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Abstract

If a smooth, closed, and embedded curve is deformed alongoitsal vector field at a rate
proportional to its curvature, it shrinks to a circular pgoifihis curve evolution is called Euclidean curve
shortening and the result is known as the Gage-Hamiltory€araTheorem. Motivated by the rendezvous
problem for mobile autonomous robots, we address the probfecreating a polygon shortening flow.
A linear scheme is proposed that exhibits several analogugsclidean curve shortening: The polygon
shrinks to an elliptical point, convex polygons remain omqgvand the perimeter of the polygon is

monotonically decreasing.

Index Terms

Distributed control, curve shortening, mobile autonommisots.

I. INTRODUCTION

This paper studies theendezvous probleror mobile autonomous robots, in which the goal
is to develop a local control strategy that will drive eacbats’s state (usually its position) to
a common value. Research on this problem has been perfommiedth discrete time [1]-[7]
and continuous time [8], [9]. The discrete time research lmarsplit into synchronous systems

[1]-[5] (i.e., each robot moves only at global clock tickapd asynchronous systems [6], [7]
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Fig. 1. The Euclidean curve shortening flow.

(i.e., no global clock is present). In the synchronous caseet have been several papers on
circumcenter algorithm$1]—[3], in which each robot moves towards the center of thmaltest
circle containing itself and every robot it sees. In both¢batinuous and discrete time cases, the
research has assumed fixed communication topologies—tiserseare omnidirectional and have
a range larger than their environment, allowing each robatete all others—and time-varying
or state-dependent communication topologies—the sersus limited range; the sensors are
directional; or, communication links may be dropped or adde

In this paper we look at the rendezvous problem from a diffeperspective. We are concerned
with the shape of the formation of robots as they convergéeo tmeeting point. We would like
the formation to become more “organized,” in some senseinas ¢volves. We use a simple
model, numbering the robots fromto » and considering a fixed communication topology in
continuous time. We then view the robot’s positions as théoes of a polygon, and, motivated
by the Gage-Hamilton-Grayson Theorem described below, @ek $0 create an analogous
polygon shortening flow.

To introduce the Gage-Hamilton-Grayson Theorem, considemooth, closed curve(p,t)
evolving in time:p € [0, 1] parameterizes the curve;> 0 is time; andx(p,t) € R*. We can
evolve this curve along its inner normal vector fi®dp, t) at a rate proportional to its curvature
k(p,t) (curvature is the inverse of the radius of the largest tahgiede to the curve ak(p,t),

on the concave side):
0x

ot
This curve evolution is known as theuclidean curve shorteninfow [10], and is depicted

(p,t) = k(p,t)N(p, ). (1)

in Fig. 1. Let L(¢) and A(t) denote respectively the length and enclosed area of thee atrv

October 1, 2006 DRAFT



time t. Gage [11]-[13], Hamilton [13], and Grayson [14], [15] shexithat a smooth, closed and
embedded curve evolving according to (1) remains embedagglainks to a circular point. The
term “circular point” means that the curve collapses to aapand, if we zoom in on the curve
as it is collapsing, the curve is becoming circular. Thraughthe evolution A(t) = —27 and
L(t) is monotonically decreasing. In [15] it is also stated thader (1), “the curve is shrinking
as fast as it can using only local information.” This notioiil e clarified later.

There has been prior work in creating polygon shortening dloMotivated by the curve
shortening theory and applications in computer vision,cRstein et al. [16] study the evolution
of planar polygons in discrete time. A scheme is proposetl ghanks polygons to elliptical
points (the vertices collapse to a point, and if we zoom inlendollapsing polygon, the vertices
are converging to an ellipse). In addition, [16] discuss@®lgtgon shortening scheme based on
the Menger-Melnikov curvature [17]. In [18] this scheme fadsed and it is shown that most
qguadrilaterals shrink to circular points. In [19] a flow isrwulated such that the area enclosed by
the polygon shrinks at a rate ofr and the perimeter of the polygon is monotonically decreasin

In this paper we study a planar polygon in the complex planth werticesz, ..., z,, as it

evolves according to

73@:%(2i+1—2z’)+%(2i—1—zi)7 i=1,...,n, 2)
where the indices are evaluated moduldrhus, vertex pursues the centroid (center of mass) of
its two neighboring (according to numbering) vertices. Aatiete-time version of (2) is studied
in [16], and it is shown that the polygon shrinks to an eltptipoint. The contributions of this
paper are as follows. We introduce the curve shorteningyhaad its relation to the rendezvous
problem. We also demonstrate the importance of studyinglia@e of the formation of robots
as they rendezvous. We then show the following under (2):f djeitices are arranged in a
star formation about their centroid, they remain in a stamgtion for all time (in particular,
the robots will not collide), 2) convex polygons remain cexwand 3) the perimeter of the
polygon monotonically decreases to zero. Finally, we detine optimal direction for shortening

the perimeter of a polygon.

