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Abstract: It is well known that a system is stabilizable if and only if its unstable part is
controllable. However, constraints placed on the system’s controller — such as those imposed
by a distributed system’s interconnection structure — can render this condition insufficient.
In this paper, we provide a new necessary and sufficient condition for the stabilizability of
distributed systems encoded by some pattern that is reflected in the system matrices. We also
provide sufficient conditions for stabilizability by static measurement feedback in these systems.
Our conditions are generalizations of those from the standard geometric approach.
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1. INTRODUCTION

Control system architectures have undergone a major shift
in recent decades from centralized systems, in which a
single unit performs the entire control action, to distributed
systems, in which the control action is split among multiple
interconnected subsystems. Our research is driven by the
need to develop control synthesis methods to keep pace
with these highly distributed architectures. Wang and
Davison [1973] discovered that standard control syntheses
are not viable for distributed systems — in particular,
a stabilizable system is not necessarily stabilizable by
distributed feedback. Many methods have been proposed
to address this discrepancy. In this paper, we continue
our presentation of a control framework for patterned
systems, as developed by Hamilton and Broucke [2012],
Sniderman et al. [2013, 2015a,b, 2017], Holmes and Broucke
[2016], and Ornik et al. [2016]. A patterned system encodes
a distributed system’s interconnection structure via an
algebraic relationship among the system matrices. Any
synthesized control law must also follow that pattern. We
build on our prior work [Sniderman et al., 2015a, 2017] to
obtain a result on stabilization: we provide a necessary and
sufficient condition for the existence of a patterned feedback
law that stabilizes a patterned system. Our condition takes
a form reminiscent of the standard geometric condition for
unpatterned stabilizability [Wonham, 1979].

Patterned linear systems were first introduced for scalar
agents by Hamilton and Broucke [2012], with the pattern
encoded algebraically by polynomials of a base matrix. This
encoding proved difficult to extend to multivariate agents
(beyond one result by Massioni and Verhaegen [2009]), so we
introduced a new encoding using commuting relationships
[Sniderman et al., 2013, 2015b]. This initial work only
considered distributed systems with ring interconnection
structures, following a line of research begun by Brockett
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and Willems [1974]. We extended these results to patterned
systems with diagonalizable base matrices [Sniderman et al.,
2017], solving several control problems on this restricted
class. Concurrently, Consolini and Tosques [2014, 2015]
and Holmes and Broucke [2016] studied these problems for
patterned systems with several unitary base matrices.

Our ultimate goal is to develop a control framework for
multivariate agents with any interconnection structure
amenable to a patterned encoding; as such, the prior
restrictions to diagonalizable/unitary base matrices are
undesirable. At present, the only result that does not
require these restrictions is our Patterned Pole Placement
Theorem [Sniderman et al., 2015a]. We discovered that the
standard notion of controllability does not suffice to achieve
pole placement by patterned feedback. This discovery led
to the introduction of a patterned system’s condensed
form, whose role is to factor out the pattern, leaving
an “unpatterned part” of the system on which standard
controllability results apply. In this paper, we exploit the
condensed form and the Pole Placement Theorem to solve
the Stabilization Problem: we show that a system can be
stabilized by patterned feedback if and only if its condensed
form can be stabilized by any feedback. Unlike prior
work on patterned stabilization, our results do not require
extraneous assumptions on system topology, restrictions
to univariate agents, or conditions on base matrices.
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Fig. 1. Patterned distributed systems: ring and chain.

To demonstrate the utility of patterned systems, we
briefly present two examples of common interconnection
structures, the ring and the unidirectional chain (see



Figure 1). Ornik et al. [2016] showed that both these
interconnection structures, when modelling with linear
dynamics ẋ = Ax, can be encoded using commuting
relationships V A = AV : the systems’ state matrices (A)
and base matrices (V ) have the forms

Aring =

[
A1 A2 A3

A3 A1 A2

A2 A3 A1

]
⇔ Vring =

[
0 I 0
0 0 I
I 0 0

]

Achain =

[
A1 0 0
A2 A1 0
A3 A2 A1

]
⇔ Vchain =

[
0 0 0
I 0 0
0 I 0

]
.

It is notable that while Vring fits the constraints of many of
the above-cited works, Vchain does not. As such, the chain
is an interconnection structure that cannot be analyzed by
prior frameworks for patterned systems.

Having shown that commuting relationships are a valid
encoding for distributed structures, we move on to the
main problem of patterned stabilization.

