 0
1 0 0
0 1 0

 .
Every block lower triangular Toeplitz matrix commutes with
the block fundamental nilpotent matrix: A(N3⊗In) = (N3⊗
In)A and B(N3⊗Im) = (N3⊗In)B. Therefore, this system
is (N3 ⊗ In)-patterned. A full treatment of control of chain
systems (in a patterned sense) has not been possible in the
past — the base matrix Nr ⊗ In does not fit the restrictions
on base matrices in previous work [7, 9], though scalar chain
systems (n = m = 1) were fully treated by [6]. J
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Fig. 1. Examples of Patterned Distributed Systems: Ring and Chain

III. CONTROLLABILITY IS NOT SUFFICIENT

The following example will show that controllability is not
a strong enough condition to guarantee pole placement with
a patterned feedback. Consider the base matrix U ,

U =


1 0 1 −1 0
0 0 0 0 1

−4 3 −4 4 1
−3 3 −3 3 0
0 0 0 0 0

 , ΓU =


1 1 1 1 1
0 1 1 0 2

−1 0 0 2 1
0 0 0 3 1
0 0 1 0 0

 (1)

and the U -patterned system (A,B) given by

A =


7 −1 4 −3 0

−3 6 −3 3 6
11 −5 14 −12 −3
18 −9 18 −15 −6
0 0 0 0 3

 , B =


2 0 1 −1 0
1 0 1 −1 2
2 0 3 −3 −1
3 0 3 −3 −2
0 0 0 0 1


where A,B ∈ C(U) (and V = U for this example). The
system’s open-loop poles are given by σ(A) = {3, . . . , 3}.
To check whether these poles can be placed by a patterned
feedback, the system matrices will be transformed into a
particular block structured form [10, §VIII.1]: applying the
transformation

∧

A := Γ−1
U AΓU and

∧

B := Γ−1
U ΓBΓU (with

ΓU given in (1)) gives

∧

A =


3 0 0 3 0
0 3 0 0 3
0 0 3 0 0
0 3 0 3 0
0 0 3 0 3

 , ∧

B =


1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 1 0 0 1
0 0 1 0 0



whose blocks are all upper triangular Toeplitz (U4T)1. By
the same transformation, any patterned feedback K ∈ C(U)
can be put in a form with the same U4T block structure:

∧

K := Γ−1
U KΓU =


k1 ∗ ∗ k2 ∗
0 k1 ∗ 0 k2
0 0 k1 0 0
0 k3 ∗ k4 ∗
0 0 k3 0 k4

 .
By direct calculation, it can be seen that σ(

∧

A +
∧

B
∧

K) =
{3 + k1, 3 + k1, 3 + k1, 3, 3}, and so two eigenvalues of A —
those fixed at 3 — can never be moved by patterned feedback.
These immovable poles are reminiscent of the decentralized
fixed modes first presented by [1].

On the other hand, the system is controllable, since its
controllable subspace is the full state space 〈A|B〉 = R5.
Thus, the poles of (A,B) can be placed into any symmetric
spectrum. In sum, even though every pole can be moved
by some feedback, some poles cannot be moved by any U -
patterned feedback. To capture the idea of pole placement
via patterned feedback, a stronger notion of controllability is
needed.

IV. A SIMPLE EXAMPLE OF PATTERNED POLE
PLACEMENT

Before delving into the intuition and theory behind pat-
terned pole placement, a simple example is presented here.
Consider

∧

U and
∧

V given by the diagonal matrices

∧

U =


δ1

δ1

δ2

δ3

 , ∧

V =

 δ1 δ2

δ3

 (2)

where dashed lines separate identical entries, and solid lines
separate different entries. Clearly, σ(

∧

U) = {δ1, δ1, δ2, δ3}
and σ(

∧

V ) = {δ1, δ2, δ3} (in that order). For a
∧

U -patterned
system (

∧

A,
∧

B), the commuting relationships
∧

U
∧

A =
∧

A
∧

U and
∧

U
∧

B =
∧

B
∧

V give the form

∧

A =

 a1 a2
a3 a4

a5
a6


}

∧

A
1} ∧

A
2} ∧

A
3

,
∧

B =

 b1b3 b5
b6


}

∧

B
1} ∧

B
2} ∧

B
3

. (3)

Notice that (
∧

A,
∧

B) has a block diagonal structure that
splits it into three independent subsystems, denoted (

∧

Ai,
∧

Bi)
(i = 1, 2, 3, as partitioned by the solid lines). If (

∧

A,
∧

B) is
controllable, then its poles can clearly be placed in each
subsystem independently, giving a feedback of the form

∧

K =

 k1 k2
k5

k6

} ∧

K
1} ∧

K
2} ∧

K
3

.

