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ABSTRACT
Engineering systems are often architected to consist of a number of interconnected
parts that interact in distinct patterns. Because most control design methods only
provide general, unpatterned control laws, a compelling open question is how to
synthesise distributed control laws that adhere to a system’s interconnection pattern.
This paper addresses patterned control synthesis for systems with interconnection
patterns. The pattern is encoded algebraically through commuting relationships
of the system’s state space matrices. We show that a number of classic control
problems are amenable to a patterned synthesis. Moreover, we show that these
patterned control problems have the same solvability conditions as their unpatterned
counterparts. That is, a patterned control law can be found whenever any control
law can be found. Our findings suggest that patterned systems naturally admit
patterned controllers.
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1. Introduction

This paper studies the control of a class of multivariate distributed systems called
patterned linear systems. In a distributed system, the subsystems (or agents) are
interconnected according to a specific structure. In a patterned linear system, that
interconnection structure induces relationships among elements of the system’s matrices.
These relationships together are called a ‘pattern’. This pattern must in turn be carried
over to control laws synthesised for the system. The requirement of preserving strict
interconnection constraints between subsystems in control laws is well known to be
difficult, frequently rendering control problems unsolvable (Wang & Davison, 1973).
Patterned systems provide a way around some of these difficulties by relaxing the strict
requirement of interconnection constraints while still retaining the interconnection
structures. That is, patterned control provides a means for distributed control without
requiring pure decentralization up front. This approach allows us to apply a traditional
control framework — the geometric framework (Wonham, 1979) — to distributed
control problems. Traditional control, however, does not guarantee any particular
form in synthesised controllers, whereas patterned controllers must follow the same
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relationships as the open-loop system matrices. This is the main issue treated by this
paper.

Distributed and decentralised systems have been widely studied. A sampling of
research (by no means inclusive) related to our work is given by Belabbas (2013);
Commault, Dion, and Hovelaque (1997); Denis and Looze (1999); Elbanna (1988); Hovd,
Braatz, and Skogestad (1997); Hovd and Skogestad (1994); Lin (1974); Lunze (1986,
1989); Massioni and Verhaegen (2009); Rotkowitz and Lall (2006); Sundareshan and
Elbanna (1991); van der Schaft (1987). Many of the current techniques for distributed
control follow the progression of first proposing a controller, and second determining
whether it is viable for a particular problem. In contrast, our patterned control
methodology first determines whether a control problem is solvable at all, and second
synthesises a controller to solve it. Through this progression, the main contribution of
our work is to develop a synthesis-based control framework for a class of distributed
systems, matching the standard framework used in most other control problems. In
this paper, we study several standard problems of geometric control theory, showing
that those same problems can be solved for patterned distributed systems.

Patterned linear systems were first introduced by Hamilton and Broucke (2012) for
the case of scalar subsystems or agents. The pattern of subsystem interconnections was
encoded algebraically in terms of polynomials of a base matrix. A geometric approach
was adopted to solve many of the standard control synthesis problems (Wonham, 1979)
with the additional requirement of obtaining a patterned feedback.

The framework of patterned linear systems was extended to multivariate agents by
Sniderman, Broucke, and D’Eleuterio (2013, 2015a), Consolini and Tosques (2014),
and Holmes and Broucke (2016). To realise this extension, a new algebraic encoding of
the system pattern was adopted in terms of commuting relationships of the system
matrices, rather than polynomials of a base matrix. First, Sniderman et al. (2013)
studied systems with the particular block circulant pattern, and showed that many
standard control problems could be solved by block circulant feedbacks under the
same necessary and sufficient conditions. To extend the class of block circulant
systems, Sniderman et al. (2015a) looked at patterns encoded by any single commuting
relationship between the system matrices and a base matrix, and showed that the
standard notion of controllability does not suffice to allow for pole placement with a
patterned feedback matrix, in contrast with classical pole placement in linear systems.
Rather, patterned pole placement operates under the necessary and sufficient condition
of the controllability of a so-called ‘reduced system’. Consolini and Tosques (2014)
encoded patterns using the automorphism group of a certain system graph for systems
whose patterns are completely described by symmetries. These symmetries yield a family
of commuting relationships between the system matrices and a (matrix) representation
of the automorphism group of the graph. However, a patterned pole placement theorem
was not postulated, and therefore only a subset of synthesis problems could be solved.
Holmes and Broucke (2016) adopted the framework of Consolini and Tosques (2014) to
solve the Patterned Pole Placement Problem. The approach followed that of Sniderman
et al. (2015a) to study the controllability of a reduced system (which effectively quotients
out the graph symmetries).

In this paper, we follow the framework of Sniderman et al. (2015a) to consider a class
of patterned systems where the system matrices satisfy a single commuting relationship
with a base matrix that is diagonalisable. A key question arises: do the standard results
of linear control theory apply to this class, without requiring additional conditions
(as found by Holmes and Broucke (2016); Sniderman et al. (2015a))? We answer this
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question affirmatively for patterned systems whose base matrices are diagonalisable.
With this class of patterned systems, the difficulties encountered by Holmes and Broucke
(2016); Sniderman et al. (2015a) to achieve a patterned pole placement theorem do
not arise. Instead, we arrive at the appealing outcome that all the standard results of
linear control theory carry over to this class of patterned linear systems without any
changes in the necessary and sufficient conditions. This finding echoes the results of
Hamilton and Broucke (2012), where a similar outcome was obtained for patterned
linear systems with scalar agents.

While this paper is directly related to those of Hamilton and Broucke (2012),
Sniderman et al. (2013, 2015a), Consolini and Tosques (2014), and Holmes and Broucke
(2016), our work also finds roots in earlier research studying systems whose matrices
satisfy commuting relationships. First, Hazewinkel and Martin (1983) contributed early
work involving commuting relationships. Inspired by a seminal paper on block circulant
systems (Brockett & Willems, 1974), they studied a more general class of systems
with symmetries, and characterised those systems’ controllability and stabilisability in
terms of subsystems determined via the symmetry algebra, producing results similar
in style to those of Holmes and Broucke (2016). Second, Fagnani and Willems (1994)
developed a method to embed symmetries into the behavioural control approach, and
found that symmetric controllers exist whenever standard controllers exist. Our work is
complementary to the above two, and differs in a two key ways: our patterns involve a
diagonalisable base matrix, while the above symmetries use a number of diagonalisable
and invertible matrices; and we study several geometric control problems other than
pole placement and stabilisation, which are not explicitly covered in prior works.

This paper is organised as follows. Section 2 contains standard background on linear
algebra and linear systems, as well as notation. Section 3 introduces patterned matrices,
and lays out the main mathematical tools for keeping track of patterns when solving
control problems. First, we discuss the algebra of patterns in terms of commuting
relationships with certain matrices, as well as the geometry of patterns in terms of
certain invariant subspaces under those matrices. To tie the algebra and geometry
together, we show how these commuting relationships carry through restrictions to
these invariant subspaces, thereby providing a way to preserve patterns in the state
space decompositions of geometric control. Then, we discuss the spectra of patterned
matrices, and examine patterned solutions to linear equations of patterned matrices.
With this machinery in hand, we turn to patterned control systems in Section 4. After
defining initial concepts, Sections 5 and 6 discuss what the fundamental properties of
controllability and observability mean for patterned systems. Section 5 also presents
methods for pole placement and stabilisation of patterned systems using patterned
feedbacks. Using these techniques, Sections 7–10 study several other multivariable
controller synthesis problems on patterned systems, including the Output Stabilisation
Problem, Disturbance Decoupling Problem, Stabilisation by Measurement Feedback
Problem, and Restricted Regulator Problem. Section 11 provides a numerical example
to demonstrate the patterned synthesis technique for a pattern that occurs often
in distributed systems. Section 12 gives concluding remarks to further assess the
significance of the findings.
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2. Mathematical Preliminaries

This section presents some mathematical background and notation. Given a matrix
A, denote its transpose by AT and its complex conjugate by A. If A is square, denote
its spectrum by σ(A); also denote its ‘distinct spectrum’ — the set containing one of
each distinct eigenvalue — by σd(A) ⊂ σ(A). Given a vector space X with independent
subspaces R,S ⊂ X (so R∩ S = {0}), denote their direct sum by R⊕ S.

It is assumed that the reader is already familiar with the tools of linear geometric
control theory (Basile & Marro, 1991; Wonham, 1979). Let X be a vector space with
subspace S ⊂ X and complementary subspace Sc ⊂ X , so X = S ⊕ Sc. Geometric
control involves state space decompositions that are based on two standard projection
maps: the insertion and the natural projection. The insertion map on S, denoted
S : S → X , maps x ∈ S to the corresponding element x ∈ X ; that is, Sx := x. The
natural projection on S along Sc, denoted Q : X → S, maps x ∈ X to its component in
S; that is, using the unique decomposition x = s+ r with s ∈ S and r ∈ Sc, Qx := s.
These maps satisfy QS = IS , where IS is the identity map on S. Also, S = ImS and
Sc = KerQ.

Let A : X → X be a linear map, and suppose that S is A-invariant; that is, AS ⊂ S.
The restriction of A to S, denoted by the linear map AS : S → S, is the unique solution
of the equation AS = SAS ; thus, AS performs the action of A on S, and is not defined
off S. In a basis for X adapted to S, A has the matrix representation

[
A1 ∗
0 A2

]
, where A1

is a matrix representation of AS (denoted A1 ≡ AS). This matrix representation can be
produced by the above projection maps: define insertions and natural projections on S
by S1, Q1 and on Sc by S2, Q2, and define the coordinate transformation T = [S1 S2].
Then, T−1 = col(Q1, Q2), and T−1AT yields a matrix with the above form, where
A1 = Q1AS1 and A2 = Q2AS2. The following relationships can be deduced:

AS1 = S1A1 (1)

Q2A = A2Q2 . (2)

If Sc is also A-invariant, then the matrix representation in the adapted basis will be
block diagonal — i.e., the top-right block ‘∗’ will be 0 — and (1)–(2) will also hold for
S2 and Q1.