2. PROBLEM FORMULATION AND MAIN RESULT

Consider a linear system ẋ = Ax + Bu whose matrices
satisfy commuting relationships V A = AV and V B = BU
(for some matrices V and U). We call this system (V,
U)-patterned, and the commuting relationships encode
the underlying distributed interconnection structure (as
demonstrated above). The standard Stabilization Problem
seeks a static state feedback u = Kx for which the closed-
loop poles σ(A+BK) (i.e., the eigenvalues of A+BK) are
in the open left complex half-plane C−. We now repose that
problem, adding the stipulation that the feedback match
the system’s pattern.

Problem 1. (Patterned Stabilization Problem). Given a
(V,U)-patterned system (A,B), find a patterned state
feedback K (UK = KV ) such that σ(A+BK) ⊂ C−.

The standard Stabilization Problem is solvable if and only
if the system’s instabilities are all controllable; in geometric
terms, X+(A) ⊂ C, where X+(A) and C are the unstable
subspace and controllable subspace, respectively (defined
in §3). This condition is not sufficient for solvability of
Problem 1. Instead, we convert the system (A,B) into its

condensed form (
∨

A,
∨

B), a reduced-order model that will be
defined in (9), which removes certain redundancy imposed
by the pattern. Using this construction, the standard
stabilization condition can once again be checked.

Theorem 2. A patterned system (A,B) is stabilizable by
patterned feedback if and only if

∨

X+(
∨

A) ⊂
∨

C (1)

where
∨

X+(
∨

A) and
∨

C are the unstable subspace and

controllable subspace of the condensed system (
∨

A,
∨

B).

When the Patterned Stabilization Problem is solvable, it
can be solved algorithmically. First, transform the system
into a particular form based on the Jordan form of the base
matrices (Theorem 6). Use that structured form to find
the system’s condensed form (Definition 8), and determine
an induced pattern (Lemma 10). Next, decompose the
condensed system into its controllable and uncontrollable
parts; each part has its own pattern (Theorem 18). Place
the poles of the controllable part as desired (Corollary

16), and then expand that pole-placing feedback to the
full system (Lemma 11). The resulting feedback will be
patterned, and will stabilize the system. These steps will
be explained in depth through §§4–5, and then Theorem 2
will be formally proven in §6. We will discuss an extension
to measurement feedback in §7.

3. MATHEMATICAL PRELIMINARIES

The following notation is used. A square matrix M has
eigenvalues in the spectrum σ(M). The Kronecker product
is denoted A⊗B. In is the n× n identity matrix.

An upper triangular Toeplitz (U4T) matrix has the form

Xn =


x1 x2 · · · xn

. . .
. . .

...... x1 x2

0 · · · x1

 . (2)

A nonsquare n ×m matrix X is U4T if it has the form
X = row(0, Xn) (for n < m) or X = col(Xm, 0) (for
n > m); that is, the square part can be augmented with
columns of zeros on the left, or rows of zeros on the bottom.

We assume the reader is familiar with linear geometric
control theory, [e.g., Wonham, 1979]. Let X be an n-
dimensional vector space with k-dimensional subspace
S ⊂ X . Let Sc ⊂ X be a complementary subspace, so
X = S⊕Sc. We make use of two standard projection maps.
First, the insertion map S : S → X maps x ∈ S to the
corresponding element x ∈ X ; in coordinates, S maps k×1
coordinate vectors to the corresponding n× 1 coordinate
vectors. Second, the natural projection Q : X → S (along
Sc) maps x ∈ X to its component in S; that is, given the
unique representation x = s + r with s ∈ S and r ∈ Sc,
Qx = s. Note that QS = Ik.

Let M : X → X be a linear map. If S ⊂ X is M -invariant
(MS ⊂ S), then the restriction of M to S is the unique
solution MS of MS = SMS . Next, define projection maps
S1, Q1 on S and S2, Q2 on Sc (which is not necessarily
M -invariant). The columns of T := [S1 S2] form a basis
for X adapted to S, and T−1 = col(Q1, Q2). Thus,

T−1MT =

[
Q1MS1 Q1MS2

Q2MS1 Q2MS2

]
=:

[
M1 ∗
0 M2

]
. (3)

Lemma 3. Let S ⊂ X be an M -invariant subspace with
complement Sc, and projection maps as above.

(i) Let M1 := Q1MS1. Then, MS1 = S1M1.
(ii) Let M2 := Q2MS2. Then, Q2M = M2Q2.

If an M -invariant subspace S ⊂ X has an M -invariant com-
plement Sc, it is calledM -decoupling. IfM is diagonalizable,
then M -invariance and M -decoupling are equivalent.

Lemma 4. (Gohberg et al. [1986, Thm. 3.1.2]). Let M be
a diagonalizable matrix, and let S be an M -invariant
subspace. Then, S is an M -decoupling subspace.

Let M : X → X be a linear map with minimal polynomial
ψ. The unstable subspace of M is X+(M) := Kerψ+(M),
where ψ+ contains all factors of ψ in the closed right
complex half-plane C+. Similarly, if S ⊂ X , the unstable
modal subspace of M̃ : S → S is denoted S+(M̃).



