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Abstract

The agreement problem is studied whereby a group of mobile agents achieves convergence to a common point. A hierarchical
cyclic pursuit scheme is introduced, and it is shown that this scheme yields a very significant increase in the rate of convergence
to a common point when compared to traditional cyclic pursuit. A second scheme is introduced in which there are more
communication links between vehicles. It is shown that this scheme produces a rate of convergence greater than the traditional
scheme but significantly less than the hierarchical scheme.
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1 Introduction

The control of multi-vehicle systems is a topic of cur-
rent interest in the control community. Potential appli-
cations of this research are abundant, and include plan-
etary exploration, automated highway systems, and res-
cue missions. As an example, consider a fleet of rovers
deployed on the surface of Mars. It is impractical to re-
motely control each rover individually. Rather, it would
be desirable for the rovers to explore their surroundings
autonomously, working as a cohesive unit. Only at set
times would a supervisory controller intervene, telling
the rovers to switch to a new behavior. What is described
in this paper is a strategy for achieving one behavior for
a multi-vehicle system.

Much of the current work involves the use of simple lo-
cal control strategies in order to achieve a desired global
(or group) behavior. One such behavior is the conver-
gence of a group of vehicles (agents) to a common point.
This is a type of agreement problem, also known as a ren-
dezvous or consensus problem. Some recent approaches
to solving these types of problems include [3–10]. As in
[1,4,9], we assume a fixed topology (i.e., a time-invariant
sensor graph). Other references, for example [3,5–8,10],
consider dynamic topologies. The approaches in [1,3,4]
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and this paper, are based on a strategy called cyclic pur-
suit, which can be described as follows. A group of n
agents, modeled as point masses, are given a number
from 1 to n. The position of each of the n agents can be
described in the complex plane by the point zi = xi+jyi,
i = 1, . . . , n, where j =

√−1. The strategy is for agent
i to chase agent i + 1. The ith agent’s velocity points in
the direction of agent i+1 and the magnitude of the ve-
locity is equal to the distance between agent i and i+1.
The model for cyclic pursuit is given by

żi = zi+1 − zi, i = 1, ..., n− 1
żn = z1 − zn.

(1)

Under this scheme the agents will converge to their sta-
tionary centroid.

The scheme above assumes that each agent is equipped
with an isotropic sensor with an infinite range. Lin et al.
[3], consider sensors with a finite range, and directional
sensors which can see agents only within some cone of
view. Based on these sensor models, control strategies
are developed to ensure convergence to a point. Mar-
shall et al. [4], study a similar pursuit strategy but with
wheeled vehicles that are subject to a nonholonomic con-
straint (kinematic unicycles). For models of this type
there are two control inputs, namely the forward and
angular velocities. The strategy is to pursue the next
agent with linear velocity proportional to the distance
to the next agent, and angular velocity proportional to
the difference between the desired and actual heading.
By appropriate choice of gains on the velocities, the ve-
hicles can either spiral in to a point, converge to a cir-
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Fig. 1. Three layers of hierarchy in cyclic pursuit.

cle of some radius, or diverge. These are two examples
of the application of local control strategies to achieve
a global group behavior. There are many other results,
and a more complete review of these can be found in [3]
and [4].

Williams et al. [11], study the problem of achieving an
overall formation with n groups of homogeneous vehicle
formations. In each group there is one leader, which is the
only vehicle that can communicate to the other groups.
By using a simple linear control law, and by modeling the
vehicles as point masses, hierarchical formations, such
as groups achieving a common heading, are attained.

