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Abstract— The problem of stabilizing a group of agents between agents. Problems such as determining the best

in the plane to a stationary formation is analyzed. A local way to split a large rigid formation into smaller rigid
control scheme is proposed to stabilize the agents to the formations are studied in this framework

vertices of an equilateral polygon. The centroid of the agents . S .
is stationary during the evolution. For three agents a full Another scheme for formation stabilization of point

stability analysis is performed: If three agents start in distinct ~masses is given by Lin et al. [3]. This scheme requires
and non-collinear locations, they converge to the vertices of a that each agent be equipped with a compass, so that they
stationary equilateral triangle, while maintaining a stationary  share a common direction. If the agents have this property

centroid. then a local control strategy can be designed to stabilize
|. INTRODUCTION to any stationary formation. In [4] this idea is extended to
unicycles.

There has been a considerable amount of work on

Iﬁ:;na:fﬁg tsvtvibI:::iﬂotn 'gsth; g?ﬂ;giﬁéﬁig; rll't?hr:lgroup of agents to a stationary formation. We model the
' yp gents as point masses, and we uniquely identify each of

are studied are stabilization to a moving formation, anﬁmn agents with a number between 1 andThe position
stabilization to a stationary formation. Much of the work f the it agent is given by the vectar — (z;, y;) in R?

ha§ been on stabiliz_ing a group of agents (most common he input to each agent is a velocity vectgr

unicycles) to a moving formation. For example, Justh and

Krishnaprasad [1] develop a control law to stabilize two %= uy.

unicycles moving at constant speed to a common heading.

In [8] by Paley et al., the same problem is approacheﬂihe agents’ positions can also be represented as points in

by using potential functions to maintain spacing betweefhe complex plane; = z; +jy;, i = 1,...,n. The agents

unicycles. Marshall et al. [5] create a control strategyelas are not equipped with a compass, and thus they do not

on cyclic pursuit in which the unicycles can converge t¢hare a common heading (i.e., the agents are disoriented).

a circle formation. In formation the unicycles are movingThe fact that the agents are disoriented makes formation

around the circle, equally spaced. In [11], [12] by Tannestabilization significantly more complicated then when the

et al., moving formations are studied in the context ofgents are oriented. The problem we address is to find

flocking. The agents are modeled as double integratofslocal control strategy such that for eaghagent: is

(i.e., the control input is the acceleration) and the sitgbil Stabilized to a distance > 0 from agents + 1 andi — 1.

of a flocking control law is studied for both fixed and The organization of the paper is as follows. In Section II

dynamic communication topo|ogies_ we brlefly examine the strategy in [3] in order to contrast
In the area of stabilization to a stationary formatiorwith the present scheme. In Section Il we introduce the

there are some interesting results. Sugihara and Suz@antrol strategy, which is based on the linear polygon

[10] propose a heuristic distributed algorithm to staliliz shortening scheme of [9], and analyze the systemnfor

a group of agents (mode|ed as point masses) to Stationa’]:gents. FinaIIy, in Section IV we StUdy the SDECia| case of

positions, equally spaced around a circle. Each ageHtree agents and show that they stabilize to an equilateral

adjusts its position based on the position of the neareftangle.

agent and the farthest agent. Through simulation, it is

shown that the agents form a rough approximation of a

circle. The formation stabilization problem has also been Consider a strategy in which each agent pursues a

studied using graph theory, as in, for example, [6], [7]. Irdisplacement of the next

this work a formation is viewed as a rigid graph, where

the links on the graph represent the distance constraints Zi=(zin+di) =z, i=1..n,
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d = 0. Every z;(t) converges to the stationary centroiddenote then x 1 vector of positions,(z1,..., 2,), the
displaced byh;. system (1) is defined on the set
By appropriate choice off, a group of agents can be o " )

stabilized to a formation about their centroid. For example T={2€C": |zits — 2| > 0, Vi}.

let Ny The system (1) has been chosen to stabilize to the con-
d; = e2™i/n, figuration |z;4+1 — z;| = b, Vi. However, it is difficult to

. n ) study the stability of this formation in the dynamics,

Notice thatd;_, d; = OI and tw%rgfore the Ceitr%'gj?ithe since z;11 and z; could be going off to infinity together,

nhp0|r}ts IS sr:.atlonabr%/.. n equrl ”umfi*l —E = eh *and yet|z; 1, — | could be converging td. Because of

Therefore, this stabilizes a group of agents to the verticqfis. we introduce the notatian = 2,1 — 2 and study the

of a regula.r polygon (;entered at the centroid. Howeveétability of thee dynamics with respect to the equilibrium
notice that in order to implement this scheme, each agent

> i ;| = b, Vi. From this analysis we will be able to infer
must be able to calculate the vectg¥ /™. This vector Pe | o Yy

. . . AN the stability of thez dynamics.

resides in the global coordinate system, which in this case

is a global complex plane. Therefore, in order to implemerB. The e dynamics

this scheme, each agent must agree on a real and imaginaryye introduce the notation

axis. Hence, each agent must be equipped with a compass.