By direct calculation,
∧

K is the form of the pattern C(
∧

V,
∧

U),
and it can easily be seen that the closed-loop system has

1Nonsquare blocks are considered U4T if they have the form row(0, X)
or col(X, 0), where X is a square upper triangular Toeplitz matrix; that is,
the square upper triangular Toeplitz part can be augmented with columns of
zeros on the left, or rows of zeros on the bottom.



the pattern
∧

A +
∧

B
∧

K ∈ C(
∧

U), thus preserving the system’s
original pattern.

Lastly, notice that the matrices
∧

Ai,
∧

Bi, and
∧

Ki are all
unpatterned (meaning that they have no nontrivial commuting
relationships). So not only can the poles be placed indepen-
dently in each subsystem but, if a subsystem is controllable,
then its poles can also be placed arbitrarily; preserving the
system’s pattern is equivalent to preserving the independent
subsystems.

Overall, patterned pole placement in this example is
accomplished in three steps: the patterned system is split
into independent subsystems, the poles are placed in each
subsystem by any (unpatterned) feedbacks, and those feed-
backs are then reconstructed into a patterned feedback for the
overall system. More generally, as explained next, patterned
systems can be split into unpatterned subsystems using the
Jordan blocks of the base matrices.

V. A METHOD FOR PATTERNED POLE PLACEMENT

This section details the general algorithm for patterned pole
placement in a patterned system, and will proceed as follows:
first, we introduce important notation; second, we discuss
the spectra of patterned matrices; third, we give a method
to transform patterned matrices into a U4T block form,
based on the Jordan forms of their base matrices; fourth, we
introduce a method for removing this U4T block structure,
resulting in unpatterned subsystems called the reduced form;
and fifth, we perform a standard pole placement on these
unpatterned subsystems.

Remark 5.1: Let U ∈ Rn×n and V ∈ Rm×m have
eigenvalues σ(U) ∪ σ(V ), and remove repeated eigenvalues
to get the “distinct spectrum” σd(U)∪σd(V ) = {δ1, . . . , δr}.
Similarly, collect all the Jordan block sizes in U and V into
a set, and remove repeated entries to give the distinct block
sizes sd(U) ∪ sd(V ) = {d1, . . . , dρ}. Then, every Jordan
block of U and V is associated with some eigenvalue δi

(i ∈ {1, . . . , r}) and block size dj × dj (j ∈ {1, . . . , ρ}).
Define nij ≥ 0 and mi

j ≥ 0 to be the number of Jordan
blocks corresponding to (δi, dj) in U and V , respectively.

Since U and V are real, there exists a “conjugate permuta-
tion” {ε1, . . . , εr} of {1, . . . , r} such that δεi = δi, nεij = nij ,
and mεi

j = mi
j for each i and j. J

Next, the attainable spectra of a patterned matrix are
prescribed by its base matrix:

Definition 5.2 (U -Patterned Spectrum): Let U ∈ Rn×n
follow the ordering of Remark 5.5. A spectrum L is called
U -patterned if it has the same cardinality as σ(U) and can
be partitioned as follows:

(E1) L = L 1 ] · · · ]L r, where L εi = L i for each i;
(E2) L i = L i

1 ]· · ·]L i
ρ , where L i

j contains nij eigenvalues
occurring dj times (for each j).