Let C = Cm t Cc be a disjoint partition of the complex plane (so Cm ∩ Cc = ∅).
Split the minimal polynomial of A as ψ(s) = ψm(s)ψc(s) according to its factors
in Cm and Cc. The corresponding modal subspaces are Xm(A) := Kerψm(A) and
X c(A) := Kerψc(A). The following result relates this modal decomposition to other
state space decompositions of X .

Lemma 2.1 (Wonham, 1979). Let A : X → X be a linear map. Let S ⊂ X be an
A-invariant subspace, and define A1 and A2 as above. Let C = Cm t Cc be a disjoint
partition of C. Then, Xm(A) ⊂ S if and only if σ(A2) ⊂ Cc, and Xm(A) ∩ S = 0 if
and only if σ(A1) ⊂ Cc.

3. Patterned Matrices and Decoupling Subspaces

Our framework for control of patterned systems is based on an interplay between the
algebraic properties of commuting matrices and the geometric properties of invariant
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subspaces. In this section, we introduce some of the main tools for solving the problem
of patterned control synthesis.

Let F ∈ {C,R} be a field, and define matrices V ∈ Fn×n and U ∈ Fm×m.

Definition 3.1. A matrix A ∈ Fn×m is called a patterned matrix if it satisfies the
commuting relationship V A = AU . This relationship is denoted by A ∈ C(V,U), and
V and U are called the base matrices of the pattern. If V = U , then we use the
shorthand C(V ) := C(V, V ). If the field is important, we write CF(V,U).

A pattern prescribes a specific form in a matrix, and so is useful for encoding a
number of common distributed system structures. We present two particular examples
here, a ring and a bidirectional chain, that fit into the model used in this paper.

1

2

3

1

2

3

Figure 1. Distributed systems with diagonalisable base matrices: ring (left) and bidirectional chain (right).

Example 3.2 (Ring). Consider a system made up of three parts, whose
interconnections form a ring (as in Figure 1 (left)). The parts are identical, each
having the same n states and m inputs, and the interconnections among the parts are
also identical; for example, the coupling between parts ‘1’ and ‘2’ is the same as the
coupling between parts ‘2’ and ‘3’, and between ‘3’ and ‘1’. This manifests as a block
structure in all the system matrices, made up of diagonal bands of identical blocks
(wrapped around cyclically):

M =

[
M1 M2 M3

M3 M1 M2

M2 M3 M1

]
, Mi ∈ Fn×m .

This block structure is called block circulant, and can be uniquely described by a
commuting relationship involving the fundamental permutation matrix

Π3 =

[
0 1 0
0 0 1
1 0 0

]
.

Specifically, M is block circulant if and only if (Π3 ⊗ In)M = M(Π3 ⊗ Im) (where ‘⊗’
represents the Kronecker product), and it follows that every ring system is (Π3 ⊗ In)-
patterned. J

Example 3.3 (Bidirectional Chain). Consider a system made up of three parts, whose
interconnections form a bidirectional chain (as in Figure 1 (right)). Again, the parts are
identical and have identical interconnections. This again manifests as a block structure
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in all the system matrices; one possible such structure is given by

M =

[
M1 M2 M3

M2 M1 +M3 M2

M3 M2 M1

]
, Mi ∈ Fn×m ,

where the coupling in the middle term is in the style of a mass-spring system. This
block structure can be uniquely described by a commuting relationship involving the
matrix

Ṽ =

[
0 1 0
1 0 1
0 1 0

]
.

Specifically, M has the above block structure if and only if (Ṽ ⊗ In)M = M(Ṽ ⊗ Im)
(where ‘⊗’ denotes the Kronecker product), and it follows that every bidirectional chain
system is (Ṽ ⊗ In)-patterned. J

Knowing that many common distributed systems can be encoded by patterns, the
central question of this paper is how to keep sight of a pattern while performing the
standard decompositions and syntheses for control design. The key idea in linking these
notions lies in finding suitable invariant subspaces that also have invariant complements.
These subspaces are called decoupling, in that they fully decouple a state space into
two invariant parts. Invoking these decoupling subspaces is the crucial step that ties
together the algebraic properties of commuting matrices and the geometric notions of
linear geometric control (Basile & Marro, 1991; Wonham, 1979).

Definition 3.4. A subspace S ⊂ X is called V -decoupling if it is V -invariant, and it
has a V -invariant complement Sc. That is, V S ⊂ S and V Sc ⊂ Sc.

In general, a V -invariant subspace is not V -decoupling. However, if V is
diagonalisable, then this will be the case (Gohberg, Lancaster, & Rodman, 1986,
Theorem 3.2.1). For this reason, we focus only on patterns with diagonalisable base
matrices, and always assume that this property holds. Such an assumption is not
unfounded; it appears in a number of other recent papers (Consolini & Tosques, 2014,
2015; Deutscher, 2013; Massioni & Verhaegen, 2009) (and is less restrictive than some
of them). In fact, some such restriction appears in all work to date regarding control
with commuting relationships, except for some preliminary results in (Sniderman et
al., 2015a).

Assumption 3.5. Throughout the paper (even when not explicitly stated), we assume
that all base matrices are diagonalisable. For instance, if M ∈ C(V,U), then V and U
are diagonalisable.

The next two results state that decoupling and diagonalisability are maintained in
common subspace operations and restrictions.

Lemma 3.6 (Gohberg et al., 1986). Let V be diagonalisable and let S ⊂ X be V -
invariant (or -decoupling). Then VS is diagonalisable.

Lemma 3.7. Let V be a diagonalisable matrix, and let S1,S2 ⊂ X be V -decoupling
subspaces. Then, S1 + S2 and S1 ∩ S2 are also V -decoupling subspaces.
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Proof. Since S1 and S2 are V -invariant, therefore S1 + S2 and S1 ∩ S2 are also V -
invariant (Gohberg et al., 1986, Proposition 1.8.1). Since V is diagonalisable, therefore
S1 +S2 and S1∩S2 also have V -invariant complements (Gohberg et al., 1986, Theorem
3.2.1), so they are V -decoupling by definition.

Next, consider A ∈ C(V ), and let S be an A-invariant subspace. Is S also V -invariant
(or V -decoupling)? Not generally. Fortunately, several specific A-invariant subspaces
are V -decoupling, including those needed to solve the control problems in this paper.

Lemma 3.8. Let A ∈ C(V ), B ∈ C(V,U), and K ∈ C(U, V ). Let ρ be a polynomial,
and let S ⊂ X be a V -decoupling subspace. Then,

(i) ImB and KerK are V -decoupling subspaces.
(ii) Im ρ(A) and Ker ρ(A) are V -decoupling subspaces.

(iii) AS (the image of S under A) and A−1S := {x ∈ X | Ax ∈ S} (the preimage of
S under A) are V -decoupling subspaces.

Proof.

(i) Let x ∈ ImB, so x = Bv for some v. Then, V x = V (Bv) = B(Uv) ∈ ImB. Let
x ∈ KerK, so Kx = 0. Then, K(V x) = U(Kx) = 0, so V x ∈ KerK.

(ii) ρ(A) ∈ C(V ) by Lemma A.1, so Im ρ(A) and Ker ρ(A) are V -invariant by (i).
(iii) First, V (MS) = M(V S) ⊂ MS, so MS is V -invariant. Second, let x ∈ M−1S.

SinceMx ∈ S and V S ⊂ S, it follows thatM(V x) = V (Mx) ∈ S, so V x ∈M−1S.
Thus, M−1S is V -invariant.

Having stated the main properties of decoupling subspaces, we next explore their
utility in maintaining patterns in restrictions of patterned matrices. In particular, if A
is a V -patterned matrix, and S is an A-invariant and V -decoupling subspace, then the
restriction AS will commute with the restriction VS .

Lemma 3.9. Let S1,S2 ⊂ X be V -decoupling subspaces. Let S1, Q1 and S2, Q2 be
the insertions and natural projections on S1 and S2, respectively. Also define the
restrictions V1 := VS1 and V2 := VS2. For i, j = 1, 2,

(i) If A ∈ C(V ), then QiASj ∈ C(Vi, Vj).
(ii) If B ∈ C(V,U), then QiB ∈ C(Vi, U).

(iii) If K ∈ C(U, V ), then KSi ∈ C(U, Vi).

Proof. Using (1) and (2), (QiASj)Vj = QiAV Sj = QiV ASj = Vi(QiASj), giving (i).
The proofs of (ii) and (iii) are similar.

The next result shows how matrix patterns are preserved through state space
decompositions. This result exploits the fact that the restriction of a patterned matrix
to a V -decoupling subspace retains the essential algebraic property of commuting with
certain matrices, an immediate result of Lemma 3.9(i). Thus, commuting becomes the
key enabling property in patterned decompositions.

Theorem 3.10 (Patterned Representation Theorem). Let A ∈ C(V ), and let S ⊂ X
be an A-invariant and V -decoupling subspace, with V -invariant complement Sc ⊂ X .
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Then, A has a matrix representation [
A1 ∗
0 A2

]
(3)

where A1 ≡ AS . Moreover, A1 ∈ C(VS) and A2 ∈ C(VSc).

Proof. Let {x1, . . . , xk, xk+1, . . . , xn} be a preferred basis for X , so S =
span{x1, . . . , xk} and Sc = span{xk+1, . . . , xn}. From this basis, define the insertions
and natural projections S1 : S → X , S2 : Sc → X , Q1 : X → S, and Q2 : X → Sc. The
coordinate transformation T = [S1 S2] gives the standard representation

T−1AT =

[
Q1AS1 ∗

0 Q2AS2

]
.

Then, A1 := Q1AS1 = Q1S1AS = AS (using (1)) and A2 := Q2AS2, giving (3). Further,
A1 ∈ C(VS) and A2 ∈ C(VSc) by Lemma 3.9(i).

Lemma 3.9 and Theorem 3.10 start with patterned matrices and show that their
restrictions have patterns involving the restrictions of the base matrices. Conversely,
we next start with matrices that commute with these restrictions, and show that they
can be lifted back up to full patterned matrices.