In this paper, the agents are not equipped with compasses. € = Zitl — %
This makes the problem considerably more difficult. Notice that by the definition of;,

Il1. L OCAL CONTROL SCHEME AND STABILITY n
ANALYSIS D ei=0. (2)
Consider a group of. agents, numbered from ..., n, =
lying in the plane. Theth agents’ position is given by Let e € C™ denote then x 1 vector (eq,...,e,), and let
(xi,9:), which we can represent in the complex plane as ap  a Un1
z; = x; + jy;. We can view the group of agents as the Un_1 Gy -+ Qp_o
vertices of am-gon by joining consecutive pairs of points circ(ag, a1, ...,a,-1) :=
Z1,%9,...,%, tO create the sides;zs, 2023, ...,2n21. IN
this section we will introduce a control scheme for sta- apr a2 -+ do
bilizing the agents to an equilateratgon and study the denote a circulant matrix. Then, by introducing the per-
stability of its equilibria. mutation matrixP = circ(0,1,0,...,0), and the matrix

. Ay := P — 1 =cire(-1,1,0,...,0), we have
A. The z dynamics 1 cire(—1,1,0,...,0)

In order to stabilize a group of agents to an equilateral e= Az
polygon, consider the following control strategy: We can rewrite (1) in terms of as
1 b2 1 b? 1 b?
S 2(21,+1 %) (1 |2i41 — Zz|2) ! 26 < |€i|2> 26 ' ( lei—1]? )
1 b2 . PO s
n 5(21;1 ~ ) (1 B | |2> Ci=1,....n, We can also write the dynamiés = 2,1 — 2; as
Zi—1 — %

2 2
(€1 O N & DL DD S
€ 2ez+1 |€i+1‘2 € |61;|2

whereb is a positive constant. In this expression all indices 1 B2

are evaluated module (i.e., n+1 = 1 and0 = n). + e (1 — 2) , i=1,...,n. (4)
To better understand the motivation behind this scheme, 2 lei—1]

consider the first term on the right-hand side of (1). INotice that both (3) and (4) have a singularityeif = 0
|ziv1 — 2| > b thenl — b?/|z;41 — 2|? > 0 and thus the for somei, and thus (3) and (4) are defined on the set
agent moves towards;,q. Similarly, if |z;41 — 2z;| < b " ,

then1 — b%/|z;,1 — z|> < 0 and the agent moves away S:={ecC": e >0, Vi}.

from Zi41- Therefore, the effect of this term is to StabilizeThe topo|ogy ofS is inherited from the topo]ogy o L

z; to a distance) from z; ;. We add the second term to The system (4) on the sétcan be viewed as a completely
the right hand-side of (1) (which stabilizesto a distance separate system from (1). If we impose condition (2) on

b from z;_;) so that the centroid will remain stationary thee,’s and hence relate the system to (1), then (4) evolves
throughout the evolution. on the setS, C S:

Notice that ifb = 0 we simply have the linear polygon n
shortening scheme of [9]. Also notice that the system is So:={ecC":|e| >0, Vi, Zei ~0}.
undefined if|z; 11 — 2;| = 0 for some:. Letting z € C* Py



Note that with the relatiom = Az, e € Sy if and only if  connected. Consider a poiate S. This point consists of
zeT. n complex numbers;,...e,, which satisfye; # 0, Vi.
We can rewrite the equations (1) and (4) in vector fornThat is, no componen; of e € S, can lie at the origin of
as follows. First, we introduce the functign: C\{0} — C the complex plane. Consider two arbitrary poipt®’ €
1 b2 S. The setS is path-connected if there exists a function
o(s) = s( - 2) . (5) o(t) : [0, 1] — S, such thato(0) = p ando(1) = p'.
2 5] Consider thei*” component ofp andp’:

Using this function we can write (3) as 9. 07
9 (3) pi :=|ps|e’® and pl = |pl|e’?:.

ui = ples) — glei). ©)  We would like to find a functior; (t) : [0,1] — C/{0},
We can extend this function up to vectors by defining ~ such thato;(0) = p; ando;(1) = p;. We can simply let
S —C" as o;(t) be any smooth function that satisfies the boundary
conditions, and does not pass through the origin. For
D(e) = (g(er), - -, ¢(en))- exampleg;(t) could be a function which rotates and scales
Noting that — 4,7 = circ(1,0,...,0,—1) we can write Pi t_o_p’i. Hence, lettingo;(¢) be any such function, and
(1) as def|n|n_g o(t) = [al(t),...,%(_t)], we obt(_":un the result
5= 7A1T(I)(Alz) _ 7A1T(I)(€). @) thatS is path-connected. This implies thétis connected.
A set which is open and connected is a domain. =
Finally, writing (4) as In order to talk about a solution of the system (8), we

= dleirn) — 20(es) + b(es1) must ensure local existence and uniqueness of solutions.
G = QL8 € Ci-1); A sufficient condition for this is that the right-hand side

and using the fact that (RHS) of (8) is locally Lipschitz onS. To show this we

must compute the Jacobian of the RHS. This is an instance

T P 3 B . . . .
—A A = cire(=2,1,0,...,0,1), where the complex representation has its limitations. We

we can write the: dynamics as will therefore show this using € R?" as developed in
. Remark 1.
é=—A1A;" D(e). (8) Lemma 3: The right hand side of (8) is locally Lipschitz

onsS.