In this brief paper, the concept of hierarchy is applied to
cyclic pursuit. The simplest hierarchical cyclic pursuit
scheme, which we call a two layer hierarchical scheme,
can be described as follows. A collection of N2 agents
is divided into n2 groups, each containing n1 agents
(n1×n2 = N2). The local control strategy is chosen such
that the agents within each group are in cyclic pursuit.
In addition, the centroid of each group is pursuing the
centroid of the next in order (i.e., the centroids are also in
cyclic pursuit). This idea can be extended to more layers
of hierarchy as shown in Fig. 1. In Sections 4 and 5 this
discussion will be formalized, and it will be shown that
this scheme yields a very significant increase in the rate
of convergence of a group of vehicles to their centroid
when compared to traditional cyclic pursuit (1). The
hierarchical scheme requires more communication links
between agents than the traditional scheme. Because of
this, in Section 6 the rate of convergence of the hierarchi-
cal scheme is compared to an alternate scheme with an
equal number of communication links. It is shown that
the hierarchical scheme still yields a significantly greater
rate of convergence than this alternate scheme.

2 Background in circulant matrices

In order to proceed we require a few mathematical tools.
This section gives a summary of the theory of circulant

matrices and is based on [2] by Davis. Consider an n-
tuple (c1, c2, . . . , cn) of real numbers. This n-tuple along
with its n − 1 cyclic permutations can be used to form
the rows of the matrix

C =




c1 c2 · · · cn

cn c1 · · · cn−1

...
...

...
...

c2 c3 . . . c1




=: circ(c1, c2, . . . , cn). (2)

Let P denote the special n× n circulant matrix

P =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

1 0 0 · · · 0




= circ(0, 1, 0, . . . , 0). (3)

Matrix C can be written in terms of P and the polyno-
mial

qC(s) = cnsn−1 + cn−1s
n−2 + · · ·+ c2s + c1s

0

as C = qC(P ). The matrix P is in companion
form and its characteristic polynomial is sn − 1.
The eigenvalues of P are the nth roots of unity
(1, ω, ω2, . . . , ωn−1, where ω := e2πj/n). To diagonalize
C we define a matrix containing the eigenvalues of P as
Ω = diag(1, ω, ω2, . . . , ωn−1). The corresponding eigen-
vectors can be used to form the columns of the matrix

F =
1√
n




1 1 · · · 1

1 ω · · · ωn−1

...
...

...
...

1 ωn−1 · · · ω(n−1)(n−1)




. (4)

From the definition of Ω and F we have that PF = FΩ,
and P = FΩF ∗. By pre-multiplying PF = FΩ by P we
see that P 2F = FΩ2 from which it follows that P 3F =
FΩ3, P 4F = FΩ4, and so on. Therefore, we have that
CF = FqC(Ω) or C = FΛF ∗, where Λ is the diagonal
matrix taking the form

Λ = diag
(
qC(1), qC(ω), qC(ω2), . . . , qC(ωn−1)

)
,

and ‘∗’ represents complex conjugate. In this manner,
a circulant matrix C can be diagonalized to reveal its
eigenvalues.
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2.1 Block circulant matrices

Consider the matrix (2) but with each real number entry
replaced by an m×m matrix Di:

D = circ(D1, D2, . . . , Dn).

The matrix D is of dimension nm×nm and has a block
circulant form. This matrix can be written in terms of
the n× n circulant matrix P as

D = Dn⊗Pn−1 +Dn−1⊗Pn−2 + · · ·+D2⊗P +D1⊗I,

where ⊗ is the Kronecker product. The matrix D can be
block diagonalized using F , from (4), yielding

Λ := (F ⊗ Im)∗D(F ⊗ Im),

where Im is the m×m identity matrix. It can be shown
that the block diagonal matrix Λ has the following en-
tries along its diagonal:

D1 + ωi−1D2 + ω2(i−1)D3 + · · ·+ ω(n−1)(i−1)Dn,

for i = 1, . . . , n.

3 Traditional cyclic pursuit

Consider n agents, modeled as point masses, numbered
from 1 to n performing cyclic pursuit as described by
(1). This system can be written in vector form as

ż = A1z. (5)

The matrix A1 can be written as A1 = P − I, where P
is given in (3). The eigenvalues of P are the nth roots
of unity; thus, the eigenvalues of A1 are the nth roots
of unity shifted left by one. The eigenvector for the zero
eigenvalue satisfies A1v = 0, or Pv = v, so all of v’s com-
ponents are equal. For simplicity take them all to be 1.
The following theorem results from the above observa-
tions.

