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Abstract

If a smooth, closed, and embedded curve is deformed along itsnormal vector field at a rate

proportional to its curvature, it shrinks to a circular point. This curve evolution is called Euclidean curve

shortening and the result is known as the Gage-Hamilton-Grayson Theorem. Motivated by the rendezvous

problem for mobile autonomous robots, we address the problem of creating a polygon shortening flow.

A linear scheme is proposed that exhibits several analoguesto Euclidean curve shortening: The polygon

shrinks to an elliptical point, convex polygons remain convex, and the perimeter of the polygon is

monotonically decreasing.

Index Terms

Distributed control, curve shortening, mobile autonomousrobots.

I. INTRODUCTION

This paper studies therendezvous problemfor mobile autonomous robots, in which the goal

is to develop a local control strategy that will drive each robots’s state (usually its position) to

a common value. Research on this problem has been performed in both discrete time [1]–[7]

and continuous time [8], [9]. The discrete time research canbe split into synchronous systems

[1]–[5] (i.e., each robot moves only at global clock ticks),and asynchronous systems [6], [7]
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Fig. 1. The Euclidean curve shortening flow.

(i.e., no global clock is present). In the synchronous case there have been several papers on

circumcenter algorithms[1]–[3], in which each robot moves towards the center of the smallest

circle containing itself and every robot it sees. In both thecontinuous and discrete time cases, the

research has assumed fixed communication topologies—the sensors are omnidirectional and have

a range larger than their environment, allowing each robot to see all others—and time-varying

or state-dependent communication topologies—the sensorshave limited range; the sensors are

directional; or, communication links may be dropped or added.

In this paper we look at the rendezvous problem from a different perspective. We are concerned

with the shape of the formation of robots as they converge to their meeting point. We would like

the formation to become more “organized,” in some sense, as time evolves. We use a simple

model, numbering the robots from1 to n and considering a fixed communication topology in

continuous time. We then view the robot’s positions as the vertices of a polygon, and, motivated

by the Gage-Hamilton-Grayson Theorem described below, we seek to create an analogous

polygon shortening flow.

To introduce the Gage-Hamilton-Grayson Theorem, considera smooth, closed curvex(p, t)

evolving in time:p ∈ [0, 1] parameterizes the curve;t ≥ 0 is time; andx(p, t) ∈ R2. We can

evolve this curve along its inner normal vector fieldN(p, t) at a rate proportional to its curvature

k(p, t) (curvature is the inverse of the radius of the largest tangent circle to the curve atx(p, t),

on the concave side):
∂x

∂t
(p, t) = k(p, t)N(p, t). (1)

This curve evolution is known as theEuclidean curve shorteningflow [10], and is depicted

in Fig. 1. Let L(t) and A(t) denote respectively the length and enclosed area of the curve at
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time t. Gage [11]–[13], Hamilton [13], and Grayson [14], [15] showed that a smooth, closed and

embedded curve evolving according to (1) remains embedded and shrinks to a circular point. The

term “circular point” means that the curve collapses to a point and, if we zoom in on the curve

as it is collapsing, the curve is becoming circular. Throughout the evolution,Ȧ(t) = −2π and

L(t) is monotonically decreasing. In [15] it is also stated that under (1), “the curve is shrinking

as fast as it can using only local information.” This notion will be clarified later.

There has been prior work in creating polygon shortening flows. Motivated by the curve

shortening theory and applications in computer vision, Bruckstein et al. [16] study the evolution

of planar polygons in discrete time. A scheme is proposed that shrinks polygons to elliptical

points (the vertices collapse to a point, and if we zoom in on the collapsing polygon, the vertices

are converging to an ellipse). In addition, [16] discusses apolygon shortening scheme based on

the Menger-Melnikov curvature [17]. In [18] this scheme is studied and it is shown that most

quadrilaterals shrink to circular points. In [19] a flow is formulated such that the area enclosed by

the polygon shrinks at a rate of2π and the perimeter of the polygon is monotonically decreasing.

In this paper we study a planar polygon in the complex plane, with verticesz1, . . . , zn, as it

evolves according to

żi =
1

2
(zi+1 − zi) +

1

2
(zi−1 − zi), i = 1, . . . , n, (2)

where the indices are evaluated modulon. Thus, vertexi pursues the centroid (center of mass) of

its two neighboring (according to numbering) vertices. A discrete-time version of (2) is studied

in [16], and it is shown that the polygon shrinks to an elliptical point. The contributions of this

paper are as follows. We introduce the curve shortening theory and its relation to the rendezvous

problem. We also demonstrate the importance of studying theshape of the formation of robots

as they rendezvous. We then show the following under (2): 1) if vertices are arranged in a

star formation about their centroid, they remain in a star formation for all time (in particular,

the robots will not collide), 2) convex polygons remain convex, and 3) the perimeter of the

polygon monotonically decreases to zero. Finally, we derive the optimal direction for shortening

the perimeter of a polygon.