Lemma 5. Let S ⊂ X be an M -invariant subspace with
complement Sc. Define projection maps S2, Q2 on Sc, and
let M2 := Q2MS2. Then, (Sc)+(M2) = Q2X+(M).

Lastly, the minimal M -invariant subspace containing S is
denoted 〈M |S〉 := S +MS + · · ·+Mn−1S. A system (A,
B) has controllable subspace C := 〈A| ImB〉, the minimal
A-invariant subspace containing the image of B.

4. PATTERNED MATRICES AND SYSTEMS

In this section, we discuss some initial results that are
required in the proof of Theorem 2. In particular, we
define and analyze the condensed form. Owing to space
constraints, we only present a few proof sketches.

Formally, a patterned matrix M satisfies a commuting
relationship VM = MU , which we denote M ∈ C(V,U).
The matrices V and U are called the pattern’s base matrices.
In this paper, always assume that M , V , and U are real-
valued. We also use the shorthand C(V ) := C(V, V ).

The condensed form comes about through a structure in
patterned matrices that is exposed by transforming the base
matrices V and U into their Jordan forms

∧

V := Γ−1V V ΓV
and

∧

U := Γ−1U UΓU . Suppose every Jordan block in
∧

V and
∧

U is given by one of the r distinct choices J1, . . . , Jr, and
suppose each J i appears νi times in

∧

V and µi times in
∧

U .
Also suppose J i has size ni × ni, and is associated with
eigenvalue γi ∈ C. The Jordan blocks can be ordered as

∧

V =

Iν1 ⊗ J1

. . .

Iνr ⊗ Jr

, ∧

U =

Iµ1 ⊗ J1

. . .

Iµr ⊗ Jr

. (4)

Furthermore, there exists a conjugate permutation {ε1, . . . ,
εr} of {1, . . . , r} such that each Jε

i

= J i, νε
i

= νi, and

µε
i

= µi (for i = 1, . . . , r). We can choose the Jordan
transformations such that

ΓU = [Γ1
U · · · ΓrU ] with Γε

i

U = ΓiU ∈ Cm×(µ
ini)

ΓV = [Γ1
V · · · ΓrV ] with Γε

i

V = ΓiV ∈ Cn×(ν
ini)

(5)

and it can be shown that additionally

Γ−1V = col( Γ1V , . . . , ΓrV ) with Γε
i

V = ΓiV . (6)

This grouping and partitioning exposes the structure in a
patterned matrix M ∈ C(V,U), by adapting a result from
Gantmacher [1959, §VIII.1].

Theorem 6. Suppose V ∈ Rn×n and U ∈ Rm×m have
Jordan forms as in (4)–(5). Let M ∈ Rn×m, and define
∧

M := Γ−1V MΓU . Then, M ∈ C(V,U) if and only if

∧

M =

 ∧

M11 · · ·
∧

M1r

..

.
..
.

∧

Mr1 · · ·
∧

Mrr

 , ∧

M ij =


∧

M ij
11 · · ·

∧

M ij

1µi

..

.
..
.

∧

M ij

νi1
· · ·

∧

M ij

νiµi

 (7)

where
∧

M ij ∈ C(νini)×(µjnj) satisfies the following: if γi 6=
γj , then

∧

M ij = 0; if γi = γj , then every
∧

M ij
kl ∈ Cni×nj

is

an U4T matrix; and for all i and j,
∧

Mεiεj =
∧

M ij .

If a patterned system ẋ = Ax + Bu with A ∈ C(V ) and
B ∈ C(V,U) has diagonalizable base matrices V and U ,
then Theorem 6 can be applied to synthesize patterned
controllers [Sniderman et al., 2017] as follows.

Algorithm 7. .

1. Using the ordering (4)–(5), the transformed matrices
∧

A

and
∧

B in Theorem 6 are block diagonal, since
∧

Aij = 0
and

∧

Bij = 0 for i 6= j. Thus, the original system splits
into r decoupled modal subsystems.

2. Since V and U are diagonalizable, the Jordan blocks
J i are all scalars, so also the U4T matrices in (7)

are scalars. This means the diagonal blocks (
∧

Aii,
∧

Bii)
have no nontrivial commuting relationships — they are
unpatterned [Sniderman et al., 2017, Lem. 3.13].

3. (A,B) has thus been split into r unpatterned subsys-

tems (
∧

Aii,
∧

Bii). Synthesize a controller for each one.
4. Stack the unpatterned controllers into a block diagonal

matrix, and transform it to the original coordinates
using Theorem 6. The resulting feedback is patterned.