Lemma 3.11 (Patterned Lifting Lemma). Let S ⊂ X be a V -decoupling subspace
with insertion S1 : V → X and natural projection Q1 : X → V (along a V -invariant
complement).

(i) If A1 ∈ C(VS), then S1A1Q1 ∈ C(V ).
(ii) If B1 ∈ C(VS , U), then S1B1 ∈ C(V,U).

(iii) If K1 ∈ C(U, VS), then K1Q1 ∈ C(U, V ).

Proof. Using (1) and (2),

(S1A1Q1)V = S1A1VSQ1 = S1VSA1Q1 = V (S1A1Q1)

giving (i). The proofs of (ii) and (iii) are similar.

Transitioning between a full space and a subspace is one of the main ideas in
linear geometric control. The ability to perform these transitions without sacrificing
commuting relationships, as shown by Theorem 3.10 and Lemma 3.11, provides the
method by which feedback laws developed through linear geometric control will be able
to preserve a control system’s pattern. The matrices that occur in these decompositions
will always involve restrictions of V -patterned matrices to V -decoupling subspaces.

On the other hand, we have already mentioned that block diagonalisation is also an
important factor in control syntheses, and is still required for two steps in our framework.
Block diagonalisation of patterned matrices is based on the Jordan forms of its base
matrices via a classic result in Gantmacher (1959), stated here as Theorem A.2. Block
diagonalisation has been the central idea of most previous research (e.g., (Brockett &
Willems, 1974; Hovd et al., 1997; Hovd & Skogestad, 1994; Lunze, 1986; Massioni &
Verhaegen, 2009) for block circulant and related systems): these papers start by block
diagonalising the system, then designing a feedback law on each of the blocks, and
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finally transforming back to original coordinates. A novelty of this work is that our
design approach begins with the standard control theoretic decompositions on the full
system, whereas block diagonalisation is suppressed to the lowest level step in control
design. This approach is intuitively appealing as it decouples the control problem
from the pattern — it allows standard techniques to be used without consideration
of the system’s pattern. Block diagonalisation still remains the mechanism by which
we explicitly synthesise patterned controllers, specifically to solve the Patterned Pole
Placement Problem and patterned linear equations. Next, we present a particular
ordering of the eigenvalues of V and U that facilitates block diagonalisation.

Remark 3.12 (Ordering Conventions). Throughout the paper, superscript indices
refer to items ordered according to this remark, and subscript indices refer to items
with no particular ordering. Let V and U be diagonalisable, and denote the set of their
distinct eigenvalues by σd(V ) ∪ σd(U) = {δ1, . . . , δr}, where each δi has multiplicity ni

in σ(V ) and mi in σ(U). (Note that some ni or mi may be zero, reflecting that δi does
not appear in the corresponding spectrum.) Order all the eigenvalues of V and U as
follows:

σ(V ) =
{ n1 times︷ ︸︸ ︷
δ1, . . . , δ1, . . . ,

nr times︷ ︸︸ ︷
δr, . . . , δr

}
,

σ(U) =
{
δ1, . . . , δ1︸ ︷︷ ︸
m1 times

, . . . , δr, . . . , δr︸ ︷︷ ︸
mr times

}
.

Next, partition ΓV and ΓU in the same way, so

ΓV =
[
Γ1
V · · · ΓrV

]
, ΓU =

[
Γ1
U · · · ΓrU

]
(4)

where each ΓiV (ni columns) and ΓiU (mi columns) is constructed from eigenvectors
corresponding to eigenvalue δi; these full sets of eigenvectors exist because V and U are
diagonalisable (Gohberg et al., 1986). Finally, diagonalise V and U as

∧

V := Γ−1V V ΓV =

diag(δ1In1 , . . . , δrInr) and
∧

U := Γ−1U UΓU = diag(δ1Im1 , . . . , δrImr), so the eigenvalues
appear in the same order.

If V and U are real, then their spectra are symmetric, so there exists a ‘conjugate
permutation’ {ε1, . . . , εr} of {1, . . . , r} such that for all i = 1, . . . , r,

δε
i

= δi , nε
i

= ni , mεi = mi . (5)

Choose the eigenvectors of ΓV and ΓU to follow this conjugate permutation, so Γε
i

V = ΓiV
and Γε

i

U = ΓiU for each i = 1, . . . , r.

The most important result on block diagonalisation, explaining how a real patterned
matrix can be turned into a block diagonal matrix and vice versa, is given in the
statement below. The proof can be found in the appendix, along with more supporting
results of this type.

Lemma 3.13. Let V and U be real and follow the ordering of Remark 3.12. Let
matrices A and

∧

A satisfy
∧

A = Γ−1V AΓU . Then, A ∈ CR(V,U) if and only if
∧

A =

diag(
∧

A1, . . . ,
∧

Ar), where
∧

Ai ∈ Cni×mi

and
∧

Aε
i

=
∧

Ai for each i = 1, . . . , r.

An application of the above result is to find patterned solutions to linear equations
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of patterned matrices. The proof is in the appendix.

Lemma 3.14. Suppose A ∈ C(V,U) and B ∈ C(W,U) (with W , V , and U all
diagonalisable, following Assumption 3.5). Also suppose that the equation XA = B
has a solution X. Then, there exists a patterned solution X ∈ C(W,V ).

At this point, the foundations have been laid in the areas of patterned matrices,
decoupling subspaces, and restrictions to subspaces and lifts to the full state space of
patterned matrices. Patterned control systems can now be studied from a geometric
viewpoint.

4. Patterned Systems

Consider the linear time-invariant system given by

ẋ(t) = Ax(t) +Bu(t) + Ew(t)

y(t) = Cx(t)

z(t) = Dx(t)

(6)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector, w(t) ∈ Rs represents
a disturbance, y(t) ∈ Rp is the measurement vector, and z(t) ∈ Rq is the output vector.
The state space, input space, measurement space, and output space are denoted by X ,
U , Y, and Z, respectively. Assume a real system with matrices A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, D ∈ Rq×n, and E ∈ Rn×s. If all matrices in the system are patterned —
that is, A ∈ C(V ), B ∈ C(V,U), C ∈ C(Y, V ), D ∈ C(Z, V ), and E ∈ C(V,W ) — then
(6) is called a V -patterned system.

The open-loop poles of the system are the eigenvalues of A; for patterned systems,
they form a so-called V -patterned spectrum, explained below. The stable and unstable
subspaces of A are denoted X−(A) and X+(A). Finally, we refer to a system as
unpatterned if no commuting relationships are explicitly being considered — that is,
if the system matrices’ elements are not explicitly constrained by certain algebraic
relationships, meaning that any controller would be a valid choice for the system.

5. Controllability

Consider the patterned system (A,B) from (6), and let B := ImB. The controllable
subspace 〈A|B〉 of (A,B) is given by 〈A|B〉 = B + AB + · · · + An−1B. This section
establishes that the controllable subspace captures exactly the portion of a patterned
system that can be controlled by patterned feedback, in the same way as it does for a
general system with ‘unpatterned’ feedback.

Lemma 5.1. The controllable subspace of the V -patterned system (A,B) is a V -
decoupling subspace.

Proof. A ∈ C(V ) and B ∈ C(V,U). By Lemma A.1, Ai−1B ∈ C(V,U), and by
Lemma 3.8(i), Im(Ai−1B) is a V -decoupling subspace for all i ∈ N. Using Lemma 3.7,
it follows that 〈A|B〉 is a V -decoupling subspace.
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It is well known that the pair (A,B) is controllable if and only if the spectrum of
A+BK can be arbitrarily assigned to any symmetric set of poles by choice of state
feedback K : X → U . For a patterned system, the question arises as to what possible
poles can be achieved by choice of patterned state feedback. This question is addressed
by the next result.

Definition 5.2 (Patterned Spectrum). Suppose V is a real and diagonalisable matrix
with distinct eigenvalues σd(V ) = {δ1, . . . , δr} and multiplicities ni, i = 1, . . . , r
(following Remark 3.12). A spectrum L is called V -patterned if it can be ordered
and partitioned as L = L 1]· · ·]L r, where card(L i) = ni for each i, and L i = L j

whenever δi = δj.

Lemma 5.3. Let A ∈ C(V ). Then, σ(A) is V -patterned.

Proof. Following Remark 3.12, suppose σd(V ) = {δ1, . . . , δr} with multiplicities ni.
Define

∧

A := Γ−1V AΓV . By Lemma 3.13,
∧

A = diag(
∧

A1, . . . ,
∧

Ar), where cardσ(
∧

Ai) = ni,

and
∧

Ai =
∧

Aj whenever δi = δj . Taking L i = σ(
∧

Ai), it follows immediately that σ(A)
is V -patterned.

This result says that any patterned matrix has a similarly patterned spectrum, and so
it follows that pole placement in patterned systems can only achieve patterned spectra.
In other words, if a patterned system (A,B) is controllable, then the eigenvalues
of A + BK can be assigned to any V -patterned spectrum by patterned feedback
K ∈ C(U, V ), and cannot be assigned to any non-V -patterned spectrum. This result
was first stated for block circulant systems by Brockett and Willems (1974), and is
generalised here to apply to any patterned system with diagonalisable base matrices.
A similar result is found in (Consolini & Tosques, 2014) for patterns with a group
structure. A more general result is found in (Sniderman et al., 2015a), but our use of
Assumption 3.5 allows for a much simpler synthesis method for explicit pole placement,
as well as a cleaner proof.

Theorem 5.4 (Patterned Pole Placement). Let (A,B) be a patterned system satisfying
Assumption 3.5. Then, (A,B) is controllable if and only if for every V -patterned
spectrum L , there exists a patterned feedback K ∈ C(U, V ) such that σ(A+BK) = L .

The proof of Theorem 5.4, found in the appendix, provides an explicit method by
which the poles of a controllable patterned system can be placed into any patterned
spectrum by patterned feedback. The underlying algorithm is outlined here:

1. Block diagonalise the system matrices using Lemma 3.13. This decomposes the
full system into r unpatterned subsystems. Also split the desired patterned
spectrum into r subspectra, as per Definition 5.2.