II. POLYGON SHORTENING

We considern robots in the plane to be the vertices of ann-sided polygon. In this section

we formally define a polygon and introduce two polygon shortening schemes.
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A. Definition of ann-gon

Following [20] we introduce the definitions of a polygon and asimple polygon inR2 (or

equivalentlyC). An n-gon(n-sided polygon) is a (possibly intersecting) circuit ofn line segments

z1z2, z2z3, . . . , znz1, joining consecutive pairs ofn distinct pointsz1, z2, . . . , zn. The segments are

calledsidesand the points are calledvertices. A simplen-gon is one that is non-self-intersecting.

We denote the counterclockwiseinternal anglebetween consecutive sideszizi+1 and zi−1zi of

an n-gon asβi (as always, indices are modulon). For a simplen-gon these angles satisfy
∑n

i=1 βi = (n − 2)π. An n-gon isconvex(strictly convex) if it is simple and its internal angles

all satisfy0 < βi ≤ π (0 < βi < π).

B. Shortening by Menger-Melnikov curvature

We now briefly describe the polygon shortening scheme studied in [16], [18], and our reasons

for not following this approach. Letx(p), p ∈ [0, 1], be a smooth curve. Consider a set of

parameter valuesp1 < p2 < · · · < pn and the corresponding discrete pointsx(pi). By connecting

these points we create ann-gon. Asn → ∞ and if the parameter values{pi} become dense in

[0, 1], then-gon converges to the smooth curvex(p). The idea is to create a polygon shortening

scheme so that asn → ∞, the scheme tends to (1).

If three consecutive pointsx(pi−1), x(pi), x(pi+1) are not collinear, there exists a unique

circle (the circumcircle) that passes through them. Denote the radius of the circle byR(pi)

and the center of this circle byC(pi), as shown in Fig. 2. The quantity1/R(pi) is called the

Menger-Melnikov curvatureand has the property that

lim
pi−1,pi+1→pi

1

R(pi)
= |k(pi)|.

In addition, as the pointsx(pi−1) andx(pi+1) approachx(pi), the quantity(C(pi)−x(pi))/R(pi)

approachesN(pi) if k(pi) > 0 and−N(pi) if k(pi) < 0. Therefore, we have

lim
pi−1,pi+1→pi

C(pi) − x(pi)

R(pi)2
= k(pi)N(pi).

The Menger-Melnikov flow is then given by

ẋ(pi) =
C(pi) − x(pi)

R(pi)2
, i = 1, . . . , n.

This flow was studied in [16], [18]. However, due to the complexity of the system the results

are quite limited [16]. In [18] it is shown that a simplen-gon collapses to a point in finite time,
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Fig. 2. The circumcenter for three points on the curvex(p).

and forn = 4 most quadrilaterals tend to regular polygons. However whenn is small, this flow

may yield a poor approximation of the inner normal vector. Infact, for a convexn-gon, the

approximation to the normal vector may not even point into the interior of then-gon. Also, as

the polygon collapses, the velocities of the vertices approach infinity, which is not ideal for our

application. In light of these remarks, we propose the scheme presented next.

C. Linear scheme

The linear polygon shortening scheme is given by (2). Defining the aggregate statez =

(z1, . . . , zn), wherezi ∈ C, we get the simple forṁz = Az. By exploiting the circulant structure

of the matrixA, one can easily show the following properties.

Lemma 1:The polygon shortening scheme in (2), which can be written inthe form ż = Az,

has the following properties:

(i) The eigenvalues ofA are real, with one eigenvalue at zero, and all others on the negative

real line.

(ii) The centroidz̃ :=
∑n

i=1 zi/n is stationary throughout the evolution.

(iii) The robots asymptotically converge to this stationary centroid.

The following theorem characterizes the geometrical shapeof the pointszi(t) as they converge

to their centroid and is proved for discrete time in [16], andfor general circulant pursuit in [21].