Proof: From Remark 1, we can lete R2" and write
r88) as¢ = — (414" ® I,) @(e) =: f(e). From Lemma
3.2 of Khalil [2], f is locally Lipschitz onS if f(e) and
0f/0e are continuous orS. Letting e; = (e;z, €iy), We
can see that the function

b2 2 2
ot =i (1- 7073 ) BN e, b
el S GO 1 A 11 L R A
and® : S — R2" is defined as before. Finally, (8) becomes ) )
is continuous for alle;|| > 0 (i.e., on the selR? \ {0}),
é=— (447 ® 1) P(e), and thusf (e) is continuous orS. Therefore, it remains to

be shown tha® f/de is continuous orS. We have

Remark 1: In the development of (8) we have taken
e; as a point in the complex plane. However, we ca
equivalently let; be a vector irR?, and thus: € R?". The
setS can be written asS = {e € R* : |le;|| > 0, Vi}.
The functiong : R? \ {0} — R? is then defined as

where ® is the Kronecker product and, is the 2 x 2
identity matrix. _ | <« of _ (A" ® 1) i
This section proceeds in the following manner. We will Oe e
study the stability of the system (8) on the setFrom The matrixd®/de is a block diagonal matrix with thx 2
this study we will be able to determine the stability of theblocks d¢(e;)/0e; along the diagonal. By computing the
system (8) orSy. This is performed through an applicationJacobiand¢(e;)/de;, it can easily be verified that each
of LaSalle’s Theorem. In Lemmas 2 to 9 we will establistblock is continuous oriR? \ {0}. Therefore,0®/de is
the results required to apply LaSalle’s Theorem, and ioontinuous onS which implies thatd f/de is continuous
Theorem 11 we state the main result for the system (8)n S. [ ]
From this result we will be able to infer the stability of Note that at this point in the development we are not
system (1) on the sef. This takes place in Theorem 13.saying thatS is positively invariant with respect to the
In order to perform a stability analysis of the systendynamics (8). Later this will be shown to be true. In the
(8) on the setS, we need to establish th&t is open and following three lemmas we will establish some properties
connected. We say that an open and connected set iofathe systems (1) and (8).
domain [2]. Lemma 4: Under the dynamics (8), if the trajectoeyt)
Lemma 2: The setS is a domain. lies entirely inS, the centroid ofey, ..., e, is stationary.
Proof: It is clear that the sefS is open. We will In particular, if a trajectory contained ifi starts inSy, it
show thatS is path-connected, which implies th&tis remains inS, for all time.



Fig. 1. The evolution of a triangle. The initial triangle i&/en by the
dashed line and the final triangle by the solid line. The stetiy centroid
is denoted by the-.

Proof: Defining then x 1 vector of 1's asl, the
centroid ofeq, ..., e, is given by
1

é¢:==-1"e.
n

From (8) we have
e = 7A1A1T(I)(€).
Pre-multiplying this byl” we have

né = 71TA1A1T®(6) = *].T(P - I)AlTé(e)
=—-1TP-11)A,"®(e).

But, 1 is an eigenvector ofP” with eigenvalue 1, so
PT1 = 1 and thus1”P — 17 = 0. Thereforeé = 0,
and the centroid of the;’s is stationary.

Consider a trajectory(t) € S, V¢ > 0. If e(0) € Sp then
by the definition ofSy, 17¢(0) = 0. Since the centroid is
stationary,17¢(t) = 0 and thuse(t) € Sy, Vt. [ ]

Similarly, the centroid of the dynamics is stationary.

Lemma 5: Under the dynamics (1), if the trajectogyt)
lies entirely in7, the centroid ofzq, ..., z, is stationary.

Proof: The centroid of the: points is given byz :=
117%. From (7) we have = — A4, ®(e). Pre-multiplying
this by 17 we have

nz=-1TA,7d(e) = -17(P - I)Td(e)
= -1TPT —1T)®(e) =0,

since1” P”T = 17. Thereforez = 0, and the centroid of
the n points is stationary. ]

In Figure 1 the evolution of a triangle is shown. Notice
that the centroid is stationary and the triangle evolves to

an equilateral triangle.

Lemma 6: Consider a trajectory(t) of (8) which lies
entirely in S. If the components:q,...,e, are collinear
at some time, then they are collinear for all < ¢; and
t> 1.

Proof: Letz :=R{e} € R". If the pointsey,...,e,
are all collinear at;, then we can rotate the coordinate
system such that they all lie on the imaginary axis. Then
x(t1) = 0. Therefore, defining the function(x) = x, and
the set
L:={z e R":¢y(x) =0},

we havez(t;) € L. Notice thatdy/0x = I,,, wherel, is
the n x n identity matrix. Therefore, ifL ¥ (z(t1)) = 0
for all z(t1) € £, thenL is an invariant set. We have
oY

L; =—i=4.

bla) = 5=

From (8) we have: = —A; A; " R{®(e)}. However, notice
that from (5) we can writeb(e;) = e;k(e;) where

1 b2
k(el) = 5 (]. - |e;|2> €
Therefore, definingK (e) = diag(k(e1),...,k(e,)) we
have®(e) = K(e)e and thusR{®(e)} = K (e)z. Hence

L¢w(I(t1)) = 7A1A1TK(€)£Z?(t1) = 0,

sincexz(t;) = 0. This implies thatl is an invariant set
and if the points are collinear at some timg they are
collinear for all time. |
Note that this implies that the same collinearity property
holds for thez dynamics. In the following lemma we prove
two properties ofp which will be useful for the upcoming
analysis.