Lemma 5.3: If A ∈ C(U), then σ(A) is U -patterned.
The eigenvalues of A ∈ C(U) can therefore be paired

to those of U in a particular way. (E1) says that if two

eigenvalues in σ(U) are complex conjugates, then the corre-
sponding eigenvalues in σ(A) are also complex conjugates;
and (E2) says that if two eigenvalues in σ(U) are in the same
Jordan block (and therefore equal), then the corresponding
eigenvalues in σ(A) are also equal.

Now, we discuss a particular transformation on patterned
matrices. Let (A,B) be a U -patterned system, so A ∈ C(U)
and B ∈ C(U, V ). Define the Jordan forms

∧

U := Γ−1
U UΓU

and
∧

V := Γ−1
V V ΓV , with Jordan blocks for identical

eigenvalues listed consecutively. Apply the transformations
∧

A := Γ−1
U AΓU and

∧

B := Γ−1
U BΓV ; then, the transformed

matrices have the block diagonal form [10]
∧

A = diag(
∧

A1, . . . ,
∧

Ar) ,
∧

B = diag(
∧

B1, . . . ,
∧

Br) (4)

where the size of each submatrix is determined by the
algebraic multiplicity of δi in U and V . Clearly, (A,B) is
split into r independent subsystems (

∧

Ai,
∧

Bi); by [10], the
∧

Ai

and
∧

Bi are made up of U4T blocks, whose sizes correspond
to the Jordan block sizes in

∧

U and
∧

V . It is also important to
note that the (

∧

Ai,
∧

Bi) subsystems are purely mathematical,
and do not necessarily correspond to agents in the physical
distributed system.

Example 5.4: Consider U and V with Jordan forms
∧

U :=
Γ−1
U UΓU and

∧

V := Γ−1
V V ΓV given by

∧

U =



δ1 1
δ1

δ1 1
δ1

δ1

δ2 1
δ2


,

∧

V =


δ1 1

δ1

δ1

δ2 1
δ2



For any U -patterned system (A,B), the transformed matrices
∧

A := Γ−1
U AΓU and

∧

B := Γ−1
U BΓV have the form

∧

A =



a1 ∗ a2 ∗ a3
0 a1 0 a2 0
a4 ∗ a5 ∗ a6
0 a4 0 a5 0
0 a7 0 a8 a9

a0 ∗
0 a0


,

∧

B =



b1 ∗ b3
0 b1 0
b4 ∗ b6
0 b4 0
0 b7 b9

b0 ∗
0 b0


where the size of each U4T block is determined by the
corresponding Jordan block sizes in U and V . This splits
(A,B) into two subsystems (

∧

A1,
∧

B1) (top-left) and (
∧

A2,
∧

B2)
(bottom-right); these subsystems are still patterned, having a
U4T block structure. J

The next step is crucial to the pole placement method.
In (3), the (

∧

Ai,
∧

Bi) subsystems were unpatterned, so their
poles could be placed arbitrarily without affecting the
system’s pattern. In contrast, the subsystems in Example
5.4 (and in general) are made up of U4T blocks, and are
therefore not unpatterned. This U4T block structure will be
removed to obtain unpatterned subsystems on which standard
pole placement results can be applied. These unpatterned
subsystems are generated by removing duplicate information
from (

∧

A,
∧

B); in particular, each set of equal eigenvalues from
constraint (E2) (from Definition 5.2) is reduced to a single
eigenvalue. To that end, the matrix entries that should be kept



are those that contribute to determining the eigenvalues; it
can be shown (see the proof of Lemma 5.8 in the appendix)
that these entries lie on the diagonal of the matrix’s square
U4T blocks. To extract these entries in a precise way, it will
help to put them into known positions by further ordering
the Jordan blocks of U and V (from Remark 5.1) by the
following steps:

1. Order the Jordan blocks of U and V so that their
corresponding eigenvalues follow the order {δ1, . . . , δr}.

2. For each group of Jordan blocks corresponding to the
same eigenvalue, further order the blocks so that their
sizes follow the order {d1, . . . , dρ}. (In this paper, we
always order by decreasing size.)

More formally, the Jordan block ordering is as follows.
Remark 5.5: Continuing from Remark 5.1, order the Jor-

dan blocks of U and V as

(δ1, d1), . . . , (δ1, dρ), · · · , (δr, d1), . . . , (δr, dρ) .