Theorem 2:Considern points, z1(t), . . . , zn(t) evolving according to (2). Ast → ∞ these

points converge to an ellipse. That is,z1(t), . . . , zn(t) collapse to an elliptical point.

III. I NVARIANCE OF FORMATIONS

We now examine two classes of robot formations, star formations and convex formations, and

show they are invariant under (2).
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Fig. 3. A counterclockwise star formation.

A. Star formations stay star formations

Consider our system ofn robots, whose positions, not all collinear, are denoted byz1, . . . , zn.

Let z̃ be the centroid of these positions andri be the distance from the centroid tozi. Let αi

denote the counterclockwise angle from̃zzi to z̃zi+1 for i = 1, . . . , n, modulon. Then a star

formation can be defined as follows.

Definition 3 (Lin et al. [8]): The n points are arranged in acounterclockwise star formation

if ri > 0 andαi > 0, for all i = 1, . . . , n, and
∑n

i=1 αi = 2π. They are arranged in aclockwise

star formationif ri > 0 andαi < 0, for all i = 1, . . . , n, and
∑n

i=1 αi = −2π.

This formation is shown in Fig. 3. In what follows we will consider only counterclockwise star

formations, since the treatment for clockwise star formations is analogous. Also, the casen = 2

is trivial, so it is omitted.

To determine whether a group of robots is in a star formation,we require a tool for measuring

angles. This tool is given in Lemma 4. Forz ∈ C, let ℜ{z}, ℑ{z} and z̄ denote the real part,

imaginary part, and complex conjugate ofz, respectively.

Lemma 4 (Lin et al. [8]):Let z1, z2, andz3 be three points in the complex plane, as shown

in Fig. 4. Letr1 := |z1 − z2|, r2 := |z3 − z2| and

F = ℑ{(z1 − z2)(z3 − z2)}.

Then (i) 0 < α < π, r1 > 0, and r2 > 0 if and only if F > 0; (ii) π < α < 2π, r1 > 0, and

r2 > 0 if and only if F < 0; (iii) the points are collinear if and only ifF = 0.

We are now ready to state the main theorem of this section.
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Fig. 4. The setup for the definition of the functionF .

Theorem 5:Suppose thatn distinct points, withn > 2, are initially arranged in a counterclock-

wise star formation. If these points evolve according to (2)they will remain in a counterclockwise

star formation for all time.

The proof uses the following two results.

Lemma 6 (Lin et al. [8]):Suppose thatn distinct points,z1, . . . , zn, with n > 2, are in a

counterclockwise star formation. Thenαi < π, ∀i.

Lemma 7 (Lin et al. [8]): If n points, z1, . . . , zn evolving according to (2) are collinear at

some timet1, then they are collinear for allt < t1 and t > t1.

Proof of Theorem 5:We begin by considering the function

Fi(t) = ℑ{(zi(t) − z̃)(zi+1(t) − z̃)} = riri+1 sin(αi).

By the definition of a counterclockwise star formation we have ri(0) > 0 and 0 < αi(0) < π,

∀i. Hence by Lemma 4,Fi(0) > 0, ∀i. We want to show thatFi(t) > 0, ∀i and∀t, which by

Lemma 4 shows that the vertices are in a counterclockwise star formation for all time.

Suppose by way of contradiction thatt1 is the first time that someFi becomes zero. We can

selecti = m such thatFm(t1) = 0 andFm+1(t1) > 0, for if all the Fi’s are zero att1, then the

points are collinear, which by Lemma 7 is a contradiction. Hence, we haveFi(t) > 0 for all

t ∈ [0, t1) and all i, Fm(t1) = 0, andFm+1(t1) > 0.

Taking the time derivative ofFm, and noting that˙̃z = 0 (see Lemma 1), we havėFm =

ℑ{żm(zm+1 − z̃) + (zm − z̃)żm+1}.

By adding and subtracting̃z in each term in (2) we can write (2) as

żi =
1

2
(zi+1 − z̃) +

1

2
(zi−1 − z̃) + (z̃ − zi).
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Using this expression foṙzm and żm+1 and simplifying, we obtainḞm = −2Fm + Gm, where

Gm =
1

2
ℑ{(zm−1 − z̃)(zm+1 − z̃) + (zm − z̃)(zm+2 − z̃)}

=
1

2
(rm−1rm+1 sin(αm−1 + αm) + rmrm+2 sin(αm + αm+1)) . (3)

Now, if Fm(t1) = 0, by Lemma 4, one of the following four conditions must hold: (i) αm(t1) = π

and rm(t1), rm+1(t1) > 0; (ii) αm(t1) = 0 and rm(t1), rm+1(t1) > 0; (iii) rm(t1) = 0; (iv)

rm+1(t1) = 0.