Algorithm 7 allows us to reproduce many standard control
results for patterned systems with diagonalizable base
matrices. However, the situation when base matrices are
not diagonalizable remains an open problem. The difficulty
arises in step 3: the U4T blocks in

∧

Aij and
∧

Bij are not
scalar in general, so the constituent subsystems are not
unpatterned. For controller synthesis, the U4T structure
must be preserved in order to recover a patterned feedback.

Given M ∈ C(V,U), the pattern manifests in repeated

elements in the U4T subblocks
∧

M ij
kl . Our key idea is to

remove this structural repetition, essentially eliminating
the redundancy inherent in U4T matrices. We form a
new matrix — the condensed form — by extracting the
entry on the main diagonal of each block

∧

M ij
kl . Define

ν := ν1 + · · ·+ νr and µ := µ1 + · · ·+ µr.

Definition 8. Let M ∈ C(V,U), and follow the Jordan
block grouping of (4)–(5). Choose any nonsingular ma-

trices
∨

ΓV ∈ Cν×ν and
∨

ΓU ∈ Cµ×µ that satisfy
∨

ΓU =
[∨
Γ1
U · · ·

∨

ΓrU
]

with
∨

Γε
i

U =
∨

ΓiU ∈ Cµ×µ
i

∨

ΓV =
[∨
Γ1
V · · ·

∨

ΓrV
]

with
∨

Γε
i

V =
∨

ΓiV ∈ Cν×ν
i

.
(8)

Then, the condensed form
∨

M ∈ Rν×µ of M is defined as

∨

M :=
∨

ΓV

 ∨

M1

. . .
∨

Mr

∨

Γ−1U ,
∨

M i =


∨

mi
11 · · · ∨

mi
1µi

...
...

∨

mi
νi1

· · · ∨

mi
νiµi

 (9)

where each
∨

mi
kl is the diagonal entry of the U4T block

∧

M ii
kl. Also,

∨

Mεi =
∨

M i for every i = 1, . . . , r.

Remark 9. A subtle distinction between the construction
of

∨

M and
∧

M regards the manner in which certain blocks
are defined to be zero. In

∧

M , a block is fixed at zero when
the corresponding eigenvalues are distinct, while in

∨

M ,
an entry is fixed at zero when the corresponding Jordan
blocks are distinct (different eigenvalues or block sizes).

By defining
∨

M this way, we obtain a mapping between
the eigenvalues of M and

∨

M (given in Lemma 13). As we
will show, this mapping allows us to place any patterned
system’s poles by a similar method to Algorithm 7.

The next result shows that the condensed form
∨

M is
patterned in its own right: for suitable base matrices, a
matrix that satisfies the resulting commuting relationship
is the condensed form of some patterned matrix in C(V,U).



Lemma 10. Given V ∈ Rn×n and U ∈ Rm×m, there exist
diagonalizable matrices

O

V ∈ Rν×ν and
O

U ∈ Rµ×µ such
that the following hold:

(i) If M ∈ C(V,U), then
∨

M ∈ C(
O

V,
O

U);

(ii) If
∨

M ∈ C(
O

V,
O

U), then
∨

M is the condensed form of
some M ∈ C(V,U).

Proof. Choose any nonsingular matrices
∨

ΓV and
∨

ΓU in
the form of (8). Choose any distinct

∨

γ1, . . . ,
∨

γr ∈ C such

that
∨

γε
i

=
∨

γi for each i = 1, . . . , r, and define
O

V =
∨

ΓV diag(
∨

γ1Iν1 , . . . ,
∨

γrIνr )
∨

Γ−1V
O

U =
∨

ΓU diag(
∨

γ1Iµ1 , . . . ,
∨

γrIµr )
∨

Γ−1U
(10)

which are real-valued and diagonalizable by construction.

Suppose M ∈ C(V,U). Take the condensed form
∨

M =
∨

ΓVW
∨

Γ−1U as in (9), and partition W = [W ij ]. Then, W

is in the form of (7) because W ij = 0 for i 6= j (since
∨

γi 6= ∨

γj), and because each W ij
kl is a scalar. By Theorem

6,
∨

M ∈ C(
O

V,
O

U), giving (i).

Next, suppose
∨

M ∈ C(
O

V,
O

U). Noting that
∨

ΓV = ΓO
V

and
∨

ΓU = ΓO
U

by construction, let diag(
∨

M1, . . . ,
∨

Mr) :=
∨

Γ−1V
∨

M
∨

ΓU by Theorem 6. Define

M := ΓV

 ∨

M1 ⊗ In1

. . .
∨

Mr ⊗ Inr

Γ−1U . (11)

Again using Theorem 6, M ∈ C(V,U), giving (ii). 2

Since Lemma 10 gives diagonalizable base matrices
O

V and
O

U , we can always synthesize controllers by applying Algo-
rithm 7 to the condensed form (

∨

A,
∨

B). After applying the
algorithm, a remaining step is to expand these condensed
controllers back to their “full-system” counterparts. The
idea is simply to expand each entry of the condensed form
into an U4T block.