Lemma 7: The functiong : C\ {0} — C

o) =35 (1- 25 )

has the following properties:
(i) ¢(s) =0 if and only if |s| = b, and
(ii) the restriction of¢ to RT is one-to-one.
Proof: To show (i), we have(s) = 0 if and only if
|¢(s)| = 0. Hence

R.

1 b2 1 b2
=_|s(1——||==|s||1 - —]| =0.
o= 3o (1= i )| = 201 - e =
Since|s| > 0 we have
2

For (ii), let ¢ be a positive real number. Then

s =3 (a-2).

Taking the derivative oft(q) with respect tog we obtain

dp 1 b2

[ + -
dg 2 2q¢?
Therefore ¢ is monotonically increasing ofR* which
implies that the restriction of to R* is one-to-one. ®
In general, the functiom is not one-to-one. For example,
let s; = b/v/2 and sy = —bv/2. Thené(sy) = ¢(s2) =
—b/V2.

>0, VgeRt.



We will now characterize the equilibria of the system (8)
on the setS. To keep the notation compact we introduce

the set
7:={1,2,...,n}.
We also introduce the unit vector notation

€

€; .

= ©
lei
Lemma 8: The equilibria of the system (8) on the s&t
are given by
E:={ecS:d(e) ckerA’}

={eeS:¢(e) = dlej), Vi,j eI}
From (8), at equilibrium we have

A1A1T<D(€) =0.
Pre-multiplying both sides by (e)” we have that
d(e)' A AT®(e) =0 AT ®(e)||? = 0.

Therefore, in equilibrium®(e) € ker AT, SinceA, T
cire(—1,0,...,0,1), this implies that all components of
®(e) are equal. [ |

Proof:

=

Now we will characterize the equilibria of (8) on the set

Sp CS.

Lemma 9: Let e € Sy be an equilibrium of (8). If the
componentsy, ..., e, are not all collinear, thea lies in
the set

Ei:={e€ Sy |ei| =0, Vi}.

If the components are collinear, therlies in

2
Ey:=4de€Sp:e;=¢; Or ei:*ejW’ Vi,jGI}.
j

€2 €4

e

1

€1 €3

Fig. 2. An equilibrium forn = 4 which is in bothE; and E2. Here
the points are collinear and;| = b, V.

3 €3 4 €4

€5

(a) collinear:|e1],|e2], |es|, les] = b/V6, |es| =

5le].
e3 _ €4 o
3o 1o Lo 02 "5
- e -
- &
(b) collinear: |e1|,|es|,|ea] = b(2/3)'/2,
le2, les| = b(3/2)1/2
1 €1 2

(c) non-collinear:|e;| = b, Vi.

Fig. 3. Example equilibrium formations for = 5 agents.

So the equilibria fall into two categories. If the points

Proof: From Lemma 8, at equilibrium all componentsare not all collinear then they lie in the set

of ®(e) are equal. Ifd(e) = 0, theng(e;) = 0, Vi, which
from Lemma 7 implies thafe;| = b, Vi.

If ®(e) # 0, then ¢(e;) must take the same nonzero
value in the complex plane for evefy That is,

¢(ei) = olej) Vi, jel. (10)
From (9), we can write this as
él¢(|61|) = éj¢(‘6j|)7 VZ,j € I7 (11)

and soe; ande; must be collinear, for alf, j € Z. For

simplicity, rotate the coordinate system so tkatpoints
along the positive real axis. Then we haye= 1 andé; =

+1, where the sign depends ex's orientation relative to
e;. Therefore, from (11) we havé(|e;|) = £é(|e;]).

If &, =1theng(le;|) = ¢(le;]). From Lemma 7, this is
satisfied only if|e;| = |e;|. Combining this with the fact
that é; = é; we obtain that (10) is satisfied if; = e;.

The other option is thaé; = -1, in which case

o(le;|) = —¢(le;]), and thus
b? )

b2
il = i1 = (lesl -
el T el
Solving this we obtairje;||e;| = b*. Combining this with
the fact thate; = —é; we obtaine; = —e;b?/|e;|?.

FE = {6 €Sy |€1| =b, VZ}

If they are collinear, they lie in the set

EQ:{eESO:eiej or e;=—ej—-=

Notice that ife € Sy, e; = e; cannot be satisfied for all
i,j € Z, for if it were thene; = e = --- = ¢,, and
i, ei = neyp # 0, which implies thate ¢ Sy. Also, the
sets F; and E, are not disjoint ifn is even. If an even
number of points are in equilibrium and are non-collinear,
they must lie inE;. However, if they are collinear, they
can lie in bothE; and E>. An example is shown in Figure
2. Figure 3 shows three possible equilibrium formations
for n = 5 agents on the sef,. In Figures 3(a) and 3(b),

e € 5, and in Figure 3(c) we havee F;.