This ordering groups together all repeated eigenvalues and
all identical Jordan blocks, partitioning the Jordan forms

∧

U
(and

∧

V ) as
∧

U = diag(
∧

U1 , . . . ,
∧

Ur) ,
∧

U i = diag(
∧

U i1 , . . . ,
∧

U iρ)
(5)

where each
∧

U ij is composed of all the Jordan blocks with
eigenvalue δi and block size dj × dj . Also, since U and V
are real, it follows from the conjugate permutation of Remark
5.1 that

∧

Uεij =
∧

U ij and
∧

V εij =
∧

V ij . J

Applying the above ordering, each
∧

Ai and
∧

Bi from (4)
can be further partitioned by Jordan block size, as shown in
the following result.

Lemma 5.6: Let U and V follow the ordering of Remark
5.5. Let M ∈ C(U, V ), and define

∧

M := Γ−1
U MΓV . Then,

∧

M has the form

∧

M =


∧

M1

. . .
∧

Mr

 , ∧

M i =


∧

M i
11 · · ·

∧

M i
1ρ

...
...

∧

M i
ρ1 · · ·

∧

M i
ρρ

 (6)

where
∧

M i
j1j2

is made up of nij1 ×m
i
j2

U4T blocks of size
dj1 × dj2 , and

∧

Mεi
j1j2

=
∧

M i
j1j2

for each i = 1, . . . , r and
j1, j2 = 1, . . . , ρ.

Looking at the block sizes in (6), it can be deduced that
all square U4T blocks will occur in the

∧

M i
jj blocks down

the diagonal of the partition. Thus, a patterned system’s poles
are fully determined by the diagonal entries of the square
U4T blocks in the

∧

Aijj , which have been localized to the
block diagonal of

∧

A. Having pinpointed those entries, they
are isolated into a new matrix that contains the “distilled”
essence of the eigenvalues of A, called the reduced form
of A and denoted

∨

A; B is treated similarly. These reduced
forms are constructed from

∧

A and
∧

B by taking a diagonal
entry from each square U4T block, thereby creating a block
diagonal matrix with submatrices

∨

Aij and
∨

Bij (corresponding
to the distinct eigenvalues and Jordan block sizes of U and

V , indexed by i and j respectively). Formally, the reduced
form is defined as follows.

Definition 5.7 (Reduced Form): Suppose U and V follow
the ordering of Remark 5.5, and let M ∈ C(U, V ). Then, the
reduced form of M is given by

∨

M = diag(
∨

M1 , . . . ,
∨

Mr) ,
∨

M i = diag(
∨

M i
1 , . . . ,

∨

M i
ρ)

(7)

where each entry of
∨

M i
j ∈ Cn

i
j×m

i
j is the diagonal entry of

the corresponding U4T block in
∧

M i
jj .

Reducing each U4T block to a single entry removes the
U4T structure from

∧

A and
∧

B, and so the reduced subsystems
(

∨

Aij ,
∨

Bij) are unpatterned. Also, the reduced form contains
exactly the information that affects the system’s poles, as
seen in the next result.

Lemma 5.8: Let A ∈ C(U) be a patterned matrix with
reduced form

∨

A := diag(. . .,
∨

Aij , . . .) as in (7). Then, the
eigenvalues of A are given by those of the

∨

Aij , with
multiplicities given by the corresponding block sizes dj :

σ(A) =
r⊎
i=1

ρ⊎
j=1

(
σ(

∨

Aij) ] · · · ] σ(
∨

Aij)︸ ︷︷ ︸
dj times

)
.

Example 5.9: In Example 5.4, the Jordan blocks in
∧

U and
∧

V are already ordered as in Remark 5.5. From this ordering,
the square U4T blocks of

∧

A and
∧

B are all on their diagonals
(as partitioned by solid lines), and the eigenvalues of

∧

A are
fully determined by the diagonal entries of those square U4T
blocks: σ ([ a1 a2a4 a5 ]), a9, and a0 (ignoring multiplicities).