Lemma 11. Let
∨

M be in condensed form (with respect to

C(V,U)), and consider
∨

Γ−1V
∨

M
∨

ΓU = diag(
∨

M1, . . . ,
∨

Mr) as
in (9). Define M as in (11). Then, M ∈ C(V,U).

4.1 Patterned Controllability and Pole Placement

A square patterned matrix cannot necessarily attain an
arbitrary spectrum of eigenvalues. Rather, the attainable
spectra are restricted as follows.

Definition 12. (Patterned Spectrum). Let V ∈ Rn×n have
Jordan blocks as in (4). A spectrum L is called V -
patterned if it can be ordered and partitioned as L = L 1]
· · · ]L r, where

L i = { λi1, . . . , λi1︸ ︷︷ ︸
ni times

, · · · , λiνi , . . . , λiνi︸ ︷︷ ︸
ni times

}

and L εi = L i for each i = 1, . . . , r.

Lemma 13. (Sniderman et al. [2015a, Lem. 5.3 & 5.8]). .
Let M ∈ C(V ). The eigenvalues of M form a V -patterned

spectrum, and the eigenvalues of
∨

M are the same without
the “ni times” repetitions. That is, σ(M) is in the form of
Definition 12, and

σ(
∨

M) = {λ11, . . . , λ1ν1 , · · · , λr1, . . . , λrνr } .

A fundamental problem is to identify conditions when the
poles of a patterned system can be placed into a patterned
spectrum by a patterned feedback. This question was
answered by Sniderman et al. [2015a] by introducing a
new notion of patterned controllability.

Definition 14. A (V,U)-patterned system (A,B) is called

patterned controllable if its condensed form (
∨

A,
∨

B) is
controllable in the usual sense.

Theorem 15. (Patterned Pole Placement [Sniderman
et al., 2015a, Thm. 6.2]). A (V,U)-patterned system
(A,B) is patterned controllable if and only if for every
V -patterned spectrum L , there exists a patterned
feedback K ∈ C(U, V ) such that σ(A+BK) = L .

In certain cases, the standard notion of controllability is
sufficient for patterned pole placement (so the new notion
of patterned controllability is not needed). This occurs for
patterned systems with diagonalizable base matrices.

Corollary 16. ([Sniderman et al., 2017, Thm. 5.4]). .
Let (A,B) be a (V,U)-patterned system with V and U
diagonalizable. (A,B) is controllable if and only if for
every V -patterned spectrum L , there exists a patterned
feedback K ∈ C(U, V ) such that σ(A+BK) = L .

5. DECOMPOSITIONS FOR PATTERNED CONTROL

In this section, we present tools for decomposing patterned
systems. We follow the standard approach for linear sys-
tems [Wonham, 1979], the main distinction being that we
require decoupling subspaces (see §3) instead of invariant
subspaces. The following results show that patterns can
be preserved through decompositions without losing the
underlying commuting relationships.

Lemma 17. Let S1,S2 ⊂ X be V -decoupling subspaces,
with insertion maps Si and natural projection maps Qi.
Also define the restrictions Vi := VSi . Then, for i, j = 1, 2,

(i) If A ∈ C(V ), then QiASj ∈ C(Vi, Vj).
(ii) If B ∈ C(V,U), then QiB ∈ C(Vi, U).

(iii) If K ∈ C(U, V ), then KSj ∈ C(U, Vj).

Proof. Using Lemma 3, (QiASj)Vj = Qi(AV )Sj =
Qi(V A)Sj = Vi(QiASj). (ii)–(iii) are similar. 2

Theorem 18. (Patterned Representation Theorem). .
Let M ∈ C(V ), and let S ⊂ X be an M -invariant and
V -decoupling subspace with V -invariant complement Sc.
Then, M has a matrix representation

[
M1 ∗
0 M2

]
(as in (3)),

where M1 ∈ C(VS) and M2 ∈ C(VSc).

Proof. Define insertions and natural projections S1, Q1

and S2, Q2 on S and Sc, respectively, and define M1 :=
Q1MS1 and M2 := Q2MS2. The coordinate transforma-
tion T := [S1 S2] gives the matrix representation (3). By
Lemma 17(i), M1 ∈ C(VS) and M2 ∈ C(VSc). 2

The next result shows the opposite direction: a patterned
matrix can be recovered from a patterned restriction.