With these preliminary results in place, we will now
introduce two functions which will be used in the applica-
tion of LaSalle’s Theorem. First we introduce the function
g: Rt = R:

q2

9(q) b’ In(q) — C, (12)



12

101

a(a)
)

0 1 2 3 4 5 6
q

Fig. 4. The functiong(gq) with b = 2. Notice thatg(b) = 0 is the
minimum of the function.

whereC' = b?/2 — b In(b). Using this function we define
the continuously differentiable functiovi : S — R:

= > gl

Taking the derivative ofj(¢) with respect to; we obtain:

(13)

dg b?

G0 =2 (14)
From Lemma 7 we have that(q) is monotonically in-
creasing andp(q) = 0 if and only if ¢ = b. Therefore
g(q) takes its minimum ag(b) = 0, as shown in Figure
4. This implies thafi’(e) > 0 with V(e) = 0 if and only
if le;| = b, Vi. A plot of the level sets ol for n = 2 is
shown in theje;|, |e2| space in Figure 5.

Lemma 10: If the derivative of V(e) is taken with
respect to the dynamics (8), théh< 0 on S, with V' = 0
if and only if e € E (where £ is defined in Lemma 8).

Proof: Taking the Lie derivative o in (13) we have

dg del " dg dle;| de;
V=
Z Z d‘€L| dei dt
_ Z dg( |ez| d|62|
dle;] dt
It can be verified that
%|€z’| = %@i’eiwz = ﬁ%{@ivéﬂ} = R{(éi, &)}
From (14) we also have that
dg(le:|)
=2 il).
d|€1| ¢(‘671|)

Therefore, we can writd as

V= Z (‘62|)§R{<euez }—228%{

=1 i=1

o(leil)éi, 62>}

Fig. 5. A few level sets of the functiolr. In this plotb = 2 and so as
V decreases, the level sets approacH = |ez| = b.

However, using the fact thab(|e;|)é; = ¢(e;), we can
write this as

=2 Z R{(¢p
From (8) this becomes

V = 2R{(®(e), A, A, T®(e))}
—2R{®(e)T 4, A, T®(e)} = 2|4, T®(e)||? < 0.

éi)} = 2R{(®(e), &) }.

ThereforeVV < 0 onS, with equality if and only if®(e) €
ker A; 7. That is,V = 0 if and only if e € E (WhereFE is
defined in Lemma 8). |

We say that a trajectory(¢) approaches a se¥/ as
t— oo if

tlim dist(e(t), M) =0,
where

dist(e(t), M) = Ulél]{j lle(®) — ]|

Theorem 11: Consider the system (8). For any initial
condition e(0) € &, the solutione(t) approachesE
(defined in Lemma 8) as— oo. Moreover, for any initial
conditione(0) € S, e(t) — Ey U E, (defined in Lemma
9) ast — oo.

Proof: From (12) we have

g(les]) = lei2/2 — b* In(les]) —
and thus

oo, and lim g(|ez\) = o0.

lei|—
Therefore, from the definition of in (13),

lim Vi(e)

llel—o0

lim g(le;]) =

le;|—o0 ’

= 00,

implying thatV (e) is radially unbounded, and

lim V(e) = o0,
e—C™\S

implying thatV (e) is proper. We define the set

Qe={eecC":V(e)<c}, ¢>0.



SinceV (e) is radially unboundedS. is compact, for all 5
¢ > 0. Also, sinceV (e) is proper, no level set oV (e)
contains a point €™\ S (i.e., no level set o¥/ (e) contains i
a singularity). Hence{2. c S, for all ¢. Finally, since

V <0 onS, we have thaf), is positively invariant with
respect to the dynamics (8).

Therefore, we have a dynamical system (8) which is
locally Lipschitz (Lemma 3) on the domaif (Lemma L
2). We have a sef). < S which is compact and
positively invariant with respect to (8). Finally, we have r
a continuously differentiable functio : & — R such
thatV < 0 on (.. The set of all points iS5 whereV = 0
is given by

o . T Fig. 6. The evolution of a ten-sided polygon. The initial ygon is
b= {e €S (I>(e) € ker A, } given by the dashed line, and the final polygon by the solid.lifihe

length of each side converges to the vatue

From Lemma 8F is an invariant set under (8). Therefore,
By LaSalle’s Theorem (see Theorem 4.4 of [2]), for every
initial condition e(0) € £, the solutione(t) of (8)

approaches N Q. ast — oo. In addition, for any initial Sincee(t) — E, U E3 ast — oo, either|e;| — b, Vi,

conditione(0) € S, we can choose such that(0) € Q..  which implies|z;11 — 2;| — b, Vi, or e(t) — E» which

Therefore, for every(0) € S, e(t) — E ast — oo. implies thatz(t) converges to a collinear equilibrium.
If e(0) € Sp then by Lemma 4g(t) € So, Vt > 0. Finally, if z1,...,z2, are collinear, there,... e, are