Theorem 1 (Bruckstein et al. [1]) Consider the
cyclic pursuit scheme in (1). For every initial condition,
the centroid of the agents z1(t), . . . , zn(t) is stationary
and every zi(t) converges to this centroid.

The zero eigenvalue of A1 dictates that the agents con-
verge to their centroid and thus the rate of convergence
of the agents is determined by the nonzero eigenvalue
with the smallest absolute real part.

Now consider the situation where each agent follows a
displacement of the next agent:

żi = (zi+1 + ci)− zi, i = 1, ..., n− 1
żn = (z1 + cn)− zn.

In vector form, this can be written as ż = A1z + c. Pre-
multiplying by vT we obtain vT ż = vT c. Since v is a
vector of 1’s, if we denote the centroid of the agents as
z̄, we get that

˙̄z =
1
n

n∑

i=1

ci. (6)

By properly selecting the ci’s we can create hierarchy
within cyclic pursuit.

4 Two layer hierarchy

We will start by looking at the two layer hierarchical
scheme, as described in Section 1, where N2 agents are
divided into n2 groups of n1 agents (n1 × n2 = N2).
Each agent will be described by the subscripts zp,q where
p = 1, . . . , n2 is the group index, and q = 1, . . . , n1 is the
agent index. Therefore, the two layer hierarchy system
can be written as,

group 1





ż1,1 = z1,2 − z1,1 + d1,1

ż1,2 = z1,3 − z1,2 + d1,2

...
ż1,n1 = z1,1 − z1,n1 + d1,n1





...

group n





żn2,1 = zn2,2 − zn2,1 + dn2,1

żn2,2 = zn2,3 − zn2,2 + dn2,2

...
żn2,n1 = zn2,1 − zn2,n1 + dn2,n1 .





(7)

where the dp,q’s are the displacements. We require the
centroids of the groups to be in cyclic pursuit. Therefore,
the desired equations of motion for the centroids of each
group are

˙̄zp = z̄p+1 − z̄p, p = 1, . . . , n2 − 1
˙̄zn2 = z̄1 − z̄n2 ,

(8)

where the centroid of the pth group is defined as

z̄p :=
1
n1

n1∑
q=1

zp,q.

The question is how to choose the displacements, dp,q’s,
to achieve the motion in the centroids described by (8).
From (6), the dynamics of group p’s centroid is

˙̄zp =
1
n1

n1∑
q=1

dp,q.
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Combining this with (8) we get that

n1∑
q=1

dp,q = n1(z̄p+1 − z̄p). (9)

Looking at (9) and summing over all of the dp,q’s we can
see that

n2∑
p=1

n1∑
q=1

dp,q = n1

n2∑
p=1

˙̄zp = 0,

and therefore the centroid of the N2 agents is stationary.

Several different dp,q’s can be chosen that will satisfy
(9). One such choice is

dp,q = zp+1,q − zp,q. (10)

This means that the qth agent in the pth group chases
the qth agent in the (p + 1)th group. By substituting
the expression for the dp,q’s into (7) it can be seen that
each agent has a communication link to two other agents
(zp+1,q and zp,q+1). Therefore, with this scheme, there
is a total of 2N2 communication links. This system can
be further examined by looking at the vector form

ż = Bz + Dz,

where B is the block diagonal matrix describing the
cyclic pursuit within the groups, and is given by

B = diag(A1, . . . , A1), (n2 blocks),

where A1 = (P − I)n1×n1 as in (5). The eigenvalues of
B are n2 sets of the nth

1 roots of unity, shifted left by 1.
The matrix D represents the dp,q’s and has the form

D = circ(−1, 1, 0, . . . , 0)n2×n2 ⊗ In1

= (P − I)n2×n2 ⊗ In1 . (11)

The matrix In1 =: S in (11) represents the sensor con-
nections of each agent in one group to the agents in the
next group. A ‘1’ in the fgth position of the S matrix,
f, g = 1, . . . , n1, indicates that the f th agent in each
group senses the gth agent in the next group (modulo
n2). Therefore, S = I indicates that the f th agent of
each group sees the f th agent in the next group.