2. Place the poles of each subsystem into the corresponding subspectrum using
unpatterned feedbacks, by any standard method. The only restriction on these
unpatterned feedbacks is to maintain the complex conjugate relationships between
subsystems.

3. Transform the system back into standard coordinates. The resulting feedback
law and closed-loop system will be patterned by Lemma 3.13, and the system
will have the desired closed-loop spectrum.

11



5.1. Controllable Decomposition

Any system can be transformed using a basis that separates its controllable and
uncontrollable parts. If the system is patterned, then each of these parts will also be
patterned — the resulting commuting relationships are found using the Patterned
Representation Theorem 3.10, as given in the First Decomposition Theorem below.

Theorem 5.5 (First Decomposition Theorem). Let (A,B) be a patterned system
satisfying Assumption 3.5, and let its controllable subspace be C := 〈A|B〉 with V -
invariant complement Cc. Then, there exists a coordinate transformation T : X → X
such that the transformed system matrices have the form

T−1AT =

[
A1 ∗
0 A2

]
, T−1B =

[
B1

0

]
(7)

where A1 ≡ AC ∈ C(VC), A2 ∈ C(VCc), and B1 ∈ C(VC , U). Moreover, the pair (A1, B1)
is controllable.

Proof. First, by Lemma 5.1, C is V -invariant and has a V -invariant complement Cc.
Choose projection maps S1, S2, Q1, and Q2 according to Theorem 3.10, and define the
coordinate transformation T = [S1 S2] with T−1 = col(Q1, Q2). The form of T−1AT
follows from Theorem 3.10, and

T−1B =

[
Q1

Q2

]
B =:

[
B1

B2

]
.

Then, all the desired commuting relationships follow from Lemma 3.9(i)–(ii). Also,
since B ⊂ 〈A|B〉, therefore B2 = Q2B = 0 and S1Q1B = B, and so B = S1B1. Finally,
the pair (A1, B1) is controllable if S1〈A1|B1〉 = 〈A|B〉 (where B1 := ImB1). Using (1),
it follows that S1〈A1|B1〉 = S1B1 + S1A1B1 + · · ·+ S1A

n−1
1 B1 = S1B1 +AS1B1 + · · ·+

An−1S1B1 = B +AB + · · ·+An−1B = 〈A|B〉.

5.2. Stabilisability

A patterned system (A,B) is stabilisable by patterned feedback if there exists a
patterned matrix K that places its poles in a stable patterned spectrum, σ(A+BK) ⊂
C−. Stabilisability by patterned feedback can be determined by the same condition as
standard stabilisability.

Theorem 5.6 (Patterned Stabilisability). Let (A,B) be a patterned system satisfying
Assumption 3.5. Then, (A,B) can be stabilised by a patterned state feedback K ∈
C(U, V ) if and only if X+(A) ⊂ 〈A|B〉.

Proof. (If) Suppose X+(A) ⊂ C. By the First Decomposition Theorem 5.5 there
exists a coordinate transformation (ξ1, ξ2) := T−1x such that the transformed system
is [

ξ̇1
ξ̇2

]
=

[
A1 ∗
0 A2

] [
ξ1
ξ2

]
+

[
B1

B2

]
u (8)
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where A1 ∈ C(VC), B1 ∈ C(VC , U), and (A1, B1) is controllable. By Lemma 3.6, VC
is diagonalisable, so we can apply Theorem 5.4 to obtain K1 ∈ C(U, VC) such that
σ(A1 +B1K1) ⊂ C−.

By Lemma 5.1, C has a V -invariant complement Cc. Let Q1 be the natural projection
on C along Cc, and define K := K1Q1. By Lemma 3.11(iii), K ∈ C(U, V ). Substituting
u = Kx = K1ξ1 into (8), the closed-loop system satisfies σ(A + BK) = σ(A1 +
B1K1) ] σ(A2). Since X+(A) ⊂ C, Lemma 2.1 implies σ(A2) ⊂ C−. We conclude
σ(A+BK) ⊂ C− using the patterned feedback K ∈ C(U, V ).

(Only If) The solvability condition is identical to that for general stabilisability.
Since this condition is necessary for the existence of any feedback, it is also necessary
for the existence of a patterned feedback in the class C(U, V ).

The proof of Theorem 5.6 illustrates the algorithm to synthesise a patterned
feedback, for the Patterned Stabilisation Problem and for most further control problems
considered in this paper (other than Disturbance Decoupling):

1. Decompose the system, to isolate the part whose behaviour we want to modify.
The full system’s pattern induces a pattern on the isolated part of the system.

2. Place the poles of the isolated part of the system by patterned feedback, following
the method of Theorem 5.4.

3. Reassemble the original patterned system. The patterned controller for the
isolated part of the system becomes a patterned controller for the full system.

For stabilisation, the part of the system that we want to modify is its entire
controllable part (or at least the unstable part therein), so a patterned controller is
synthesised as follows: split the system into its controllable part and its uncontrollable
part (using Theorem 3.10); place the poles of the controllable part into a stable patterned
spectrum using a patterned feedback (using Theorem 5.4); and lift this patterned
feedback controller back to the full system (using Lemma 3.11). In some further
control problems, the first step might be more involved. For example, Stabilisation by
Measurement Feedback (Theorem 9.3) will split the system first into an observable part,
and second into a controllable part therein; and Output Stabilisation (Theorem 7.5)
needs a friend matrix in order to split the system into a part that appears in the
output and a part that doesn’t. Even in these more complicated cases, the overarching
methodology is the same.

6. Observability

Consider the patterned system (C,A) from (6). The unobservable subspace N of (C,A)
is given by N = Ker(C) ∩Ker(CA) ∩ · · · ∩Ker(CAn−1). This section establishes that
the unobservable subspace captures exactly the portion of a patterned system that
cannot be seen by a patterned observer, in the same way as it does for a general system
with an unpatterned observer.

Lemma 6.1. The unobservable subspace of the V -patterned pair (C,A) is a V -
decoupling subspace.

Proof. A ∈ C(V ) and C ∈ C(Y, V ). By Lemma A.1, CAi−1 ∈ C(Y, V ), and by
Lemma 3.8(i), Ker(CAi−1) is a V -decoupling subspace for all i ∈ N. Using Lemma 3.7,
it follows that N is a V -decoupling subspace.
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The duality between controllability and observability (Wonham, 1979, Lemma 3.4)
gives the following result about the observability of patterned systems, following
immediately from Theorem 5.4.

Theorem 6.2. Let (C,A) be a patterned system satisfying Assumption 3.5. Then,
(C,A) is observable if and only if for every V -patterned spectrum L , there exists a
patterned feedback K ∈ C(V, Y ) such that σ(A+KC) = L .

6.1. Observable Decomposition

Any system can be transformed using a basis that separates its unobservable and
observable parts. If the system is patterned, then each of these parts will also be
patterned — the resulting commuting relationships are found using the Patterned
Representation Theorem 3.10, as given in the Second Decomposition Theorem below.
The proof is by duality with the First Decomposition Theorem 5.5.

Theorem 6.3 (Second Decomposition Theorem). Let (C,A) be a patterned system
satisfying Assumption 3.5, and let its unobservable subspace be N with V -invariant
complement N c. Then, there exists a coordinate transformation T : X → X such that
the transformed system matrices have the form

T−1AT =

[
A1 ∗
0 A2

]
, CT = [0 C2] (9)

where A1 ≡ AN ∈ C(VN ), A2 ∈ C(VN c), and C2 ∈ C(Y, VN c). Moreover, the pair
(C2, A2) is observable.

6.2. Detectability

A patterned system (C,A) is detectable by patterned feedback if there exists a patterned
matrix K for which σ(A + LC) ⊂ C−. Detectability by patterned feedback can be
determined by the same condition as standard detectability. The proof follows by
considering the dual of Theorem 5.6.

Theorem 6.4 (Patterned Detectability). Let (C,A) be a patterned system satisfying
Assumption 3.5. Then, (C,A) is detectable by a patterned state feedback K ∈ C(V, Y )
if and only if N ⊂ X−(A).

Proof. (If) Suppose N ⊂ X−(A), which is equivalent to (X−(A))
⊥ ⊂ N⊥, which

evaluates to X+(AT) ⊂ 〈AT| ImCT〉. Therefore, (AT, CT) is patterned stabilisable by
Theorem 5.6, so there exists K ∈ C(Y T, V T) for which σ(AT + CTK) ⊂ C−. Take
L := −KT ∈ C(V, Y ), giving

σ(A− LC) = σ
(
(A− LC)T

)
= σ(AT + CTK) ⊂ C− .

By definition, (A,C) is patterned detectable.

(Only If) The solvability condition is identical to that for general stabilisability.
Since this condition is necessary for the existence of any feedback, it is also necessary
for the existence of a patterned feedback in the class C(U, V ).
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7. Output Stabilisation

Consider the system (D,A,B) from (6), where D corresponds to the system output
z(t). The Output Stabilisation Problem (OSP) is to find a state feedback u(t) = Kx(t)
such that z(t)→ 0 as t→∞; in geometric terms, X+(A+ BK) ⊂ KerD. The OSP
can be stated equivalently for patterned systems with patterned feedback, as given in
Problem 7.1 below, and this section shows that the standard OSP and the Patterned
OSP are equally solvable for patterned systems; that is, if any output-stabilising
feedback exists, then a patterned output-stabilising feedback exists.

Problem 7.1 (Patterned OSP). Let (D,A,B) be a patterned system satisfying
Assumption 3.5. Find a patterned state feedback K : X → U , K ∈ C(U, V ), such
that X+(A+BK) ⊂ KerD.

Solving the OSP requires the notion of controlled invariant subspaces: a subspace
V ⊂ X is controlled invariant if there exists F : X → U such that (A + BF )V ⊂ V;
then, F is called a friend of V. The set of all controlled invariant subspaces in X
is denoted by I (X ). The notions of controlled invariance and friends carry over to
patterned systems: the next result shows that it is always possible to find a patterned
friend for a V -decoupling controlled invariant subspace.

Lemma 7.2. Let (A,B) be a patterned system. If V ⊂ X is a V -decoupling subspace,
and V ∈ I (X ), then there exists F ∈ C(U, V ) such that (A+BF )V ⊂ V.