Therefore e(t) must converge to a point in the s8&§NE  collinear. By Corollary 12¢(t) converges to a collinear
ast — oo. From Lemma 95, N E' = E; U E5. Therefore, equilibrium point, which implies that(¢) converges to a
for everye(0) € So, e(t) — Ey U Ey ast — oo. ®  collinear equilibrium. ]
From this theorem we have determined that the skts |n Figure 6 the evolution of a ten sided polygon is
and Sy are positively invariant under the dynamics (8).shown. The length of each side of the polygon converges
Therefore, a trajectory which starts in one of these sets i§ the valueb.
contained in that set for all time.
Corollary 12: Let e(t) be a trajectory of (8). I1&(0) is IV. SPECIAL CASE OF A TRIANGLE

in Sy, and its components; (0), ...,e,(0) are collinear,
thene(t) — Ey ast — oo.

Proof: From Theorem 11 we have that #f0) €
So, e(t) — E; U Ey ast — oo. From Lemma 9 the
collinear equilibria on the sef, are given byFEs. Also,

In simulation it appears that if the points start non-
collinear, they converge to a non-collinear equilibrium.
However, through the prior analysis we have not been able
to show this forn agents. In this section we will prove it
for three agents. To do this we will begin by determining

from Lemmf’.‘ 6, 'fel""’.e” are colllnear.at some time, the equilibria of thee dynamics on the sef, for three
they are collinear for all time. Therefore,df0) € Sy and agents
e1(0),...,e,(0) are collinear, ther(t) — E, ast — oo.. Lemma 14: Forn — 3, the collinear equilibria of (8) on

In the previous corollary we have shown that if thgs the sets, are given byCy U G, U Cs, where

start collinear, there(t) converges to a collinear equi-

— 3.0, | — _
librium. Unfortunately, if the points start non-collinear Cr 1= {e € C¥ e = b/V2, ex = ex-n,

we have not determined whether they will converge to a ex+1 = —2er}, k=1,2,3.
collinear or non-collinear equilibrium. Proof: From Lemma 6, the collinear equilibria on the
Theorem 13: Let z(t) be a trajectory of (7). 12(0) is setS, are given by
in 7, then: b2
(i) z(t) converges to a stationary equilibrium, Ey = {e €Sp:ei=¢; O ¢ = —ej s, Vi, j € I}
(i) if the components ofz(0) are non-collinear, then in 1
the limit ast — oo, |zi41 = 2| = b, Vi, OF e iy ) — 3 \ye have that € E, if S L e; =0, and for

components are collinear,
(iii) if the components ofz(0) are collinear, they remain
collinear. (i) e; = e, 0
Proof: If 2(0) € 7, thene(0) = A,2(0) € Sy. From (i) e = —ei1 g
Theorem 11 we have thatt) — F; U E; ast — oco. On  To determine the equilibria we introduce the indexc
the setE; U Fy, ®(e) € ker A;”. From (7) we have that {1,2,3}. Notice that (i) cannot be satisfied for bath- &
Z = —A1T<I>(e), and so onE; U Es, 2 = 0. Therefore, andi =k + 1 for if it were, thenex_; = e;, = exy1 and
z(t) converges to a stationary equilibrium. S0 eitheer’:1 e; # 0, or e; = 0 Vi, both of which imply

eachs,
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Fig. 7. Three agents in collinear equilibrium widy | = |ea| = b/v/2,
les| = 2|eq].

thate ¢ Sy. Therefore, we have three possible equilibri

cases:

Case 1: (i) is satisfied fori = k, (ii) is satisfied fori =
k+1.

Case 2: (i) is satisfied fori = k£ + 1, (i) is satisfied for
i =k.

Case 3: (i) is satisfied fori = k and: = k + 1.

First consider Case 1. From (i) we havg €k—1-

Substituting this into (2) we havey,; = —2e;. From

(i) we have

b2
€k4+1 = *ekw,

which, when combined witle, 1 = —2ey, gives|ex| =
b/\/2. Therefore, from Case 1 we obtain

|€k‘ - Ea €r = €k—1, Ck+1 = —2€k.

Case 2 is similar. From (i) we have,,; = e and
thus from (2),ex_1 = —2¢. Setting: = k in (ii) and
combining that withe,,_; = —2e;, we obtain|e,| = b/v/2.
Therefore, from Case 2 we obtain

b
|€k‘ = Ea €k+1 = €k, Ckp—1 = —2e.

Finally, from Case 3 we have
2 2

€ = —€p—1 |6k |2 and €kt1 = —€kw. (15)
1 .

From this we havet, = —é,_; and éx.1 = —é; which
implies thaté;,_; = é,1. Taking the magnitude of the ex-
pressions in (15) we obtaily|lex_1| = b* = |ers1]|exl,
and thuslei_1| = |ex+1]. Therefore,ex_1 = er4+1. From
(2), we obtaine, = —2¢;,_1. Combining this with (15) we
have|e,_1| = b/v/2. Therefore, from Case 3 we obtain

b
lex—1| = 7 €pt1 = €k—1, €p = —2ep_1.