If we compute A2 := B + D, it has the block circulant
structure (with each block being of size n1 × n1)

A2 = circ(A1 − I, I, 0, . . . , 0)N2×N2 . (12)

This matrix can be block diagonalized to obtain the fol-
lowing matrices along the diagonal:

(A1 − I) + ωr−1I, r = 1, . . . , n2,

Re

Im

0

1st set of eigenvalues, 
eigs(A1), lie evenly spaced 

on this circle.  

2nd set of eigenvalues, 
eigs(A1+ σ2(2)I), lie evenly 

spaced on this circle .

1)2( 2/2
2 −= ⋅ nje πσ

2γ

1γ

Fig. 2. Finding the γ-value of A2.

where ω = e2πj/n2 . The eigenvalues of A2 are the union
of the eigenvalues of these matrices. That is, we have
n2 sets of n1 eigenvalues, the rth set being comprised of
the eigenvalues of A1 shifted by ωr−1 − 1. This can be
written more compactly as

eigs(A2) =
n2⋃

r=1

eigs
(
A1 + (e2πj(r−1)/n2 − 1)I

)
. (13)

4.1 Rate of convergence to the centroid

By examining (13) it can be seen that A2 has one eigen-
value at zero and all others lie in the open left half-plane.
The matrices on the right hand side of (13) are circu-
lant, thus when A2 is block diagonalized, each block is
circulant. But since the blocks are circulant, they can
be further diagonalized, thereby fully diagonalizing A2.
Therefore, the zero eigenvalue of A2 dictates that the
agents converge to their centroid rather than to the ori-
gin. The rate of convergence of the agents to their cen-
troid is determined by the nonzero eigenvalue of A2 with
the smallest absolute real part. In order to simplify the
subsequent discussion the following definition is intro-
duced.

Definition 2 The γ-value of a set of eigenvalues which
lie in the left half-plane is the nonzero eigenvalue with
the smallest absolute real part.

The eigenvalues of A1 can be written as

λp = e2πj(p−1)/n1 p = 1, . . . , n1.

If we define σ2(r) := e2πj·(r−1)/n2−1, the real part takes
values in the range

−2 ≤ <(σ2(r)) ≤ 0 ∀r = 1, . . . , n2, (14)
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Fig. 3. The eigenvalues of A1

for n1 = 4.
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Fig. 4. Eigenvalue structure
for n1 = 4, and n2 = 3.

and (13) can be written as

eigs(A2) =
n2⋃

r=1

eigs (A1 + σ2(r)I) .

Now, looking for the γ-value of eigs(A2), we know from
(14) that σ2(r) shifts the rth set of eigenvalues of A1 to
the left by some amount between 0 and 2. In order to
find the γ-value of eigs(A2) we need to find the set of
eigenvalues which is shifted by the smallest amount to
the left, and then find the γ-value of that set.

The set of eigenvalues of A1 that is not shifted at all is
the first (r = 1) set which has the shift σ2(1) = 0. The
eigenvalues of this set are simply the eigenvalues of A1.
The rightmost eigenvalue of A1 lies at zero (λ1 = 0), and
thus the next eigenvalue to the left of 0 provides the γ-
value, which is λ2 = e2πj/n1 − 1 =: γ1 (or equivalently
λn1). The eigenvalues of A1 are shown in Fig. 3.

The set of eigenvalues which is shifted to the left by the
next smallest amount is given by σ2(2) (or equivalently
σ2(n2)). The rightmost eigenvalue of this set is given
by λ1 + σ2(2) = e2πj/n2 − 1, as shown in Fig. 2. Since
this eigenvalue is nonzero it is the γ-value of the set:
γ2 := e2πj/n2 −1. Both γ1 and γ2 are shown in Fig. 4 for
n1 = 4 and n2 = 3.