[I. POLYGON SHORTENING

We considern robots in the plane to be the vertices of assided polygon. In this section

we formally define a polygon and introduce two polygon sharig schemes.
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A. Definition of ann-gon

Following [20] we introduce the definitions of a polygon andsiaple polygon inR? (or
equivalentlyC). An n-gon(n-sided polygon) is a (possibly intersecting) circuitoline segments
2122, 2223, - . ., Zn21, JOINING consecutive pairs of distinct pointsz, 2o, . . ., z,. The segments are
calledsidesand the points are callegertices A simplen-gonis one that is non-self-intersecting.
We denote the counterclockwigeternal anglebetween consecutive sidegs;; and z;_;z; of
an n-gon asg; (as always, indices are modutg. For a simplen-gon these angles satisfy
Sov. Bi = (n— 2)m. An n-gon isconvex(strictly convex if it is simple and its internal angles
all satisfy0 < 6; <7 (0 < ; < 7).

B. Shortening by Menger-Melnikov curvature

We now briefly describe the polygon shortening scheme sudi¢l6], [18], and our reasons
for not following this approach. Lek(p), p € [0, 1], be a smooth curve. Consider a set of
parameter valueg, < p, < --- < p, and the corresponding discrete poirt®;). By connecting
these points we create angon. Asn — oo and if the parameter valugd®,} become dense in
0, 1], then-gon converges to the smooth cumxé). The idea is to create a polygon shortening
scheme so that as — oo, the scheme tends to (1).

If three consecutive pointg(p;,_1), x(p;), x(p;+1) are not collinear, there exists a unique
circle (the circumcirclg that passes through them. Denote the radius of the circlé&(y)
and the center of this circle b§'(p;), as shown in Fig. 2. The quantity/ R(p;) is called the
Menger-Melnikov curvaturand has the property that

. 1
lim = |k(p:)|.

Pi—1,Pi+17Pi R(pl)
In addition, as the points(p;_;) andx(p;.1) approachx(p;), the quantity C'(p;) —x(p;))/ R(p:)

approacheN(p;) if k(p;) > 0 and —N(p;) if k(p;) < 0. Therefore, we have
C(pi) — x(ps)

piflvl}irJIrll_’pi R(pi)2 (p) (p )
The Menger-Melnikov flow is then given by
wpy) = S =x)

R(p)? 7
This flow was studied in [16], [18]. However, due to the comyileof the system the results

are quite limited [16]. In [18] it is shown that a simplegon collapses to a point in finite time,

October 1, 2006 DRAFT



Fig. 2. The circumcenter for three points on the cur(e).

and forn = 4 most quadrilaterals tend to regular polygons. However whénsmall, this flow
may yield a poor approximation of the inner normal vectorfdnt, for a convexn-gon, the
approximation to the normal vector may not even point in® ititerior of then-gon. Also, as
the polygon collapses, the velocities of the vertices aggndanfinity, which is not ideal for our

application. In light of these remarks, we propose the sehpresented next.

C. Linear scheme

The linear polygon shortening scheme is given by (2). Definine aggregate state =
(z1,...,2n), Wherez; € C, we get the simple formd = Az. By exploiting the circulant structure
of the matrix A, one can easily show the following properties.

Lemma 1:The polygon shortening scheme in (2), which can be writtethenform z = Az,
has the following properties:

(i) The eigenvalues ofi are real, with one eigenvalue at zero, and all others on thative

real line.

(i) The centroidz := )" | z;/n is stationary throughout the evolution.

(iif) The robots asymptotically converge to this statignaentroid.

The following theorem characterizes the geometrical slodplee pointsz;(¢) as they converge
to their centroid and is proved for discrete time in [16], dadgeneral circulant pursuit in [21].

Theorem 2:Considern points, z(t), ..., z,(t) evolving according to (2). A$ — oo these

points converge to an ellipse. That is{t), ..., z,(t) collapse to an elliptical point.

[1l. I NVARIANCE OF FORMATIONS

We now examine two classes of robot formations, star fomnatand convex formations, and

show they are invariant under (2).
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Fig. 3. A counterclockwise star formation.

A. Star formations stay star formations

Consider our system of robots, whose positions, not all collinear, are denoted;by. ., z,.
Let Z be the centroid of these positions andbe the distance from the centroid ta Let «;
denote the counterclockwise angle fram, to Zz;,; for ¢ = 1,...,n, modulon. Then a star
formation can be defined as follows.

Definition 3 (Lin et al. [8]): The n points are arranged in @ounterclockwise star formation
if , >0anda; >0, foralli=1,...,n, and} ;" , a; = 27. They are arranged in elockwise
star formationif r;, > 0 anda; <0, foralli=1,...,n, and)_"  a; = —27.