Lemma 19. (Patterned Lifting Lemma). Let S ⊂ X be
a V -decoupling subspace with insertion S1 and natural
projection Q1 (along a V -invariant complement). Then,

(i) If A1 ∈ C(VS), then S1A1Q1 ∈ C(V ).



(ii) If B1 ∈ C(VS , U), then S1B1 ∈ C(V,U).
(iii) If K1 ∈ C(U, VS), then K1Q1 ∈ C(U, V ).

Proof. Using Lemma 3, (S1A1Q1)V = S1(A1VS)Q1 =
S1(VSA1)Q1 = V (S1A1Q1). (ii)–(iii) are similar. 2

Lastly, the images and kernels of patterned matrices are
invariant under their associated base matrices.

Lemma 20. Let M ∈ C(V,U). Then, ImM is V -invariant,
and KerM is U -invariant.

Proof. First, if x ∈ ImM , then x = Mv for some v, and
V x = V (Mv) = M(Uv) ∈ ImM . Second, if x ∈ KerM ,
then M(Ux) = V (Mx) = 0, so Ux ∈ KerM . 2

The Patterned Representation Theorem 18 and Lifting
Lemma 19 require V -decoupling subspaces, which do not
always arise from the standard system decompositions.
Fortunately, this restriction is not a limitation when using
the condensed form: by Lemma 10,

∨

M has diagonalizable
base matrices; by Lemma 4, all invariant subspaces under
diagonalizable matrices are decoupling; and by Lemma 20,
the subspaces in the standard system decompositions are
invariant. In sum, for the condensed form, the standard
system decompositions can always be performed on decou-
pling subspaces, thereby preserving a system’s pattern.

6. PATTERNED STABILIZATION (THM. 2 PROOF)

(If.) Suppose condition (1) holds, and define
O

V and
O

U as in

(10). By Lemma 10, (
∨

A,
∨

B) is a (
O

V,
O

U)-patterned system.

We will find a patterned feedback
∨

K ∈ C(
O

U,
O

V ) such that

σ(
∨

A +
∨

B
∨

K) ⊂ C−, and then we will expand
∨

K into a
stabilizing feedback K ∈ C(U, V ) for the full system.

Since
∨

Ak−1 ∈ C(
O

V ) and
∨

B ∈ C(
O

V,
O

U), it is easily verified

that
∨

Ak−1
∨

B ∈ C(
O

V,
O

U). By Lemma 20, Im(
∨

Ak−1
∨

B) is
O

V -

invariant, as is the controllable subspace
∨

C := 〈
∨

A| Im
∨

B〉.

Since
O

V is diagonalizable, therefore
∨

C is
O

V -decoupling by
Lemma 4, with

O

V -invariant complement
∨

Cc. Let
∨

S1,
∨

Q1 and
∨

S2,
∨

Q2 be the insertion and natural projection maps on
∨

C
and

∨

Cc, respectively, and define
∨

T :=
[∨

S1

∨

S2

]
. Then,

∨

T−1
∨

A
∨

T =

[ ∨

A1 ∗
0

∨

A2

]
,

∨

T−1
∨

B =

[ ∨

B1

0

]
;

∨

T−1
O

V
∨

T =

[O
V1 0

0
O

V2

]
(12)

where (
∨

A1,
∨

B1) is (
O

V1,
O

U)-patterned by Theorem 18, and
is controllable since (12) is the standard controllable de-

composition on (
∨

A,
∨

B). Therefore, we can apply Corollary

16 (or use Algorithm 7) to synthesize
∨

K1 ∈ C(
O

U,
O

V1) such

that σ(
∨

A1 +
∨

B1

∨

K1) ⊂ C−. Also, σ(
∨

A2) ⊂ C− from (1)
[Wonham, 1979, Lem. 4.5].

Next, define
∨

K =
∨

K1

∨

Q1, so
∨

K ∈ C(
O

U,
O

V ) by Lemma 19(iii).

Follow Lemma 11 to expand
∨

K intoK ∈ C(U, V ). By direct

calculation, the condensed form of A + BK is
∨

A +
∨

B
∨

K.
Then, by Lemma 13, the eigenvalues of A + BK are the
same as those of σ(

∨

A+
∨

B
∨

K) = σ(
∨

A1 +
∨

B1

∨

K1) ] σ(
∨

A2). It
follows from above that σ(A+BK) ⊂ C−, as desired.

(Only If.) Suppose there exists K ∈ C(U, V ) such that

σ(A + BK) ⊂ C−. By Lemma 13, σ(
∨

A +
∨

B
∨

K) ⊂ C−, so

(
∨

A,
∨

B) is stabilizable and condition (1) is met. 2

Theorem 2 shows that the standard notion of stabilization
is not sufficient to achieve patterned stabilization, so a
natural question is when the standard notion can be
used. As with controllability in Corollary 16, a sufficient
condition is that the base matrices are diagonalizable
[Sniderman et al., 2017, Thm. 5.6].