The question arises, which eigenvalue has a smaller ab-
solute real part: γ1 or γ2? We have

<(γ1) = cos(2π/n1)− 1 and <(γ2) = cos(2π/n2)− 1.

Therefore, the γ-value is given by γ1 if n1 ≥ n2 and by γ2

if n1 ≤ n2. The real part of the γ-value of eigs(A2) can be
written as χ := cos(2π/w)−1, where w = max {n1, n2}.
In comparing the real part of the γ-value for the two
cyclic pursuit schemes, hierarchical and traditional, we
get that the increase in the rate of convergence to the

centroid when using hierarchical cyclic pursuit is

hierarchical
traditional

=
cos(2π/w)− 1
cos(2π/N2)− 1

.

Expanding the cos terms to the first order and using the
fact that N2 = n1×n2, and w = max {n1, n2}, we arrive
at the following theorem.

Theorem 3 (Two layers of hierarchy) Suppose we
have two layers of hierarchy in cyclic pursuit, where
N2 agents are divided into n2 groups, with each group
containing n1 agents. Then the increase in the rate of
convergence of the two layer hierarchy scheme, when
compared to N2 agents in traditional cyclic pursuit, is
approximated by:

R :=
hierarchical
traditional

≈ min{n1, n2}2 =: R2.

As the total number of agents becomes large (N2 →∞),
R/R2 → 1.

Thus in the special case where n1 = n2 =
√

N2, the N2

agents will convergence to their centroid approximately
N2 times faster using the hierarchy scheme than using
traditional cyclic pursuit.

5 The generalized scheme

In the most general setting, we have L layers of hierarchy
(in the previous section we had 2 layers). We call the
layer consisting of n1 agents the first layer. The second
layer then consists of n2 subgroups of n1 agents, the
third layer, n3 groups of n2 subgroups of n1 agents, and
so on. In total we have NL agents, where

L∏
m=1

nm = NL. (15)

We would like to write this system in the form

ż = ALz, (16)

where z is a column vector of length NL and AL is an
NL by NL matrix. For L = 1, we have NL = N1 = n1

and the A1 matrix is A1 = (P − I)n1×n1 . Each time
we add a new layer we would like the behavior in the
layer below to remain the same. For example, with one
layer, we have traditional cyclic pursuit. When we add
another layer and have several groups, we would still like
the agents within each individual group to be in cyclic
pursuit. We then add sensor connections between each
of the groups to achieve cyclic pursuit at the new level
(between the centroids of the groups). In looking at the
A2 matrix in (12) this becomes evident. The A1 matrices
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along the diagonal represent the cyclic pursuit within
each group. The I’s along the off-diagonal and−I’s along
the diagonal represent the sensor connections between
groups to create the new layer of hierarchy; each agent in
a group takes the position of an agent in the next group,
minus its own position (as described in (10)), to create
the new layer.

Lemma 4 An L layer hierarchy scheme can be put into
the form of (16). The matrix AL is given by the recursive
expression

A1 = circ(−1, 1, 0, . . . , 0)
Am = circ(Am−1 − I, I, 0, . . . , 0), m = 2, . . . , L

where Am is composed of nm blocks of dimension Nm−1×
Nm−1. The eigenvalues of Am are given by

eigs(Am) =
nm⋃
r=1

eigs
(
Am−1 + (e2πj(r−1)/nm − 1)I

)
.

The proof of this lemma will be omitted due to space con-
straints. In order to determine the rate of convergence
of the agents to their centroid, the γ-value of eigs(AL)
must be determined. The process for determining this
value is simply an extension of the process used for the
two layer case. An example is shown in Fig. 5.

Theorem 5 The γ-value of eigs(AL) is given by

γ := e2πj/w − 1 w = max
m
{nm}, m = 1, . . . , L.