This formation is shown in Fig. 3. In what follows we will cadsr only counterclockwise star
formations, since the treatment for clockwise star fororaiis analogous. Also, the case-= 2
is trivial, so it is omitted.

To determine whether a group of robots is in a star formati@require a tool for measuring
angles. This tool is given in Lemma 4. Fere C, let R{z}, 3{z} andz denote the real part,
imaginary part, and complex conjugate gfrespectively.

Lemma 4 (Lin et al. [8]):Let z;, 25, and z3 be three points in the complex plane, as shown

in Fig. 4. Letry := |z — 29|, 72 := |23 — 20| @and
F= %{(21 - ZQ)(Z3 - 22)}.

Then ()0 < a<mry>0,andry, >0ifand only if £ > 0; (i) 7 < a < 2w, r; > 0, and
ro > 0 if and only if F' < 0; (iii) the points are collinear if and only i’ = 0.

We are now ready to state the main theorem of this section.
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Fig. 4. The setup for the definition of the functidn

Theorem 5:Suppose that distinct points, with, > 2, are initially arranged in a counterclock-
wise star formation. If these points evolve according tal(®)y will remain in a counterclockwise
star formation for all time.

The proof uses the following two results.

Lemma 6 (Lin et al. [8]): Suppose that distinct points,zy,...,z,, with n > 2, are in a
counterclockwise star formation. Then < «, Vi.

Lemma 7 (Lin et al. [8]):If n points, z1, ..., z, evolving according to (2) are collinear at
some timet;, then they are collinear for all < t; and¢ > t;.

Proof of Theorem 5:We begin by considering the function
Fi(t) = S{(z(t) — 2) (21 (t) = 2)} = ririza sin(oy).

By the definition of a counterclockwise star formation we day0) > 0 and0 < «;(0) < ,
Vi. Hence by Lemma 4F;(0) > 0, Vi. We want to show that;(¢) > 0, Vi and V¢, which by
Lemma 4 shows that the vertices are in a counterclockwisefataation for all time.

Suppose by way of contradiction thatis the first time that somé; becomes zero. We can
selecti = m such thatF},(t;) = 0 and F,,,1(t1) > 0, for if all the F}’s are zero at,, then the
points are collinear, which by Lemma 7 is a contradictionnéts we haveF;(¢) > 0 for all
t €[0,t) and alli, F,,(t;) =0, and F},,1(t1) > 0.

Taking the time derivative of,,, and noting thatt = 0 (see Lemma 1), we have,, =
S (zmir = 2) + (Zm — 2)Zmin }-

By adding and subtracting in each term in (2) we can write (2) as

1 1

Z./i = §(ZZ'+1 — 2) + 5(22'_1 — 2) + (2 — Zz)
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Using this expression fot,, and z,,,; and simplifying, we obtairf},, = —2F,, + G,,, Where

1 =~ ~ = ~
G = 5%{(2711—1 — 2)(Zma1 — 2) + (2m — 2)(Zmi2 — 2)}
1
= 5 (Tm—lrm+1 Sin(am—l + am) =+ "'mTm+2 SiIl(Oém + am+1)) . (3)

Now, if F,,(¢1) = 0, by Lemma 4, one of the following four conditions must hoijl:c(,,(¢;) = 7
and r,, (1), rme1(t1) > 0; (i) an(t1) = 0 and rp,(t1), a1 (ty) > 0; (i) rn(t;) = 0; (iv)
Tm+1(t1) = 0.

Condition (iv) cannot hold sincé’},.(¢;) > 0. Condition (i) cannot hold, for if it did, all
points would lie on, or to one side of, the line formed 4y, ; andz,,, a contradiction by either
Lemma 6 or 7. Assume that condition (ii) holds. Then(¢;) = 0 and from (3) we obtain

1

Gm(tl) = 5 (Tm—lrm+1 Sin(am—1> + 'mTm+2 Sin(am—i-l))

1 /7, Tm
! (—“Fm_1<t1> i Fm+1<t1>) .

2 Tm Tl

Sincer,,(t1), rme1(t1) > 0, Fiaa(ty) > 0, and F,,,_1(t1) > 0, it follows thatG,,(¢;) > 0. By

continuity of G,,, there exists) < t, < t; such thatG,,(t) > 0 for all t € [to,t;1]. Also, by
assumptionf,,(t) > 0 fort € [0,t,). ThereforeF,,(t) = —2F,,+G,, > —2F,, forall t € [ty, t,).
Integrating this and using the continuity &f,, we obtainF,(t;) > e 20— (t)) > 0, a
contradiction.