Corollary 21. Let (A,B) be a (V,U)-patterned system
with V and U diagonalizable. Then, (A,B) is stabilizable
by patterned feedback if and only if X+(A) ⊂ 〈A| ImB〉.

7. PATTERNED STABILIZATION BY
MEASUREMENT FEEDBACK

Consider the system ẋ = Ax + Bu as above (with A ∈
C(V ) and B ∈ C(V,U)), and incorporate a patterned
measurement y = Cx with C ∈ C(Y, V ) for some
matrix Y . Only y is available for control, rather than the
full state x as above. The Stabilization by Measurement
Feedback Problem (SMFP) asks whether the system can
be stabilized by a measurement feedback u = Ky.

Problem 22. (Patterned SMFP). Given a (V,U, Y )-pat-
terned system (A,B,C), find a patterned measurement
feedback K ∈ C(U, Y ) such that σ(A+BKC) ⊂ C−.

Our solution to the Patterned SMFP follows the technique
of the standard SMFP. We first find a state feedback
u = K ′x instead of the desired measurement feedback,
with the caveat that K ′ must only use states that appear
in the measurement — in other words, KerC ⊂ KerK ′.
This constraint is characterized geometrically by L :=
〈A|KerC〉 (the smallest A-invariant subspace containing
KerC). Then, the standard SMFP is solvable if X+(A) ⊂
C and X+(A)∩L = {0}. The Patterned SMFP uses similar
sufficient conditions on the condensed form.

Theorem 23. A patterned system (A,B,C) is stabilizable
by patterned measurement feedback if

∨

X+(
∨

A) ⊂
∨

C (13)
∨

X+(
∨

A) ∩
∨

L = {0} . (14)

where
∨

C := 〈
∨

A| Im
∨

B〉 and
∨

L := 〈
∨

A|Ker
∨

C〉.

Proof. Suppose conditions (13)–(14) hold, and define
O

V ,
O

U , and
O

Y as in (10). By Lemma 10, (
∨

A,
∨

B,
∨

C) is a (
O

V,
O

U,
O

Y )-patterned system. We will find a patterned feedback
∨

K ∈ C(
O

U,
O

Y ) such that σ(
∨

A +
∨

B
∨

K
∨

C) ⊂ C−, and then

we will expand
∨

K into a stabilizing measurement feedback
K ∈ C(U, Y ) for the full system.

In an analogous fashion to the proof of Theorem 2,
the subspace

∨

L := 〈
∨

A|Ker
∨

C〉 is
O

V -decoupling, with a
O

V -invariant complement
∨

Lc. Let
∨

S1,
∨

Q1 and
∨

S2,
∨

Q2 be
insertion and natural projection maps on

∨

L and
∨

Lc, and
define

∨

T :=
[∨

S1

∨

S2

]
. We obtain the decomposition (12),

where (
∨

A2,
∨

B2) is (
O

V2,
O

U)-patterned by Theorem 18. This
subsystem is also stabilizable: using (14) and Lemma 5,

(
∨

Lc)+(
∨

A2) =
∨

Q2

∨

X+(
∨

A) ⊂
∨

Q2〈
∨

A| Im
∨

B〉 = 〈
∨

A2| Im
∨

B2〉 .
Apply Corollary 21 to stabilize (

∨

A2,
∨

B2) using a patterned

state feedback
∨

K ′2 ∈ C(
O

U,
O

V2), so σ(
∨

A2 +
∨

B2

∨

K ′2) ⊂ C−.

From condition (14), it also follows that σ(
∨

A1) ⊂ C−



[Wonham, 1979, Lem. 4.5]. Next, define
∨

K ′ =
∨

K ′2
∨

Q2 ∈
C(

O

U,
O

V ) by Lemma 19(iii), and notice that

Ker
∨

C ⊂
∨

L = Ker
∨

Q2 ⊂ Ker(
∨

K ′2
∨

Q2) = Ker
∨

K ′ .