The reduced forms of A and B are given by

∨

A =

 a1 a2
a4 a5

a9
a0

 , ∨

B =

 b1b4 b9
b0


and it can clearly be seen that the eigenvalues of

∨

A are exactly
the same as those of A (ignoring multiplicities). Also, each
block is unpatterned, since there is no particular relationship
among its entries. Thus, the original patterned system (A,B)
has been split into three unpatterned subsystems2 (

∨

A1
1,

∨

B1
1),

(
∨

A1
2,

∨

B1
2), and (

∨

A2
1,

∨

B2
1) (from the solid-line partitions), and

the size of each submatrix is determined by the number of
times the corresponding Jordan blocks repeat. J

In short, placing the poles of the
∨

Aij using arbitrary
feedbacks is equivalent to placing the poles of

∧

A using a U4T
block feedback, and also to placing the poles of A using a
patterned feedback. The reduced form thereby opens the door
to patterned pole placement: poles can be placed arbitrarily in
each subsystem (

∨

Aij ,
∨

Bij) using any known method (e.g., [11]);
then, these individual reduced feedbacks can be combined
and “expanded” into a patterned feedback

∧

K by turning each

2In this notation, the superscript corresponds to the eigenvalue number
in

∧

U and
∧

V : “1” is δ1 and “2” is δ2. The subscript corresponds to the
enumerated Jordan block sizes, in order of appearance: “1” is size 2× 2,
and “2” is size 1× 1.



entry into a correctly sized U4T block, as demonstrated
below.

Example 5.10: Continuing from Example 5.9, place the
poles in each reduced subsystem in the standard way, using
feedbacks

∨

K1
1 =

[
k1 k2

]
,

∨

K1
2 =

[
k9
]
, and

∨

K2
1 =

[
k0
]
. Then,

expand those into a feedback for (
∧

A,
∧

B) by the mapping

∨

K =

 k1 k2
k9

k0

 7→ ∧

K =


k1 0 k2 0 0
0 k1 0 k2 0
0 0 0 0 k9

k0 0
0 k0


so each entry has been expanded into a U4T block, whose
length and height match the Jordan block sizes in

∧

V and
∧

U ,
respectively. It can be seen that

∧

A+
∧

B
∧

K has the same U4T
block structure as

∧

A, guaranteeing that the original pattern is
preserved in the overall feedback K := ΓV

∧

KΓ−1
U ∈ C(V,U)

and the closed-loop system A+BK ∈ C(U). Lastly, a direct
calculation shows that the eigenvalue-determining entries have
all been moved:

a1 7→ a1 + b1k1 , a2 7→ a2 + b1k2 , a4 7→ a4 + b4k1 ,

a5 7→ a5 + b4k2 , a9 7→ a9 + b9k9 , a0 7→ a0 + b0k0 .

Thus, arbitrary pole placement in the reduced system gives
rise to patterned pole placement in the overall system. J

In general, expanding the reduced feedbacks
∨

Ki
j into

diagonal blocks as above results in a matrix
∧

K with the
same U4T block structure as

∧

A and
∧

B. Then, applying the
initial system transformation in reverse is guaranteed to give
a patterned feedback K := ΓV

∧

KΓ−1
U ∈ C(V,U) [10] that

moves the poles of (A,B) as desired.
Algorithm 1: Overall, the method for pole placement in a

patterned system is as follows:

1. Group together the base matrix’s repeated eigenvalues
and identical Jordan blocks, as in Remark 5.5.

2. Construct the reduced form of the system matrices
following Lemma A.1. This splits the patterned system
into a number of unpatterned subsystems.

3. Place the poles individually in each subsystem by finding
any arbitrary feedbacks, using any method.

4. Expand the “reduced feedbacks” back into a full pat-
terned feedback following Lemma A.2.

VI. MAIN RESULT ON PATTERNED CONTROLLABILITY

How can the usual notion of controllability be extended to
capture when a patterned system can be “controlled in any
patterned way”? When the poles of a patterned system can be
placed into any patterned spectrum using patterned feedback?
In Section V, this patterned pole placement was accomplished
by splitting the system into unpatterned reduced subsystems,
and placing the poles independently on those. Thus, the
“patterned controllability” of the full patterned system can be
fully characterized by the “traditional controllability” of the
reduced system.