Condition (iv) cannot hold sinceFm+1(t1) > 0. Condition (i) cannot hold, for if it did, all

points would lie on, or to one side of, the line formed byzm+1 andzm, a contradiction by either

Lemma 6 or 7. Assume that condition (ii) holds. Thenαm(t1) = 0 and from (3) we obtain

Gm(t1) =
1

2
(rm−1rm+1 sin(αm−1) + rmrm+2 sin(αm+1))

=
1

2

(

rm+1

rm

Fm−1(t1) +
rm

rm+1

Fm+1(t1)

)

.

Sincerm(t1), rm+1(t1) > 0, Fm+1(t1) > 0, andFm−1(t1) ≥ 0, it follows that Gm(t1) > 0. By

continuity of Gm there exists0 ≤ t0 < t1 such thatGm(t) > 0 for all t ∈ [t0, t1]. Also, by

assumption,Fm(t) > 0 for t ∈ [0, t1). ThereforeḞm(t) = −2Fm+Gm > −2Fm for all t ∈ [t0, t1).

Integrating this and using the continuity ofFm, we obtainFm(t1) ≥ e−2(t1−t0)Fm(t0) > 0, a

contradiction.

Finally, suppose condition (iii) holds andrm(t1) = 0. Thenzm(t1) is positioned at the centroid,

z̃. Assume without loss of generality thatz̃ = 0. Notice that ifzi(t1) = 0, the angleθi(t1) is not

defined. We now establish that ifzi(t1) = 0 and żi(t1) 6= 0, then limt↑t1 θi(t) is well defined.

Expandingzi aboutt1 we havezi(t1) = zi(t1 − h) + hżi(t1) + O(h2), whereO(h2)/h → 0 as

h → 0. If zi(t1) = 0 thenzi(t1 −h) = −hżi(t1)+O(h2). Hence,limh→0 zi(t1 −h)/h = −żi(t1).

Therefore the limiting motion ofzi(t) as t ↑ t1 is along the ray defined by−żi(t1). Because of

this, we can define

θi(t1) :=











θi(t1) if ri(t1) > 0,

arctan

(

ℑ{−żi(t1)}

ℜ{−żi(t1)}

)

if ri(t1) = 0.
(4)

With this definition we can talk aboutθi(t1), andαi(t1), whenri(t1) = 0.
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Fig. 5. The position of the pointszm−1, zm, and zm+1 at

t = t1.
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Fig. 6. The required geometry such thatθm−1(t1) ∈ [−π, 0],

θm+1(t1) ∈ [0, π], and zm+1(t1) + zm−1(t1) = −2r. All

points lie either on or to one side of the dotted line.

Suppose that by a rotation of the coordinate system, if necessary, the vectorzm+1(t1)+zm−1(t1)

lies on the negative real axis. Then we can write

zm+1(t1) + zm−1(t1)

2
= −r, where r > 0. (5)

We haver > 0 for if r = 0 thenzm−1(t1), zm(t1), zm+1(t1) all lie on a line through the centroid,

and all other points must lie either on or to only one side of this line, implying that 0 is not the

centroid, or all the points are collinear, both contradictions. Sincezm(t1) = 0, from (2) and (5)

we haveżm(t1) = −r, as shown in Fig. 5. Ifn = 3 thenzm(t1) = 0 and the centroid ofzm+1(t1)

andzm−1(t1) is at−r, implying that0 is not the centroid of the three points—a contradiction.

Therefore we need only considern > 3. Sinceżm(t1) = −r, from (4) we obtain

θm(t1) = 0. (6)

To obtain a contradiction forn > 3 we will show that (5) and (6) cannot both be satisfied. To

do this we consider two cases,rm−1(t1) = 0 and rm−1(t1) > 0. Since the points are in a star

formation until t1, we know that∀i, αi(t) ∈ (0, π) for t ∈ [0, t1). Hence, ifθi(t1) and θi+1(t1)

are defined via (4), then by continuity,αi(t1) ∈ [0, π].

If rm−1(t1) = 0 then from (5) we havezm+1(t1) = −2r. Thereforeθm+1(t1) = π and from

(6), θm(t1) = 0. However this implies that all otherθi(t1)’s that are defined must lie in[−π, 0].