Proof. Suppose dimV = k ≤ n. Let W be a V -invariant complement of V . Let S1, Q1

and S2, Q2 be the insertion and natural projection maps on V and W , respectively. By
(Wonham, 1979, Lemma 4.2), AV ⊂ V + B. This equation can be written in matrix
form as

AS1 = P −BR , (10)

where P ∈ Rn×k, R ∈ Rm×k, and ImP ⊂ V. Define T = [S1 S2]; then, T−1 =
col(Q1, Q2). Also let V1 := VV and V2 := VW . Then T−1AS1 = T−1P − T−1BR
decomposes as

A1 = P1 −B1R (11)

A2 = −B2R (12)

where Ai := QiAS1 ∈ C(Vi, V1), Bi := QiB ∈ C(Vi, U), and Pi := QiP for i = 1, 2;
the commuting relationships follow from Lemma 3.9(i)–(ii), and P2 = Q2P = 0 since
ImP ⊂ V. Thus, finding P and R that satisfy (10) is equivalent to finding P1 and R
that satisfy (11)–(12). By Lemma 3.6, V1 and V2 are diagonalisable, so by Lemma 3.14,
(12) can be solved for R ∈ C(U, V1). Then, P1 := A1 + B1R, and P1 ∈ C(V1) by
Lemma A.1. Since ImP ⊂ V, therefore S1Q1P = P , so P := S1P1. Now define the
friend F = RQ1. Observe that (A+ BF )S1 = AS1 + BRQ1S1 = AS1 + BR = P , so
(A+ BF )V = ImP ⊂ V. Also, F ∈ C(U, V ) by Lemma 3.11(iii). We conclude F is a
patterned friend of the V -decoupling controlled invariant subspace V.

Given a controlled invariant subspace V with a friend F , any system can be
transformed into a basis which splits it into the parts in V and the parts not in
V. If the system, subspace, and friend are all patterned, then each of the transformed
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parts will also be patterned, based on the Patterned Representation Theorem 3.10.
These commuting relationships are given in the Third Decomposition Theorem below.
The proof follows immediately from Theorem 3.10 and Lemma 7.2.

Theorem 7.3 (Third Decomposition Theorem). Let (A,B) be a patterned system,
and let V ⊂ X be a V -decoupling and controlled invariant subspace with V -invariant
complement W. Then, there exists a state and feedback transformation (T, F ), where
T : X → X and F ∈ C(U, V ) is a patterned friend of V, such that the transformed
system matrices have the form

T−1(A+BF )T =

[
Ã1 ∗
0 Ã2

]
, T−1B =

[
B1

B2

]
(13)

where Ã1 ≡ (A+BF )V ∈ C(VV), Ã2 ∈ C(VW), B1 ∈ C(VV , U), and B2 ∈ C(VW , U).

The OSP implements the above decomposition using a part of the system that does
not show up in the output, given by V? := sup I (KerD) — the largest controlled
invariant subspace contained in KerD. For V? to be usable in the Patterned OSP,
it must also be a V -decoupling subspace; this is verified in the next result. Then,
Lemma 7.2 and Theorem 7.3 guarantee that V? can be used to split a patterned system
into patterned subsystems, allowing a patterned output-stabilising feedback to be
found.

Lemma 7.4. Let (D,A,B) be a patterned system. Then, V? := sup I (KerD) is a
V -decoupling subspace.

Proof. Consider the recursive algorithm in (Wonham, 1979, Theorem 4.3):

V0 = Ker(D)

V i = Ker(D) ∩A−1(B + V i−1) .

The sequence is nonincreasing and has a lower bound of {0}, so it must have a fixed
point. By Wonham (1979, Theorem 4.3), that fixed point is V?. Also, using Lemma 3.7
and Lemma 3.8(iii), each V i is a V -decoupling subspace. Hence, the fixed point V? is
also a V -decoupling subspace.

The Patterned OSP is solved next, using the same solvability condition as the
standard, unpatterned OSP.

Theorem 7.5. Let (D,A,B) be a patterned system. The Patterned OSP is solvable
if and only if

X+(A) ⊂ 〈A|B〉+ V? (14)

where V? := sup I (KerD).

Proof. (If) Suppose (14) holds. By Lemma 7.4, V? is a controlled invariant and
V -decoupling subspace. Let W be a V -invariant complement. Then we can apply the
Third Decomposition Theorem 7.3 with (ξ1, ξ2) = T−1x, v = u− Fx, and F ∈ C(U, V )
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a patterned friend of V?, to get[
ξ̇1
ξ̇2

]
=

[
Ã1 ∗
0 Ã2

] [
ξ1
ξ2

]
+

[
B1

B2

]
v (15)

where Ã2 ∈ C(VW) and B2 ∈ C(VW , U). We claim that the subsystem (Ã2, B2) is
stabilisable. Let Q2 : X → W be the natural projection on W along V?. Then
Q2V? = 0. By Lemma 2.1 of (Wonham, 1979), 〈A+BF |B〉 = 〈A|B〉, and by Lemma
6.2 of (Wonham, 1979), X+(A + BF ) + 〈A|B〉 = X+(A) + 〈A|B〉. Combining these
facts with (14), we have

X+(A+BF ) ⊂ X+(A+BF ) + 〈A|B〉 = X+(A) + 〈A|B〉
⊂ 〈A|B〉+ V? = 〈A+BF |B〉+ V? .

It can also be shown that Q2X+(A+BF ) =W+(Ã2) and Q2〈A+BF |B〉 = 〈Ã2|B2〉,
where B2 = ImB2. Putting it all together, we have

W+(Ã2) = Q2X+(A+BF ) ⊂ Q2(〈A+BF |B〉+ V?) = 〈Ã2|B2〉 .

This is precisely the condition for stabilisability of (A2, B2). Thus, by Theorem 5.6,
there exists K2 ∈ C(U, VW) such that σ(Ã2 + B2K2) ⊂ C−. Lifting K2 and applying
Lemmas 3.11 and A.1, we obtain the overall patterned feedback K = F + K2Q2 ∈
C(U, V ). It follows from Lemma 2.1 that X+(A + BK) ⊂ V?. Thus, K solves the
Patterned OSP.

(Only If) Condition (14) is exactly the necessary condition for the general OSP.
Since it is necessary for the existence of a general state feedback, it is also necessary
for the existence of a patterned state feedback.

8. Disturbance Decoupling

Consider the system (D,A,B,E) from (6), where E corresponds to a disturbance w(t)
that is not directly measurable by the controller. The Disturbance Decoupling Problem
(DDP) is to find a state feedback u(t) = Kx(t) so that the output z(t) is unchanged
for any disturbance w(t). This control problem can be stated in the same manner for
patterned systems with patterned feedback, and is given in geometric terms as follows.

Problem 8.1 (Patterned DDP). Let (D,A,B,E) be a patterned system satisfying
Assumption 3.5. Find a patterned state feedback K : X → U , K ∈ C(U, V ), such that
〈A+BK| ImE〉 ⊂ KerD.

The Patterned DDP and the standard, unpatterned DDP are solvable by the same
condition, as shown next. The proof is a minor variation of Wonham (1979, Theorem
4.2), so it is omitted here.

Theorem 8.2. The Patterned DDP is solvable if and only if E ⊂ V?, where E = ImE
and V? = sup I (KerD).

The above solution to the Patterned DDP does not depend on E being a patterned
matrix. It is interesting that a patterned feedback can block out disturbances that do
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not follow the system’s pattern and underlying structure.

9. Stabilisation by Measurement Feedback

Consider the system (C,A,B) from (6). The Stabilisation by Measurement Feedback
Problem (SMFP) is to find a measurement feedback u(t) = K ′y(t) such that x(t)→ 0
as t→∞. Generally, this measurement feedback is not found directly; instead, a state
feedback u(t) = Kx(t) is found first, where K is constrained to only use states that
can be seen in the measurement y. This constraint is the same for patterned systems as
for unpatterned systems, and is given in geometric terms in Problem 9.1 below. This
section shows that the standard SMFP and the Patterned SMFP are equally solvable
for patterned systems; that is, if any measurement feedback exists, then a patterned
measurement feedback exists.

Problem 9.1 (Patterned SMFP). Let (C,A,B) be a patterned system satisfying
Assumption 3.5. Find a patterned state feedback K : X → U , K ∈ C(U, V ), such that

KerC ⊂ KerK (16)

σ(A+BK) ⊂ C− . (17)

Condition (17) guarantees the stability of the closed-loop system, and condition
(16) ‘masks out’ any state information that is not available in the measurement y,
which ensures that the state feedback K can later be turned into a measurement
feedback K ′. This mask is characterised geometrically by L := 〈A|KerC〉, the smallest
A-invariant subspace containing KerC. Then, any feedback K found on the subsystem
corresponding to L will satisfy L ⊂ KerK, fulfilling condition (16).

Lemma 9.2. Let (C,A) be a patterned system satisfying Assumption 3.5. Then, the
subspace L := 〈A|KerC〉 = KerC + AKerC + · · · + An−1 KerC is a V -decoupling
subspace.

Proof. A ∈ C(V ) and C ∈ C(Y, V ). By Lemma A.1, Ai ∈ C(V ) for all i ∈ N, and by
Lemma 3.8(i), KerC is a V -decoupling subspace; therefore, by Lemma 3.8(iii), Ai KerC
is a V -decoupling subspace. Using Lemma 3.7, it follows that L is a V -decoupling
subspace.

With the guarantee that the masking subspace L := 〈A|KerC〉 is a V -decoupling
subspace, the Patterned SMFP has the following sufficient conditions for the existence
of a solution — the same conditions as for the standard, unpatterned SMFP.