Notice that the equilibria obtained from the three cases:

For Ci, N Cy41 to be nonempty, we require thaty/2 =
v/2b, which is satisfied only it = 0.

We would like to show that if the points start non-
collinear, the converge to a non-collinear equilibriumntoi
To do this we require a known result in planar geometry.

Lemma 15: Consider a simplen-sided polygon lying

d’n the complex plane whose verticesy,...,z,, are

numbered counterclockwise around the polygon. The area
inclosed by the polygon is given by

1

A= S8 {{en ma1)}-

Because of systemZ (18)’3 nonlinear circulant structure,
the dynamics of the system are invariant under an index
shift. To see this consider the shift= Pe whereP is the
permutation matrix. From (8), we have= —A; 4,7 ®(e).
Hence

é=Pé=—PA A TO(P o).

But ®(P~'¢) (@(én), @(€1),..., P(én-1))
P~1®(¢) = PT®(¢), where the last step comes from the
fact thatP—! = PT. Therefore,

é=—PALA,"PTO(e) = —(ATPTPA)TD(e)
— —(ATA)T®(e) = -4, 4,70 (@),

Therefore, ife(t) evolves according to (8) the#(t) also
evolves according to (8). Also, notice thatdfe C; then

¢ = Pe € Cy and P%¢ € Cs. Hence, by studying the
stability of, sayC5, we are studying the stability of all
three collinear equilibrium sets. By exploiting this fact,
and using the two previous lemmas, we are now able to
prove the main result of this section.

Theorem 16: Let e(t) be a trajectory of (8) starting
in Sy (and thus always lying inSy). If the components
e1, eo, e3 Of e start non-collinear, then the components of
lim;_,, e(t) are not collinear.

Proof: Sincee(0) € Sy, from Theorem 11g(t) —
E, U E5 ast — oo. Forn = 3, the collinear equilibria are
given byE2 = C1UCUCs. Sinceel(O),eg (O), 63(0) are
non-collinear, by Lemma 6, they are non-collinear for all
time. Assume by way of contradiction thaft) — C; U
> UC3 ast — oo. Because of the circulant structure

are simply cyclic index shifts of each other. Therefore, th@' (8) this is equivalent to assuming that) — C» as

collinear equilibria of the system fotr = 3 are given by

Cy = {6 e C?: ler| =b/V2, e = ex_1,
k=1,2,3.

|
In Figure 7 an equilibrium fon = 3 agents is shown. It
is interesting to note thaf, N Cy1 = ), Vk. This can be

ert1 = —2er},

t — oo, where

CQ{€€C35|61| ey = eq, 63262}.

b
V2’
We can writee(t) = A;z(t), wherez(t) € 7. Since
the e;'s are non-collinear, the;'s are also non-collinear.
Therefore, the;’s define the vertices of a triangle as shown
in Figure 8. We assume without loss of generality that the

seen by noting that in equilibrium the magnitudes of thgertices are initially numbered counterclockwise around

e;'s satisfy

, lenpal = V2.

Sl

lex—1| = lex| =

the triangle. This implies that that they are numbered
counterclockwise for all time; otherwise the vertices vebul
become collinear at some finite time, a contradiction by



Lemma 6. From Lemma 15, we can write the area of the €2 el

triangle as a function of time as

A(t) = 3{(zi(1), ziga (8)) }-

3
=1

DO =

K3

Since we have assumed thdt) — Cy ast — oo, it must

also be thatA(¢t) — 0 ast — oo. Also, since the points

are non-collinear for all timeA(¢) > 0, V.

Evaluating the time derivative ofl, and using the fact

that foru,v € C”, 3{(u,v)} = —3{(v, )}, we obtain

3
. 1
A= 3 Z;g{@uzﬁﬁ + (zi, uig1)}
13
=-3 > Sz, wi) — (i1, w)}
i=1
13
= —5 Z %{<Zi+1 - Zi71,u¢>}~
i=1
However, notice that fon = 3, 2,41 — 2z;-1 = —€j41.

Therefore, we have

A=S3"S{(eirn,w) )

i=1

DN =

From (6) we havell,i = (725(62) - (,25(61'_1) = ¢(|€1|)él -
o(|e;—1])é;—1. Substituting this in we obtain

A= % Z S{o(leil)(eit1, i) — d(lei—1])(€it1,€i-1)}-

In order to simplify the presentation we lét := ¢(|e;|).
Introducing this notation we can writd as

3
.1 . A . .
A= D S {dileiri (€, ) — dialeira|(@ivn, 1)}
i=1
Expanding this expression we get

.1 o o o
A= 53{¢1\€2|<€2,€1> — ¢3lea|(é2,€3) + Pales|(és, é2)

— ¢1les|(€s, 1) + ¢sler|(é1, €3) — Paler|(e1, é2)} .
Collecting inner products we obtain
. 1 o
A= =53 {(d1lez] + gafer]) (1, €2)

+(¢alea| + gales|) (€2, é3) + (d1les| + ¢paler])(és,€1)} -

Let us define the function:

Hi = 3{(zi—1 — 2i)(zix1 — 2i)} = pi—1pi sin(f;),

where 3; is the counterclockwise internal angle from the
side z;z; 1 to the sidez;_,z; of a polygon. We can write

I
B3 B

€3

Fig. 8. The triangle for sufficiently large showing the three internal
angles.