Henceℑ{zi(t1)} ≤ 0 ∀i, which implies that all points are collinear, or that 0 is notthe centroid,

both contradictions.

If rm−1(t1) > 0 then from (6), and sinceαm(t1), αm−1(t1) ∈ [0, π], we have thatθm+1(t1) ∈

[0, π] and θm−1(t1) ∈ [−π, 0]. Soℑ{zm+1(t1)} ≥ 0 andℑ{zm−1(t1)} ≤ 0. Because of this, as
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Fig. 7. The evolution of a polygon whose vertices are in a starformation about their centroid∗. The dashed lines show the

trajectories of each vertex.

can be verified in Fig. 6, for (5) to be satisfied eitherzm−1(t1) and zm+1(t1) are both real, in

which caseθm+1(t1) − θm−1(t1) = π, or neither is real andθm+1(t1) − θm−1(t1) > π. But this

implies that all points lie on, or to one side of, the line formed byzm−1(t1). Thus all points are

collinear, or0 is not the centroid, both contradictions. �

Fig. 7 shows the evolution of a polygon that is in a star formation about its centroid. Notice

that the polygon remains in a star formation, becomes convex, and collapses to an elliptic point.

B. Convex stays convex

We now turn to the case where the formation is initially a convex n-gon.

Theorem 8:Consider a strictly convexn-gon at timet = 0, whose verticeszi, i = 1, . . . , n,

are numbered counterclockwise. If these vertices evolve according to (2), then-gon will remain

strictly convex for all time.

The proof of this theorem is similar to that of Theorem 5; the reader may refer to [22] for

a sketch or [23] for a full proof. Theorem 8 is analogous to convex curves remaining convex

under (1), which is shown in [11].

A straightforward consequence of the theorem is the following.

Corollary 9: Consider ann-gon that is convex att = 0. If the vertices evolve according to

(2), then for anyt > 0, then-gon will be strictly convex.
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Fig. 8. The evolution of a convexn-gon. The solid lines show the trajectories of each vertex.

Fig. 8 shows the evolution of an initially convexn-gon.

IV. OPTIMAL CONTROL LAW FOR PERIMETER SHORTENING

In [15] it is stated that a curve evolving according to (1) is shrinking as fast as it can using only

local information. To see why and in what sense this is true, reparametrize the curve in terms

of its Euclidean arc-lengths, defined via the differential arc-length elementds := ‖∂x/∂p‖dp.

With this we can write the length of a curve as

L(t) =

∫ L(t)

0

ds =

∫ 1

0

∥

∥

∥

∥

∂x

∂p

∥

∥

∥

∥

dp. (7)

To take the time derivative of this expression we differentiate‖∂x/∂p‖ and obtain

∂

∂t

∥

∥

∥

∥

∂x

∂p

∥

∥

∥

∥

=
1

‖∂x/∂p‖

〈

∂x

∂p
,

∂

∂p

∂x

∂t

〉

.

Substituting this intodL/dt and integrating by parts, we obtain

dL

dt
= −

∫ L

0

〈

kN,
∂x

∂t

〉

ds. (8)

Therefore, the direction of∂x/∂t in which L(t) is decreasing most rapidly is∂x/∂t = kN,

which is the Euclidean curve shortening rule (1). Note that this flow is optimal only in the sense

that the velocity of the curve at each point always points in the direction that maximizes the

rate of decrease ofL(t).
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We now give an analogous result for the discrete polygon case. Given ann-gon we can write

its perimeter as

P (t) =
n

∑

i=1

|zi+1 − zi|. (9)

To take the time derivative ofP (t) consider taking the derivative of|zi+1 − zi|
2 = 〈zi+1 −

zi, zi+1 − zi〉 (for u, v ∈ Cn, 〈u, v〉 = u∗v, where∗ denotes complex conjugate transpose). This

yields

d

dt
|zi+1 − zi|

2 =
d

dt
〈zi+1 − zi, zi+1 − zi〉 = 2ℜ{〈zi+1 − zi, żi+1 − żi〉} .

But also, d
dt
|zi+1 − zi|

2 = 2|zi+1 − zi|
d
dt
|zi+1 − zi|. Combining these two expressions and letting

żi = ui, we obtain

Ṗ (t) =
n

∑

i=1

ℜ

{〈

zi+1 − zi

|zi+1 − zi|
, ui+1 − ui

〉}

.