Theorem 9.3. The Patterned SMFP is solvable if

X+(A) ⊂ 〈A|B〉 (18)

X+(A) ∩ 〈A|KerC〉 = 0 . (19)

Proof. Let L := 〈A|KerC〉. By Lemma 9.2, L is a V -decoupling subspace with a
V -invariant complement Lc. Since L is A-invariant, the system can be decomposed as
in the Second Decomposition Theorem 6.3, where we replace N with L and N c with

18



Lc. Applying the coordinate transformation (ξ1, ξ2) = T−1x, the transformed system is[
ξ̇1
ξ̇2

]
=

[
A1 ∗
0 A2

] [
ξ1
ξ2

]
+

[
B1

B2

]
u (20)

where A2 ∈ C(VLc) and B2 ∈ C(VLc , U) by Lemma 3.9(i)–(ii). We claim the subsystem
(A2, B2) is stabilisable. Let Q2 : X → Lc be the natural projection on Lc along L.
Using (18) we have

(Lc)+(A2) = Q2X+(A) ⊂ Q2〈A|B〉 = 〈A2|B2〉 .

By Theorem 5.6, there exists a patterned feedback K2 ∈ C(U, VLc) that stabilises
(A2, B2). Lifting K2 results in the overall feedback matrix K := K2Q2 with K ∈ C(U, V )
by Lemma 3.11(iii).

Finally we show K solves the Patterned SMFP. Substituting u = Kx = K2ξ2 into
(20), the closed-loop system satisfies σ(A+BK) = σ(A1)]σ(A2+B2K2). By Lemma 2.1
and (19), σ(A1) ⊂ C−, and by construction, σ(A2 +B2K2) ⊂ C−. Thus, σ(A+BK) ⊂
C−, satisfying requirement (17) of the SMFP. Also, KerC ⊂ L = KerQ2 ⊂ KerK,
satisfying requirement (16). We conclude that K solves the Patterned SMFP.

The SMFP asks for a measurement feedback u = K ′y; however, the above solution
to the Patterned SMFP gave a state feedback u = Kx. Since KerC ⊂ KerK (from
requirement (16)), the state feedback K can be turned into a measurement feedback
K ′ that solves the equation K ′C = K; also, since K ∈ C(U, V ) and C ∈ C(Y, V ), a
patterned solution K ′ ∈ C(U, Y ) can be found using Lemma 3.14. Thus, the patterned
measurement feedback u = K ′y solves the Patterned SMFP. These comments can also
be carried forward to patterned observers for detectable systems.

10. Output Stabilisation by Measurement Feedback

Consider the system (D,C,A,B) from (6). The Output Stabilisation by Measurement
Feedback Problem (OSMFP) is to find a measurement feedback u(t) = K ′y(t) such
that z(t) → 0 as t → ∞. As in the SMFP, the geometric solution to the OSMFP
instead finds a state feedback u(t) = Kx(t), where KerK ⊃ L for a ‘masking subspace’
L ⊃ KerC that blocks out any state information not seen in the measurement. This
turns the OSMFP into the Restricted Regulator Problem (RRP), which can be stated
geometrically for patterned systems in the same way as for unpatterned systems. We
show that the Patterned RRP and the standard, unpatterned RRP are equally solvable;
that is, if any feedback exists, then a patterned feedback exists.

Problem 10.1 (Patterned RRP). Let (D,A,B) be a patterned system, and let L be
an A-invariant and V -decoupling subspace. Find a patterned state feedback K : X → U ,
K ∈ C(U, V ), such that

L ⊂ KerK (21)

X+(A+BK) ⊂ KerD . (22)

The Patterned RRP can be solved by the same conditions as the unpatterned RRP, as
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long as all subspaces chosen a priori are V -decoupling. That is, if any output-stabilising
state feedback solves the RRP, then some patterned feedback solves it as well.

Theorem 10.2. The Patterned RRP is solvable if and only if there exists a V -
decoupling and controlled invariant subspace V ∈ I (KerD) such that

A(L ∩ V) ⊂ L ∩ V (23)

X+(A) ∩ L ⊂ L ∩ V (24)

X+(A) ⊂ 〈A|B〉+ V . (25)

Proof. (If) Suppose (23)–(25) hold for some V -decoupling subspace V ∈ I (KerD).
By Lemma 3.7, L+ V and L ∩ V are V -decoupling subspaces, and have V -invariant
complements R and W, respectively; that is,

X = (L+ V)⊕R , X = (L ∩ V)⊕W .

Also, L̃ := L ∩W and Ṽ := V ∩W are V -decoupling subspaces by Lemma 3.7. By the
modular distributive rule (Wonham, 1979, (0.3.1)), L = (L∩V)⊕L̃ and V = (L∩V)⊕Ṽ .
Thus, the state space X splits into four V -decoupling subspaces:

X = (L ∩ V)⊕ L̃ ⊕ Ṽ ⊕R . (26)

Let Si and Qi, i = 1, . . . , 4, be the insertion and natural projection maps of these
spaces, in the same order as (26).

Next, a patterned friend F ′ of V will be found such that L and V are both (A+BF ′)-
invariant. We start by choosing any patterned friend F ∈ C(U, V ) using Lemma 7.2,
and then take F ′ := FS3Q3. By Lemmas 3.9(iii) and 3.11(iii), F ′ ∈ C(U, V ). Also,
F ′L = FS3(Q3L) = 0 since L ⊂ KerQ3. Thus, (A + BF ′)L = AL ⊂ L, so L is
(A+BF ′)-invariant. Lastly, V is also (A+BF ′)-invariant: using F ′L = 0, Ṽ = S3Q3Ṽ ,
and (23),

(A+BF ′)V = (A+BF ′)(L ∩ V) + (A+BF ′)Ṽ
= A(L ∩ V) + (A+BFS3Q3)(S3Q3Ṽ)

= A(L ∩ V) + (AS3 +BFS3)(Q3Ṽ)

= A(L ∩ V) + (A+BF )(S3Q3Ṽ)

⊂ (L ∩ V) + V = V .

Therefore, F ′ ∈ C(U, V ) is a patterned friend of V for which L, V, L ∩ V, and L+ V
are all (A+BF ′)-invariant. Now we apply the feedback transformation (T, F ′), where
T =

[
S1 S2 S3 S4

]
. Let ξ = T−1x and v = u− F ′x. Then

ξ̇ =


Ã1 ∗ ∗ ∗
0 Ã2 0 ∗
0 0 Ã3 ∗
0 0 0 Ã4

 ξ +


B1

B2

B3

B4

 v (27)

where the zeros arise from the (A+BF ′)-invariance of L, V, L ∩ V, and L+ V. Also,
all the blocks are patterned as in Lemma 3.9(i)–(ii); in particular, Ã4 ∈ C(VR) and
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B4 ∈ C(VR, U).

We claim (Ã4, B4) is stabilisable. Using (25) and the property X+(A + BF ′) ⊂
〈A+BF ′|B〉+ V (Wonham, 1979, Lemma 6.2),

R+(Ã4) = Q4X+(A+BF ′) ⊂ Q4〈A+BF ′|B〉+Q4V = 〈Ã4|B4〉 .

Therefore, by Theorem 5.6, there exists K4 ∈ C(U, VR) such that σ(Ã4 +B4K4) ⊂ C−.
Lifting K4 and using Lemmas 3.11 and A.1(iii), we obtain the overall patterned feedback
K = F ′+K4Q4 ∈ C(U, V ). We show K solves the Patterned RRP. First, recall F ′L = 0.
Also Q4L = 0, so KL = 0, which gives (21). Second, from (26) we have X = V⊕(L̃⊕R).
Using Lemma 2.1, if σ(Ã2) ] σ(Ã4 +B4K4) ⊂ C−, then we get (22). From above we
already know σ(Ã4 +B4K4) ⊂ C−, so it only remains to show σ(Ã2) ⊂ C−. To that
end, recall that AL ⊂ L and F ′L = 0, so (A+BK)L = AL. Then using (24),

L+((A+BK)L) = L+(AL) ⊂ X+(A) ∩ L ⊂ L ∩ V .

Decomposing L = (L ∩ V) ⊕ L̃, it follows that σ(Ã2) = σ((A + BK)L̃) ⊂ C− by
Lemma 2.1. Thus, σ((A+BK)L̃⊕R) ⊂ C−, so X+(A+BK) ⊂ V by Lemma 2.1, giving
(22). Therefore, K solves the Patterned RRP.

(Only If) Suppose there exists K ∈ C(U, V ) such that (21)–(22) hold. Define
V := X+(A + BK), a V -decoupling subspace by Lemma 3.8. Since V is a modal
subspace, (A + BK)V ⊂ V. From (22), also V ⊂ KerD. Thus, V ∈ I (KerD) is a
V -decoupling and controlled invariant subspace, as required.

Since L ⊂ KerK by (21), (A+BK)L = AL. Then using the property X+(A) ∩L =
X+(A+BK) ∩ L = V ∩ L (Wonham, 1979, Lemma 6.1), condition (24) holds. Second,
since L and X+(A) are both A-invariant, condition (23) also holds. Third, using the
property 〈A|B〉+X+(A+BK) = 〈A|B〉+X+(A) (Wonham, 1979, Lemma 6.2), we have
X+(A) ⊂ 〈A|B〉+ X+(A) = 〈A|B〉+ V by definition of V , so condition (25) holds.

The Patterned OSMFP asks for a measurement feedback u = K ′y; however, in
converting the Patterned OSMFP to the Patterned RRP, the above solution provided
a state feedback u = Kx. In that solution, K was ‘restricted’ such that KerK ⊃ L for
some V -decoupling subspace L. If also L ⊃ KerC, then the patterned state feedback
K can be transformed into a patterned measurement feedback K ′ ∈ C(U, Y ) by solving
the equation K ′C = K, using Lemma 3.14. This operation depends on the choice of
the V -decoupling subspace L; one possible choice is L = 〈A|KerC〉, as in the SMFP.
Then, the patterned measurement feedback u = K ′y solves the Patterned OSMFP.

11. Numerical Example

Patterns appear in many physical systems and many control applications, ranging from
formation control of satellites to power generation in wind farms to chemical reactions
in cellular structures. Each of these applications deserves a full treatment of its own;
the example presented here is purely pedagogical, provided as a demonstration of our
framework. We consider one of the most ubiquitous distributed system structures — a
ring system — whose matrices all have a block circulant pattern.