Therefore, the equation
∨

K ′ =
∨

K
∨

C has a patterned solution
∨

K ∈ C(
O

U,
O

Y ) [Sniderman et al., 2017, Lem. 3.14]. This

measurement feedback
∨

K gives closed-loop poles

σ(
∨

A+
∨

B
∨

K
∨

C) = σ(
∨

A1) ] σ(
∨

A2 +
∨

B2

∨

K ′2) ⊂ C−

for the condensed system. Lastly, following Lemma 11, let
K ∈ C(U, Y ) be a matrix with condensed form

∨

K. By
Lemma 13, σ(A + BKC) ⊂ C−, so the system has been
stabilized by patterned measurement feedback. 2

8. NUMERICAL EXAMPLE

Let (A,B,C) be the following (V,U, Y )-patterned system:

V =


1 0 0 0 1

−1 2 0 −1 2
0 0 1 0 0

−1 1 −2 0 3
0 0 −1 0 2

 , A =


−2 1 1 −1 0
−6 5 −1 −3 9

0 0 −1 0 0
−2 2 5 0 −1

0 0 2 0 −3


U =

[
0 0 1
1 1 0

−2 0 3

]
, B =

[
−1 4 0 −1 −1

0 2 0 2 0
1 −3 0 0 1

]T

Y =

[
2 −1 0
1 0 0

−1 1 2

]
, C =

[
−7 7 −4 −5 12
−5 5 −2 −3 8
−2 2 −2 −2 4

]
.

Notice that σ(A) = {−3,−1,−1, 2, 2}, so the system has
two unstable open-loop poles. Our goal is to stabilize the
system using a patterned measurement feedback K ∈ C(U,
Y ), if possible. Following the method of Theorem 23, the
first steps are to find the condensed form of the system,
and to check conditions (13)–(14). Using transformations

ΓV =


1 1 0 0 1
1 0 1 1 0
0 1 0 0 0
0 0 1 0 1
0 1 0 0 1

, ΓU =

[
0 1 1
1 1 1
0 1 2

]
, ΓY =

[
1 2 0
1 1 0
0 1 1

]

with
∨

ΓV = I3 and
∨

ΓU =
∨

ΓY = I2, the system matrices
have condensed forms

∨

A =

[
−1 0 0

0 2 0
0 0 −3

]
,

∨

B =

[
0 0
2 0
0 1

]
,

∨

C =
[

0 2 0
0 0 0

]
.

It can also be confirmed that
O

V = diag(1, 1, 2) and
O

U =
O

Y = diag(1, 2) satisfy Lemma 10, so
∨

A ∈ C(
O

V ),
∨

B ∈ C(
O

V,
O

U), and
∨

C ∈ C(
O

Y,
O

V ). The relevant subspaces are

∨

X+(
∨

A) = Im

[
0
1
0

]
,

∨

C = Im

[
0 0
1 0
0 1

]
,

∨

L = Im

[
1 0
0 0
0 1

]
.

It can be seen that the condensed form’s single unstable
mode is controllable (

∨

X+(
∨

A) ⊂
∨

C) and is not masked out

(
∨

X+(
∨

A)∩
∨

L = {0}). Thus, conditions (13)–(14) of Theorem
23 hold, and the Patterned SMFP is solvable. To find a
solution, the condensed system will be decomposed based

on
∨

X =
∨

L ⊕
∨

Lc, where
∨

Lc = Im [0 1 0]
T

. Letting
∨

T be the
pertinent coordinate transformation,

∨

T−1
∨

A
∨

T =

[
−1 0 0

0 −3 0

0 0 2

]
,

∨

T−1
∨

B =

[
0 0
0 1

2 0

]
;

∨

T−1
O

V
∨

T =

[
1

2

1

]
.

The top-left subsystem is masked out by
∨

L, while the
bottom-right subsystem is available to the (condensed

form’s) measurement. As guaranteed in the proof of
Theorem 23, the system’s instability is relegated to the
latter subsystem. In particular, the patterned feedback

[−2 0]
T ∈ C(1,

O

U) moves the single pole from 2 to −2.

Letting
∨

Qc : R3 →
∨

Lc be the third row of
∨

T−1, we define
∨

K ′ := [−20 ]
∨

Qc = [ 0 −2 0
0 0 0 ] ∈ C(

O

U,
O

V ) by Lemma 19(iii).

Turn
∨

K ′ into a patterned measurement feedback by solving
the equation

∨

K
∨

C =
∨

K ′; a patterned solution is
∨

K :=
[−1 0

0 1 ] ∈ C(
O

U,
O

Y ). Expand
∨

K to the full system by turning
each entry into an U4T block as in Lemma 11, giving

K := ΓU

[
−1 0 0

0 −1 0

0 0 1

]
Γ−1Y =

[
−2 2 1
−1 0 1
−3 3 2

]
∈ C(U, Y ) .

Finally, σ(A+BKC) = {−3,−2,−2,−1,−1}, confirming
that the unstable open-loop poles have been moved from
2 to −2, and we have solved the Patterned SMFP.

In conclusion, we have solved patterned versions of two
fundamental control problems, stabilization by state and
measurement feedback. These problems had previously
been solved for certain patterned systems, but the gen-
eral case remained unsolved. We have closed these open
problems through the construct of the condensed form,
which removes the structure of the pattern. Consequently,
the new solvability conditions generalize those of standard
geometric control to patterned distributed systems.
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