The increase in the rate of convergence of this scheme
when compared to NL agents in traditional cyclic pursuit
is approximated by

R ≈
(

NL

maxm{nm}
)2

=: RL. (17)

As the number of agents becomes very large (NL →∞),
R/RL → 1.

In order to determine the highest rate of convergence
for the generalized scheme we introduce the following
definition.

Definition 6 Given NL agents in an L layer hierarchy,
a distribution of nm’s satisfying (15) which yields the
highest rate of convergence is an optimal distribution.

Theorem 7 In the case where L
√

NL is an integer, the
uniform distribution of nm’s

n1 = n2 = · · · = nL = L
√

NL, (18)
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−2

−1
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γ
1
 γ
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(iv)

Fig. 5. Determining the possible γ-values for eigs(A3). (i)
The eigenvalues of A1. (ii) The eigenvalues of A2. (iii) The

eigenvalues of A2 shifted by σ3(2) = e2πj/3 − 1. (iv) The
eigenvalues of A3. For this distribution of agents, n3 = 3
groups of n2 = 3 subgroups of n1 = 4 agents (total of 36
agents) the γ-value is γ1.

which yields an increase in the rate of convergence of

RL = N
2(L−1)/L
L , (19)

is an optimal distribution. Moreover, it is the only opti-
mal distribution.

PROOF. First we show that distribution (18) is opti-
mal. Since the numerator of (17) is a constant, the high-
est rate of convergence is obtained when the denomina-
tor is minimized. Therefore, an optimal distribution is
one which minimizes the maximum nm. Suppose there
exists a distribution which yields a rate of convergence
greater than (19). This implies there exists a distribu-
tion {nm}, m = 1, . . . , L, such that

max
m
{nm} =: M <

L
√

NL and
L∏

m=1

nm = NL.

Thus, M ≥ nm for all m. But then ML ≥ ∏L
m=1 nm =

NL which is a contradiction, since we assumed
M < L

√
NL. Therefore maxm{nm} ≥ L

√
NL and

RL ≤ N
2(L−1)/L
L for all distributions, and thus (18) is

an optimal distribution.

6



−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

x

y

Fig. 6. Trajectories for 16 agents in traditional cyclic pursuit
(dashed line) and 16 agents with 4 layers of hierarchy (solid
line).

Now suppose a distribution which is not identical to
(18) is also optimal. This implies there exists a distrib-
ution, {nm}, m = 1, . . . , L, where nm1 > nm2 for some
m1, m2 ∈ {1, . . . , L}, such that

max
m
{nm} = M = L

√
NL and

L∏
m=1

nm = NL.

Thus, M ≥ nm for all m, with M > nm2 . But then
ML >

∏L
m=1 nm = NL, which is a contradiction since

we assumed M ≤ L
√

NL. Therefore, for any distribution
not identical to (18), maxm{nm} > L

√
NL, and RL <

N
2(L−1)/L
L , which is not optimal. Therefore, (18) is the

optimal distribution. 2

When L
√

NL is not an integer there may be multiple
optimal distributions. For example, if NL = 12 and L =
2, there are two optimal distributions, {n1, n2} = {3, 4}
and {n1, n2} = {4, 3}, since they both yield the highest
rate of convergence.

In Fig. 6 trajectories are shown for 16 agents in tradi-
tional cyclic pursuit and 16 agents with L = 4 (n1 =
n2 = n3 = n4 = 2).

6 A new comparison

We have obtained a significant increase in the rate of
convergence of a group of agents to their centroid when
comparing hierarchical cyclic pursuit to the traditional
cyclic pursuit scheme. However, the hierarchical scheme
has more communication; each agent sees more than
one other agent, whereas in the traditional scheme each
agent only sees one other agent. Because of this, a rate of
convergence comparison will now be performed between
the hierarchy scheme and a scheme in which each agent
chases the centroid of a group of agents.