Consider the patterned system (D,C,A,B) as in (6), given by the block circulant
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matrices

A =



−1 5 3 1 −9 −3 3 1
0 −3 0 −5 0 1 0 −5
3 1 −1 5 3 1 −9 −3
0 −5 0 −3 0 −5 0 1
−9 −3 3 1 −1 5 3 1

0 1 0 −5 0 −3 0 −5
3 1 −9 −3 3 1 −1 5
0 −5 0 1 0 −5 0 −3


, B =



1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1
1 0 1 0
−1 0 1 0

0 1 0 1
0 −1 0 1


,

C =

 7 5 −1 1 −5 −3 −1 1
−1 1 7 5 −1 1 −5 −3
−5 −3 −1 1 7 5 −1 1
−1 1 −5 −3 −1 1 7 5

 , D =

 5 0 −1 0 1 0 −1 0
−1 0 5 0 −1 0 1 0

1 0 −1 0 5 0 −1 0
−1 0 1 0 −1 0 5 0

 .
The system’s base matrices are determined by the fundamental permutation matrix
Π4, as in Example 3.2 — specifically, A ∈ C(Π4 ⊗ I2), B ∈ C(Π4 ⊗ I2,Π4 ⊗ I), and
C,D ∈ C(Π4 ⊗ I,Π4 ⊗ I2) (where ‘⊗’ denotes the Kronecker product). The control
objective is to stabilise the system output z = Dx using a patterned measurement
feedback u = K̃y with K̃ ∈ C(Π4⊗ I) — this is the Patterned OSMFP, as in Section 10.

The eigenvalues of A are given by the (Π4 ⊗ I2)-patterned spectrum σ(A) =
{−16,−12,−4,−4,−4, 8, 8, 8}. The controllable subspace C := 〈A|B〉, unstable subspace
X+(A) := Ker(A− 8I), unobservable subspace N , and supremal controlled invariant
subspace V? := sup I (KerD) of the system are all (Π4 ⊗ I2)-decoupling, and given by

C = Im



1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 −1


, X+(A) = Im



1 0 0
0 0 1
0 1 0
0 0 −1
−1 0 0

0 0 1
0 −1 0
0 0 −1


,

N = Im



2 0 1 0
−3 0 0 1

0 2 1 0
0 −3 0 −1
−2 0 1 0

3 0 0 1
0 −2 1 0
0 3 0 −1


, V? = Im



0 0
1 0
0 0
0 1
0 0
1 0
0 0
0 1


.

The columns of each matrix form a basis for the corresponding subspace. Denote the
ith basis vector of C by ci, of N by ni, of V? by vi, and of X+(A) by ai.

If the system were fully stabilisable and detectable, a patterned feedback could
be found using the techniques of the Patterned SMFP; this would stabilise the full
system, including the output z. However, the unstable mode a3 is not controllable, so
the full system cannot be stabilised by any feedback, patterned or otherwise. Instead,
since a3 ∈ V?, this uncontrollable unstable mode does not show up in the output z,
so the output can be stabilised by turning the OSMFP into a Patterned RRP, as in
Section 10. Formulating the Patterned RRP requires a choice of two (Π4⊗I2)-decoupling
subspaces: we take L := 〈A|KerC〉 = N and V := V?. Using these subspaces, we verify
the solvability conditions (23)–(25) of the Patterned RRP, given in Theorem 10.2: first,
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L∩V = span{n4} is A-invariant, satisfying (23); second, X+(A)∩L = span{n4} = L∩V ,
satisfying (24); and third, 〈A|B〉+ V = X ⊃ X+(A), satisfying (25), and confirming
that the Patterned RRP is solvable.

Following the method of Theorem 10.2, a patterned output-stabilising feedback can
be found by placing poles in the subsystem corresponding to the (Π4 ⊗ I2)-decoupling
subspace R := (L + V)⊥ = span{r1, r2, r3}, where r1 = (1, 0,−1, 0, 1, 0,−1, 0), r2 =
(3, 2, 0, 0,−3,−2, 0, 0), and r3 = (0, 0, 3, 2, 0, 0,−3,−2). R is the fourth subspace in the
state space decomposition (26), which has insertion maps

S1 =
[
n4
]
, S2 =

[
n1 n2 n3

]
,

S3 =
[
v
]
, S4 =

[
r1 r2 r3

]
,

where v := v1 + v2. Define the coordinate transformation T =
[
S1 S2 S3 S4

]
;

then, the natural projection maps Q1, Q2, Q3, and Q4 are uniquely defined by T−1 =
col(Q1, Q2, Q3, Q4), where Q1 is the first row, Q2 is the following three rows, Q3 is
the fifth row, and Q4 is the final three rows. With these projection maps, the system
decomposition can be carried out, beginning by finding a patterned friend F of V.
Following Lemma 7.2, a friend is given by the block circulant matrix

F =
1

2

 0 −1 0 −1 0 −1 0 −1
0 −1 0 −1 0 −1 0 −1
0 −1 0 −1 0 −1 0 −1
0 −1 0 −1 0 −1 0 −1

 ∈ C(Π4 ⊗ I,Π4 ⊗ I2) .

As in Theorem 10.2, F is modified to another friend F ′ = FS3Q3, so F ′L = 0
and (A + BF ′)V ⊂ V. In this example, F ′ = F . Then, the feedback transformation
v = u−F ′x gives ẋ = Ax+Bu = (A+BF ′)x+Bv, and L+V is (A+BF ′)-invariant.
The system is decomposed as

T−1(A+BF ′)T =



8 0 0 0 0 0 0 0
−4 0 0 8 0
−4 0 0 0 8
−4 4 0 0 0
−12 0 0 0

−16
8

8


, T−1B =

1
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0 0 0 0
−6 0 6 0

0 −6 0 6
13 13 13 13
0 0 0 0

13 −13 13 −13
4 0 −4 0
0 4 0 −4


,

DT =

 0 8 0 4 0 8 12 0
0 0 8 4 0 −8 0 12
0 −8 0 4 0 8 −12 0
0 0 −8 4 0 −8 0 12

 .
Number the four subsystems from top-left to bottom-right (using the blocks along the

diagonal of T−1(A+BF ′)T ), so the ith subsystem is (Di, Ãi, Bi). All the submatrices
are patterned, commuting with various restrictions of Π4 ⊗ I2 as in Lemma 3.9; in
particular, Ã4 ∈ C((Π4 ⊗ I2)R) and B4 ∈ C((Π4 ⊗ I2)R,Π4 ⊗ I). Also, the system
output clearly shows up only in D2 and D4, and the second subsystem is stable since
σ(Ã2) = {−4,−4,−4}; therefore, stabilising the entire output is equivalent to stabilising
the fourth subsystem (Ã4, B4). Checking the unstable and controllable modes of this
subsystem, it can be verified that R+(Ã4) ⊂ 〈Ã4|B4〉, and so this pair is stabilisable.
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Figure 2. Closed-loop system behaviour for numerical example.

Using Theorem 5.6, a patterned stabilising feedback is given by

K4 = 52

 0 −1 0
0 0 −1
0 1 0
0 0 1

 ∈ C(Π4 ⊗ I, (Π4 ⊗ I2)R)

which places the closed-loop eigenvalues of the fourth subsystem as σ(Ã4 +B4K4) =
{−16,−8,−8}, a stable (Π4 ⊗ I2)R-patterned spectrum. Lifting K4 to the full system
using Lemma 3.11(iii) gives a patterned matrix K4Q4 ∈ C(Π4⊗I,Π4⊗I2) that stabilises
the output of the feedback-transformed system (D,A + BF ′, B). The overall state
feedback solving the Patterned RRP for the original system (D,A,B) is then given by
the block circulant matrix

K = F ′ +K4Q4 =
1

2

 −12 −9 0 −1 12 7 0 −1
0 −1 −12 −9 0 −1 12 7

12 7 0 −1 −12 −9 0 −1
0 −1 12 7 0 −1 −12 −9


which is also patterned, K ∈ C(Π4⊗I,Π4⊗I2). To confirm that K solves the Patterned
RRP, check the requirements (21)–(22) (from Problem 10.1): first, it can be deduced
from the state space decomposition that L ⊂ L+ V ⊂ KerK, satisfying (21); second,
it can be calculated that X+(A+BK) ⊂ V ⊂ KerD, satisfying (22). Thus, the state
feedback u = Kx solves the Patterned RRP.

To turn this state feedback into a patterned measurement feedback, a matrix
K ′ ∈ C(Π4 ⊗ I) can be found such that K ′C = K. This equation is solvable since
KerC ⊂ KerK, signifying that K only uses states that can be seen in the measurement.
Using Lemma 3.14, a patterned solution is given by the block circulant matrix

K ′ =
1

8

 −5 −1 3 −1
−1 −5 −1 3

3 −1 −5 −1
−1 3 −1 −5

 ∈ C(Π4 ⊗ I)

and u = K ′y = Kx. This patterned feedback stabilises the output of the system,
solving the Patterned OSMFP and meeting the system’s control objective. As the plots
in Figure 2 show, while certain closed-loop system states remain unstable with this
feedback, the system output has been stabilised.
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12. Concluding Remarks

In this paper we showed that distributed systems can be controlled in a way that
respects and preserves their interconnection structures. These interconnection structures
are manifest as patterns in the system matrices. These patterns, in turn, are encoded
algebraically in commuting relationships. The algebra of patterns is linked to geometry
via decoupling subspaces, thereby forming a bridge between matrix structure and
subspace structure. Our results fit within the large body of research on systems with
symmetries, strongly suggesting that commuting properties are an integral consideration
in carrying out a patterned control design. In addition to the numerical example of
Section 11, our prior work includes another numerical example of Patterned Output
Stabilisation (Sniderman et al., 2013), as well as a full application of our framework to
the formation control of balloons (Sniderman, Broucke, & D’Eleuterio, 2015b).