{(é;_1,¢;)} in terms of this function as:

. . 1 —_—
S{(ei-1, €0} = T—3{(zi — zi-1) (201 — )}
lei—1lei
1 [
= —pi_lpi%{(zi — 2zi—1)(zi+1 — 21)}
1 -
= & Zi—1 — 2 )\ %4 — Z;
s {(zic1 — zi)(zi41 — 20)}
1
Pi—1Pi

The angles are shown in Figure 8. Using this, and the fact
thatsin(f32) = sin(r — 51 — 83) = sin(f; + 33) we obtain:

A =L ((61les] + Bale sin(5r + )
+ (¢3lea| + d2les|) sin(B3) + (P1]es| + ¢slen]) sin(Br)) .

To simplify the following presentation we introduge:=

b/+/2. Multiplying A by 2, and dividing byu3; > 0 we
obtain

2 il (<¢1|e2| +¢2|e1|>m(ﬁgg+ﬁ3)
+ (éslesl +¢2|63Dsmﬁ(ﬁ3)
3 .
T+ +(ules] + <z>3|e1>“nﬁ(f”) . (16)

Ast — oo, e(t) — Co. From the definition of”; we have
that,

lim |e;|=p, lm |es] =p, lim |es| =2u. (17)
t—oo t—oo t—oo

This implies that
Jim ¢y = ¢(p) = —p, - lim ¢y = ¢(n) = —p,

18

Jim ¢ = $(2u) = p. (19)
Also from Cs, ast — oo, é1(t) — é2(t) — —és(t), which
implies that3;(¢), 85(t) — 0. Finally, sincele;(t)] —
lea(t)] ast — oo, it follows that the triangle is becoming
an isosceles triangle and thys(t) — [5(t) — 0 (that
is, /1 and 3 approach each other as they approach zero).
Therefore, we also have the limits

i S0 gy, SO
t—o0 53 t—o0 3 (19)
i sin(f1 + 33)
im ———= = 2.
t—o0 53



Taking the limit of (16) ast — oo, and using the
expressions in (17), (18), and (19) we obtain

i 2 = (g ) 2+ (i (201
+ (—p(2p) + pp)(1)} = 6 > 0.

This implies that ag — oo, A(t) | 0. Therefore, there
exists a time; such thatA(¢) > 0, V¢t > t;. But, A(t1) >
0, and thus

At) = /ttA(s)ds—FA(tl) > Aty), Vt>t,

a contradiction with our assumption thaft) — Cs as
t — oo (and thusA(t) — 0). Therefore,e(t) does not
converge taCs. This implies thatPe(t) does not converge
to C3 and P2e(t) does not converge t0;. Thus,e(t) does

Fig. 9. The evolution of a triangle. The initial triangle i&/en by the
dashed line and the final triangle by the solid line. The atetiy centroid
is denoted by the:.

not converge to a collinear equilibrium point. [ ]

Corollary 17: Let e(t) be a trajectory of (8) starting in
So. If the componentsey, es, e3, Of e start non-collinear,
thene(t) — E; ast — oo.

Proof: From Theorem 11 we know that for every 1
e(0) € S, e(t) converges to the equilibrium s&y UE;. In
Theorem 16 we have shown thgt) does not converge to  [2]
the set of collinear equilibrizy = C,UC>,UC}3. Therefore
e(t) — Ey ast — oo. [ |

Theorem 18: Let 21(0),22(0),23(0) be distinct,
non-collinear points. Under the dynamics of (1),
z1(t), z2(t), z3(t) converge to a stationary equilateral [5]
triangle with side length equal té. In addition, their
centroid is stationary throughout the evolution.

Proof: Since the points are initially distinct, from
Theorem 13, they converge to a stationary equilibrium.
Also, sincez € 7, this implies thate = A,z € Sy. Since
21, 22,23 Start non-collinearey, ex,e3 are also initially
non-collinear. Therefore, from Corollary 17¢;| — b,

Vi ast — oo. This implies that|z;11 — z;| — b, Vi as

t — oo. Therefore,zy, zo, 23 converge to the vertices of
an equilateral triangle, with side length From Lemma 4
the centroid of the three points is stationary. [ ]
The evolution of a triangle is shown in Figure 9. Even
when the vertices start close to being collinear, the?/10
converge to an equilateral triangle. ]

(4]

(6]

9]

V. CONCLUSIONS [11]

In this paper a local control scheme was proposed
to stabilize the agents to the vertices of an equilatergi?]
polygon. The centroid of the agents is stationary during
the evolution. Forn agents, we have shown that the
agents converge either to the desired formation, or to a
collinear equilibrium. In simulation, if the points stambm
collinear, they converge to a non-collinear equilibrium.
However, this could not be determined from our analysis.
For three agents, a full stability analysis was performéd. |
three agents start distinct and non-collinear, they cayerer
to the vertices of a stationary equilateral triangle, while
maintaining a stationary centroid.
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