Definition 6.1 (Patterned Controllability): A U -patterned
system (A,B) is called U -patterned controllable if the cor-
responding reduced subsystems (

∨

Aij ,
∨

Bij) are all controllable
(in the usual sense).

From this definition, moving poles in (A,B) in a “patterned
way” is equivalent to moving poles in each (

∨

Aij ,
∨

Bij) in
any arbitrary way. Therefore, just as controllability captures
the possibility of pole placement, patterned controllability
captures the possibility of patterned pole placement.

Theorem 6.2 (Patterned Pole Placement): Let A ∈ C(U)
and B ∈ C(U, V ). The U -patterned system (A,B) is U -
patterned controllable if and only if for every U -patterned
spectrum L , there exists a patterned feedback K ∈ C(V,U)
such that σ(A+BK) = L .

Thus, we have provided an expanded notion of controlla-
bility and pole placement in patterned systems, which opens
the door to a more general theory for control of distributed
systems.

APPENDIX
FORMALIZATION AND SELECTED PROOFS

In Section V, patterned pole placement was achieved by
first putting a patterned system in its reduced form, in which
the poles could be placed arbitrarily. This reduced form comes
about in two main steps. First, a Jordan transformation of
the base matrices induces a U4T block form in a patterned
matrix [10, §VIII.1], with certain blocks guaranteed to be zero.
The nonzero blocks can be grouped together by following the
ordering of Remark 5.5, making the matrix block diagonal
(as in Lemma 5.6). Second, from this block diagonal form,
the matrix can be put into its reduced form (as defined in
Definition 5.7) by keeping a diagonal entry from each square
U4T block of

∧

M . An explicit equation for determining a
patterned matrix’s reduced form is given here.

Lemma A.1: Let M ∈ C(U, V ), where U and V follow
the ordering of Remark 5.5. Define the Jordan forms

∧

U :=
Γ−1
U UΓU and

∧

V := Γ−1
V V ΓV as in (5), where Γ−1

U and ΓV
are ordered and partitioned such that

Γ−1
U = col

(
Γ11, . . . , Γ1ρ, · · · , Γr1, . . . , Γrρ

)
,

ΓV = row
(
Γ1
1, . . . ,Γ

1
ρ, · · · ,Γr1, . . . ,Γrρ

)
.

(8)

Here, ΓU and ΓV are constructed from generalized eigen-
vectors (in Jordan chains) of U and V , where Γij has
djn

i
j columns and Γij has djnij rows. Furthermore, choose

these matrices to satisfy the conjugate permutation, so that
Γεij = Γij and Γεij = Γij for each i and j. Also define
ek := col(1, 0, . . . , 0) ∈ Rk. Then, the reduced form of M
is given by

∨

M = diag
(

∨

M1
1 , . . . ,

∨

M1
ρ , · · · ,

∨

Mr
1 , . . . ,

∨

Mr
ρ

)
(as in (7)), where

∨

M i
j =

(
Inij ⊗ e

T
dj

)(
ΓijMΓij

)(
Imij ⊗ edj

)
∈ Cn

i
j×m

i
j . (9)

It can be deduced from (9) that the
∨

M i
j are unique up to

choice of generalized eigenvectors in ΓU and ΓV . Conversely
to Lemma A.1, a reduced matrix can be expanded into a



full patterned matrix by turning each entry into a full U4T
block.

Lemma A.2: Suppose
∨

M := diag(. . .,
∨

M i
j , . . .) is in re-

duced form with respect to the pattern C(U, V ) (following
Remark 5.5), and define

∧

M i := diag(
∨

M i
1 ⊗ Id1 , . . . ,

∨

M i
ρ ⊗

Idρ). Then, M := ΓU diag(
∧

M1, . . . ,
∧

Mr) Γ−1
V ∈ C(U, V ).

Different patterned matrices might have the same reduced
form, and the “lifting” procedure in Lemma A.2 is certainly
not the only way to produce a patterned matrix from reduced
form. Nevertheless, with these results for transforming a
matrix to and from its reduced form, the main results of the
paper can be proven.