Since all indices are evaluated modulon this can be rewritten as

Ṗ (t) = −

n
∑

i=1

ℜ

{〈

zi−1 − zi

|zi−1 − zi|
+

zi+1 − zi

|zi+1 − zi|
, ui

〉}

. (10)

To maximize the rate of decrease ofP (t), ui should point in the direction of(zi−1 − zi)/|zi−1 −

zi| + (zi+1 − zi)/|zi+1 − zi|. This direction bisects the internal angleβi of the n-gon. In

general, neither the linear scheme (2) nor the shortening byMenger-Melnikov curvature points

in this direction. However, this direction does not ensure that the polygon becomes circular (nor

elliptical); in simulation, adjacent vertices may captureeach other and the polygon may collapse

to a line.

Using (10) and (2) we can determinėP (t). For Ṗ (t) to be defined we require that adjacent

vertices be distinct. This is ensured, for example, if the vertices start in a star formation about

their centroid. The following result is analogous to the result in [11] that under (1) the length

of the curve monotonically decreases.

Theorem 10:Consider ann-gon whose distinct vertices evolve according to (2). If adjacent

vertices remain distinct, the perimeterP (t) of the n-gon monotonically decreases to zero.

Proof: Substituting (2) into (10) and expanding we obtain

Ṗ (t) =
1

2

n
∑

i=1

ℜ

{

−|zi − zi−1| − |zi+1 − zi| +

〈

zi − zi−1

|zi − zi−1|
, zi+1 − zi

〉

+

〈

zi+1 − zi

|zi+1 − zi|
, zi − zi−1

〉}

.
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Each term in this summation has the formℜ{−|u| − |v| + 〈u/|u|, v〉 + 〈v/|v|, u〉}. From

the Cauchy-Schwarz inequality we haveℜ{〈u/|u|, v〉} ≤ |v|, ℜ{〈v/|v|, u〉} ≤ |u|, and thus

ℜ{−|u| − |v| + 〈u/|u|, v〉 + 〈v/|v|, u〉} ≤ 0. Therefore,Ṗ (t) ≤ 0. Equality is achieved if and

only if u/|u| = v/|v| for each term in the summation; that is, if and only if

zi − zi−1

|zi − zi−1|
=

zi+1 − zi

|zi+1 − zi|
, ∀i. (11)

However, assume by way of contradiction that (11) is satisfied. Rotate the coordinate system

such thatz1 andz2 lie on the real axis andz2−z1 > 0. Settingi = 2 in (11) we havez3−z2 > 0,

settingi = 3 we havez4 − z3 > 0, and so on. Hencezi+1 − zi > 0, ∀i = 1, . . . , n − 1, which

implies thatzn > z1. But settingi = n in (11) we havez1 − zn > 0, a contradiction. Therefore

(11) cannot be satisfied,̇P (t) < 0, and since the vertices converge to their stationary centroid,

P (t) monotonically decreases to zero. �

V. L IMITATIONS OF THE LINEAR SCHEME

There are two ways in which the linear scheme does not mimic Euclidean curve shortening.

First of all, if an embedded curve is evolved via Euclidean curve shortening, its area is mono-

tonically decreasing. However, for the linear scheme, in general, the area of a simple polygon

is not monotonically decreasing. The second way in which thelinear scheme does not mimic

Euclidean curve shortening is in its effect on simplen-gons. If an embedded curve evolves

according to the Euclidean curve shortening flow, it remainsembedded. In contrast, a simple

n-gon can become self-intersecting under the linear scheme.This topic is discussed in more

detail in [23].

VI. CONCLUSION

In summary, under the simple distributed linear control law(2), the robots rendezvous and

also become more organized, in the sense that the polygon becomes elliptical. Furthermore, star

formations remain so, convex polygons remain so, and the perimeter of the polygon decreases

monotonically. These results are intended as a possible starting point for more useful behavior.

As an example scenario, consider a number of mobile robots initially placed at random, and

which should self-organize into a regular polygon (circle)for the purpose of forming a large-

aperture antenna. Distributed control laws for this goal would have to be nonlinear. Research on

this front is on-going.
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Another topic for future research is to look at polygon shortening flows for wheeled robots

which are subject to nonholonomic motion constraints.

Finally, drawing upon the results on curve shortening flows,there has been a similar devel-

opment of curve expanding flows—If a smooth, closed, and embedded curve is deformed along

its outer normal vector field at a rate proportional to theinverse of its curvature, it expands

to infinity, and the limiting shape is circular [24]. Thus, a scheme fordeploymentof a fleet of

mobile robots could be achieved by creating the analogous polygon expanding flow.
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