In an L layer hierarchy scheme, each agent has a com-
munication link to L other agents. If there is a total of
NL agents, then the entire system consists of LNL com-
munication links. Now, consider another scheme involv-
ing a group of NL agents. The strategy in this scheme is
that agent i chases the centroid of agents i + 1 to i + L
modulo NL. This can be written as

żi =
1
L

L∑
m=1

zi+m (mod NL) − zi i = 1, . . . , NL. (20)

This scheme has the same number of total communica-
tion links as an L layer hierarchy scheme (i.e., there is a
total of LNL communication links).The system (20) can
be written in the vector form as

ż = Az,

where A is the circulant matrix given by

A =
1
L

circ(−L, 1, . . . , 1︸ ︷︷ ︸
L ones

, 0, . . . , 0).

Matrix A can be written in terms of the matrix P and
the polynomial

qC(s) =
1
L

sL +
1
L

sL−1 + · · ·+ 1
L

s− s0,

as A = qC(P ). The eigenvalues of A are given by

eigs(A) = {qC(1), qC(ω), qC(ω2), . . . , qC(ωNL−1)},

where ω = e2πj/NL .

Lemma 8 The matrix A has one eigenvalue at zero, and
all others lie in the open left half-plane. If NL is suffi-
ciently large when compared to L, the γ-value of eigs(A)
is given by γ := qC(ω).

The reason for the condition that NL be sufficiently large
in comparison to L can be better understood by looking
at Fig. 7. In (i) and (ii) the rightmost nonzero eigenvalue
is clearly given by γ, which is the first eigenvalue arrived
upon when following the curve counterclockwise from
the zero eigenvalue. However, when looking at (iii) all
four nonzero eigenvalues have same real part, and in (iv)
γ is no longer the rightmost nonzero eigenvalue. There-
fore, only when NL is sufficiently large in comparison
to L, will γ be the γ-value. However, when performing
the comparison between this scheme and the hierarchi-
cal scheme it is the limiting case when NL →∞ that is
of interest and in this case it is clear that the γ-value of
A is given by γ. The real part of γ can be written as

<(γ) =
1
L

L∑
m=1

(cos(2mπ/NL))− 1,
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Fig. 7. (i) Eigenvalues of A with NL = 100 and L = 2. (ii)
Eigenvalues of A with NL = 10 and L = 2. (iii) Eigenvalues
of A with NL = 5 and L = 2. (iv) Eigenvalues of A with
NL = 4 and L = 2. The eigenvalue qC(ω) is no longer the
γ-value, it is now given by qC(ω2).

Table 1
Comparing the rate of convergence of an L = 3 hierarchy
scheme to the traditional and 3-link schemes.

Number of agents hierarchy/trad. hierarchy/3-link

33 = 27 56 12

43 = 64 208 45

103 = 1000 9675 2075

from which the following result is obtained:

Theorem 9 In comparing the L layer hierarchy scheme,
which has a total of LNL communication links, to the
L-link scheme which has an equal amount of communi-
cation, the increase in the rate of convergence is approx-
imated by

hierarchical
L− link

≈
(

L∑L
m=1 m2

)
N2

L

w2
,

where w = max{n1, n2, . . . , nL}. As NL → ∞ this ap-
proximation approaches an equality.

Table 1 shows some comparisons between the different
schemes for L = 3. The L layer hierarchical scheme has a
much greater rate of convergence than the L-link scheme.
The trajectories of 16 agents in 4-link pursuit and in
hierarchical pursuit with L = 4 (n1 = n2 = n3 = n4 =
2) are shown in Fig. 8.
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Fig. 8. Trajectories for 16 agents in 4-link cyclic pursuit
(dashed line) and 16 agents with 4 layers of hierarchy (solid
line).

7 Conclusions

In this brief paper a hierarchical cyclic pursuit scheme
has been introduced. It has been shown that this scheme
yields a higher rate of convergence of a group of vehicles
to their centroid than either the traditional cyclic pursuit
or the equal communication scheme. There are several
areas for future work including extending this scheme
to the three dimensional case, or to networks of wheeled
vehicles. In addition, it would be nice to consider a more
robust version of this scheme which accounts for errors
in measuring the distances between agents.
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