Proof of Lemma 5.3 (U -Patterned Spectra): Clearly, σ(M)
and σ(U) have the same cardinality since UM = MU .
Define

∧

M as in Lemma 5.6, and take L i := σ(
∧

M i)
for i = 1, . . . , r. Then, σ(M) = L 1 ] · · · ] L r. Since
∧

Mεi =
∧

M i by Lemma 5.6, it follows that L εi = L i,
giving (E1). Next, define

∨

M as in Lemma A.1, and take
L i
j = σ(

∨

M i
j) ] · · · ] σ(

∨

M i
j) (repeated dj times). Clearly,

L i
j contains nij eigenvalues occurring dj times each. Also,

L i = L i
1 ] · · · ]L i

ρ by Lemma 5.8, giving (E2).
Proof Sketch of Lemma 5.8 (Spectra from Reduced Form):

Follow the ordering of Remark 5.5, and define
∧

A :=
Γ−1
U AΓU = diag(

∧

A1, . . . ,
∧

Ar) as in (6). Clearly, σ(A) =
σ(

∧

A) =
⊎r
i=1 σ(

∧

Ai). Also, it can be shown by induction that
σ(

∧

Ai) =
⊎ρ
j=1 σ(

∧

Aijj).

It remains to show that σ(
∧

Aijj) is given by the eigenvalues
of

∨

Aij , repeated dj times each. If
∨

Aij has a generalized
eigenvector v, then by direct calculation,

∨

Aij ⊗ Idj has dj
generalized eigenvectors v ⊗ ek corresponding to the same
eigenvalue (where the ek are the standard basis vectors of
Rk). Thus, σ(

∨

Aij ⊗ Idj ) must be given by σ(
∨

Aij) repeated dj
times. Lastly, it can be shown that since

∧

Aijj and
∨

Aij ⊗ Idj
have the same entries along the diagonal of each square U4T
block, they also have the same eigenvalues.

Proof of Theorem 6.2 (Patterned Pole Placement): Partition
the U -patterned spectrum L as in Definition 5.2, so L =(
L 1

1 ] · · · ]L 1
ρ

)
] · · · ]

(
L r

1 ] · · · ]L r
ρ

)
. For each i =

1, . . . , r, and j = 1, . . . , ρ, L i
j contains nij eigenvalues

occurring dj times each. Define
∨

L i
j as the set containing one

of each of the nij eigenvalues.
(Only If) Suppose (A,B) is U -patterned controllable. By

definition, (
∨

Aij ,
∨

Bij) is controllable for each i and j, where
∨

Aij ∈ Cn
i
j×n

i
j and

∨

Bij ∈ Cn
i
j×m

i
j . Therefore, there exists

∨

Ki
j ∈ Cm

i
j×n

i
j such that σ(

∨

Aij +
∨

Bij
∨

Ki
j) =

∨

L i
j . These

individual reduced feedbacks can be combined into an overall
patterned feedback K := ΓU diag(. . .,

∨

Ki
j ⊗ Idj , . . .) Γ−1

V ∈
C(V,U) by Lemma A.2. Thus, by Lemma 5.8,

σ(A+BK) =
r⊎
i=1

ρ⊎
j=1

(
∨

L i
j ] · · · ]

∨

L i
j︸ ︷︷ ︸

(dj times)

)
= L .

(If) Suppose that for any U -patterned spectrum L , there
exists a patterned feedback K ∈ C(V,U) such that σ(A +

BK) = L . Put the system into reduced form as in Lemma
A.1, so A+BK is split into reduced submatrices

∨

Aij+
∨

Bij
∨

Ki
j ,

with σ(
∨

Aij +
∨

Bij
∨

Ki
j) =

∨

L i
j . Furthermore, from Definition 5.2,

it can be seen that
∨

L i
j can be made to have any desired

set of nij eigenvalues by choice of L . Therefore, the poles
of (

∨

Aij ,
∨

Bij) can be placed arbitrarily, and so (
∨

Aij ,
∨

Bij) is
controllable for each i and j. By definition, (A,B) is U -
patterned controllable.
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