The control design tools we used are standard and familiar to any researcher
versed in geometric control theory. While control and analysis of distributed systems
(particularly block circulant systems) have traditionally been approached through
block diagonalisation, we have found that commuting properties also provide a direct
and intuitive means for control design that connect well with the standard methods,
allowing decompositions in particular to be done precisely the same way for patterned
systems as for general linear systems. As a result, the solvability conditions of each
patterned control design problem are almost completely independent of the pattern
itself; we did not have to modify any of the standard geometric control conditions in
order to guarantee recovery of a patterned control law. In other words, not only can a
patterned system be controlled by patterned feedback, but it can be done in the ‘usual’
way. In short, our work suggests that patterned systems naturally admit patterned
controllers.
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Appendix A. Block Diagonalising Patterned Matrices

There are two places in our framework where patterned matrices are explicitly
synthesised: in solutions to linear equations (Lemma 3.14), and in pole placement
(Theorem 5.4). This appendix provides further background on commuting matrices
and their block diagonalisation in order to complete those proofs. Recall the notational
conventions from Section 3. First, we require the following basic properties of commuting
matrices.

Lemma A.1. The following algebraic properties hold:

(i) If A,B ∈ C(V,U), then A+B ∈ C(V,U).
(ii) If A ∈ C(W,V ) and B ∈ C(V,U), then AB ∈ C(W,U).

(iii) If A ∈ C(V,U), then AT ∈ C(UT, V T).
(iv) If A ∈ C(V,U) is nonsingular, then A−1 ∈ C(U, V ).

Let the Jordan forms of V and U be given by

∧

V := Γ−1V V ΓV = diag(
∧

V1, . . . ,
∧

Vν) ,
∧

U := Γ−1U UΓU = diag(
∧

U1, . . . ,
∧

Uµ)

where each
∧

Vi and
∧

Uj is a Jordan block. Block diagonalisation of commuting matrices
is based on these Jordan blocks.

Theorem A.2 (Gantmacher, 1959). Let A and
∧

A satisfy
∧

A := Γ−1V AΓU , and partition
∧

A according to the Jordan blocks of V and U :

∧

A := Γ−1V AΓU =


∧

A11 · · ·
∧

A1µ
...

...
∧

Aν1 · · ·
∧

Aνµ


where

∧

Aij has the same number of rows as
∧

Vi and the same number of columns as
∧

Uj.

Also suppose that
∧

Vi corresponds to eigenvalue δi, and
∧

Uj corresponds to eigenvalue

γj. Then, A ∈ C(V,U) if and only if the blocks
∧

Aij satisfy the following for all i, j: if

δi = γj, then
∧

Aij is an upper triangular Toeplitz matrix; and if δi 6= γj, then
∧

Aij = 0.

Any matrix A ∈ C(V,U) (for any V and U) can be put into the partitioned form
of

∧

A in Theorem A.2. Combining this result with Assumption 3.5 that V and U are
diagonalisable, each upper triangular Toeplitz matrix

∧

Aij is a scalar because the Jordan
blocks of V and U are all 1 × 1. Thus, in our case, a pattern C(V,U) determines a
‘hatted’ form in which some entries are fixed at zero, while others can be freely assigned.
Furthermore, the partitioning of Theorem A.2 results in a block diagonal matrix if
ΓV and ΓU are chosen according to the ordering conventions of Remark 3.12. The
conventions regarding ΓV and ΓU also carry over to their inverses.

Lemma A.3. Suppose V and U are real matrices, and follow Remark 3.12. Partition
ΓV = row(Γ1, . . . ,Γr) as in (4), and partition Γ−1V as col( Γ1, . . . , Γr), where the number

of rows of Γi equals the number of columns of Γi. Let {ε1, . . . , εr} be the conjugate

permutation (5). Then, Γi = Γε
i

for each i.

Proof. Since Γ−1V ΓV = I, therefore ΓiΓi = I, and ΓiΓj = 0 for all i 6= j. Also,
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Γε
i

Γε
i

= I = I, and so ΓiΓi = Γε
i

Γε
i

. From the conventions in Remark 3.12, Γi = Γε
i

,
giving ΓiΓi = Γε

i

Γi. Thus,

ΓiΓV =
[
0 · · · Γi Γi · · · 0

]
=
[
0 · · · Γε

i

Γi · · · 0
]

= Γε
i

ΓV .

Since ΓV is full rank, it follows that Γi = Γε
i

.

The matrix
∧

A := Γ−1V AΓU also inherits the complex conjugate structure described
above, allowing us to prove Lemma 3.13.

Proof of Lemma 3.13. (If) Let A ∈ CR(V,U). By the ordering of Remark 3.12 and
by Theorem A.2,

∧

A = diag(
∧

A1, . . . ,
∧

Ar). (Note that the
∧

Ai blocks may contain multiple
∧

A(··) blocks of Theorem A.2). Partition Γ−1V = col( Γ1, . . . , Γr) as in Lemma A.3 and

ΓV = row(Γ1, . . . ,Γr) as in (4), where Γi has ni columns and Γi has mi rows. Then,

∧

A :=


∧

A1

. . .
∧

Ar

 =

 Γ1AΓ1

. . .

ΓrAΓr

 .
By Lemma A.3, Γi = Γε

i

, and by Remark 3.12, Γi = Γε
i

. Since A is real, it follows that
∧

Ai =
∧

Aε
i

, for i = 1, . . . , r.

(Only If) Let
∧

A = diag(
∧

A1, . . . ,
∧

Ar), where
∧

Ai ∈ Cni×mi

and
∧

Aε
i

=
∧

Ai for each
i = 1, . . . , r. Define A := ΓV

∧

AΓ−1U . Then we have

V A = ΓV
∧

V
∧

AΓ−1U = ΓV

λ1In1

. . .

λrInr




∧

A1

. . .
∧

Ar

Γ−1U

= ΓV


∧

A1

. . .
∧

Ar


λ1Im1

. . .

λrImr

Γ−1U = AU

so A ∈ C(V,U). Next, consider

A := ΓV
∧

AΓ−1U = [Γ1 · · · Γr]


∧

A1

. . .
∧

Ar


 Γ1

...
Γr

 = Γ1
∧

A1 Γ1 + · · ·+ Γr
∧

Ar Γr . (A1)

We know Γi = Γε
i

by Remark 3.12, Γi = Γε
i

by Lemma A.3, and
∧

Ai =
∧

Aε
i

by
assumption. There are two cases: if εi = i, then Γi

∧

Ai Γi is real; and if εi = j 6= i,

then Γi
∧

Ai Γi = Γj
∧

Aj Γj and so Γi
∧

Ai Γi + Γj
∧

Aj Γj is real. We conclude A is real, so
A ∈ CR(V,U).

We now prove two results utilizing block diagonalisation: solving patterned linear
equations and patterned pole placement.
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Proof of Lemma 3.14. Following the ordering of Remark 3.12, we diagonalise W ,
V , and U as

∧

W := Γ−1W WΓW , etc., and define
∧

A := Γ−1V AΓU and
∧

B := Γ−1W BΓU . By

Lemma 3.13,
∧

A = diag(
∧

A1, . . . ,
∧

Ar) with
∧

Ai ∈ Cni×mi

, and
∧

B = diag(
∧

B1, . . . ,
∧

Br) with
∧

Bi ∈ Cpi×mi

. Also, if F = R then
∧

Ai =
∧

Aε
i

and
∧

Bi =
∧

Bεi . Therefore, solving the
equation XA = B for X is equivalent to solving the equation

∧

X11 · · ·
∧

X1r

...
...

∧

Xr1 · · ·
∧

Xrr




∧

A1

. . .
∧

Ar

 =


∧

B1

. . .
∧

Br

 (A2)

for
∧

Xij ∈ Cpi×nj

. This decomposes into

∧

Xij
∧

Aj = 0 , i 6= j
∧

Xii
∧

Ai =
∧

Bi , i = 1, . . . , r .

For the first set of equations we choose the solution
∧

Xij = 0, i 6= j. For the second

set of equations we choose any solution such that
∧

Xεiεi =
∧

Xii (note that
∧

Xii
∧

Aε
i

=
∧

Xii
∧

Ai =
∧

Xii
∧

Ai =
∧

Bi =
∧

Bεi).

Define X = ΓW diag(
∧

X11, . . . ,
∧

Xrr)Γ−1V . Then,

XA =

ΓW


∧

X11

. . .
∧

Xrr

Γ−1V


ΓV


∧

A1

. . .
∧

Ar

Γ−1U


= ΓW


∧

B1

. . .
∧

Br

Γ−1U = B ,

and by Lemma 3.13, X ∈ C(W,V ).

Proof of Theorem 5.4. (Only If) Following the notation and ordering of
Remark 3.12, σd(V ) ∪ σd(U) = {λ1, . . . , λr}, with multiplicities ni in σ(V ) and mi in
σ(U), and conjugate permutation {ε1, . . . , εr}. Let L be a V -patterned spectrum and,
following Definition 5.2, partition it as L = L 1 ] · · · ]L r, where card(L i) = ni for
each i = 1, . . . , r.

Define
∧

A := Γ−1V AΓV and
∧

B := Γ−1V BΓU . By Lemma 3.13,
∧

A = diag(
∧

A1, . . . ,
∧

Ar)

and
∧

B = diag(
∧

B1, . . . ,
∧

Br), where
∧

Ai ∈ Cni×ni

and
∧

Bi ∈ Cni×mi

. Since (A,B) is
controllable, (

∧

A,
∧

B) is controllable and, in turn, each pair (
∧

Ai,
∧

Bi) is controllable.
Therefore, for each i = 1, . . . , r, there exists some matrix

∧

Ki such that σ(
∧

Ai +
∧

Bi
∧

Ki) =

L i. Also, if F = R then
∧

Ai =
∧

Aε
i

and
∧

Bi =
∧

Bεi by Lemma 3.13, and L i = L εi from

Definition 5.2; therefore, the
∧

Ki can be chosen such that
∧

Ki =
∧

Kεi . Now, define the
overall feedback K := ΓV diag(

∧

K1, . . . ,
∧

Kr)Γ−1U . Then, K ∈ C(V,U) by Lemma 3.13,
and σ(A+BK) = L by construction, so K is a patterned pole-placing feedback.

(If) The argument is a minor variation of the proof in Wonham (1979, Theorem
2.1), so it is omitted here.
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