Finally, suppose condition (iii) holds ang,(¢;) = 0. Thenz,,(¢,) is positioned at the centroid,
Z. Assume without loss of generality that= 0. Notice that ifz;(¢;) = 0, the angled;(¢;) is not
defined. We now establish that #(¢,) = 0 and 2;(¢1) # 0, thenlim,y, 6;(¢) is well defined.
Expandingz; aboutt; we havez;(t1) = z;(t1 — h) + hzi(t1) + O(h?), whereO(h?)/h — 0 as
h — 0. If z;(t;) = 0 thenz;(t; — h) = —hz;(t1) + O(h?). Hence limy, o z;(t; — h) /h = —Z;(t1).
Therefore the limiting motion of;(¢) ast 1 ¢; is along the ray defined by z;(¢,). Because of

this, we can define

Ql(tl) if Ti(tl) > O,

flh) = S{=at)}) _ )
arctan <m) if  r;(t;) =0.

With this definition we can talk abouk(t,), and«;(t1), whenr;(¢;) = 0.
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Fig. 5. The position of the points,,—1, zm, andz,,+1 at  Fig. 6. The required geometry such tlat_, (¢1) € [—, 0],
t=11. 9m+1(t1) S [O,W], and Zm+1(t1) =+ Zm71(t1) = —2r. All

points lie either on or to one side of the dotted line.

Suppose that by a rotation of the coordinate system, if sacgsthe vectot,,, 11 (t1)+zm_1(t1)

lies on the negative real axis. Then we can write

Zmt1(t1) + Zm—1(t1)
2

We haver > 0 for if r = 0 thenz,,_1(t1), zm(t1), zm+1(t1) all lie on a line through the centroid,

= —r, where r>0. (5)

and all other points must lie either on or to only one side o lime, implying that O is not the
centroid, or all the points are collinear, both contradict. Sincez,,(t;) = 0, from (2) and (5)
we havez,, (t;) = —r, as shown in Fig. 5. I, = 3 thenz,,(¢;) = 0 and the centroid of,,(¢;)
andz,,_1(t;) is at —r, implying that0 is not the centroid of the three points—a contradiction.

Therefore we need only consider> 3. Sincez,,(t;) = —r, from (4) we obtain

To obtain a contradiction for. > 3 we will show that (5) and (6) cannot both be satisfied. To
do this we consider two cases,,_(t;) = 0 andr,,_1(¢;) > 0. Since the points are in a star
formation until¢;, we know thatvi, «;(t) € (0,7) for t € [0,¢;). Hence, if0;(t,) and ;. (t1)

are defined via (4), then by continuity,(¢,) € [0, 7.

If r,,_1(t1) = 0 then from (5) we have,,.(t;) = —2r. Therefored,,.(t;) = = and from
(6), 0,,(t1) = 0. However this implies that all othe¥k(¢,)’s that are defined must lie i, 0].
HenceS{z;(t1)} < 0 Vi, which implies that all points are collinear, or that O is tfo¢ centroid,
both contradictions.

If 7,,—1(t1) > 0 then from (6), and since,,,(t;), a,,—1(t1) € [0, 7], we have thab,, (t) €
0, 7] and 0,,—1(t1) € [—m,0]. SOS{zm41(t1)} > 0 and 3{z,,—1(t1)} < 0. Because of this, as
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Fig. 7. The evolution of a polygon whose vertices are in a &anation about their centroid. The dashed lines show the

trajectories of each vertex.

can be verified in Fig. 6, for (5) to be satisfied eithgr 1(¢;) and z,,.1(¢;) are both real, in
which cased,,1(t1) — 0.,—1(t1) = m, or neither is real and,,.(t1) — 6,,_1(t;) > . But this
implies that all points lie on, or to one side of, the line feanby z,, ;(¢;). Thus all points are

collinear, or0 is not the centroid, both contradictions. O

Fig. 7 shows the evolution of a polygon that is in a star foraragabout its centroid. Notice

that the polygon remains in a star formation, becomes cqrarek collapses to an elliptic point.

B. Convex stays convex

We now turn to the case where the formation is initially a @ax-gon.

Theorem 8:Consider a strictly convex-gon at timet = 0, whose vertices;, i = 1,...,n,
are numbered counterclockwise. If these vertices evoleerding to (2), the:-gon will remain
strictly convex for all time.

The proof of this theorem is similar to that of Theorem 5; teader may refer to [22] for
a sketch or [23] for a full proof. Theorem 8 is analogous tovexncurves remaining convex
under (1), which is shown in [11].

A straightforward consequence of the theorem is the folgwi

Corollary 9: Consider am-gon that is convex at = 0. If the vertices evolve according to

(2), then for anyt > 0, the n-gon will be strictly convex.
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Fig. 8. The evolution of a convex-gon. The solid lines show the trajectories of each vertex.

Fig. 8 shows the evolution of an initially convexgon.

V. OPTIMAL CONTROL LAW FOR PERIMETER SHORTENING

In [15] it is stated that a curve evolving according to (1)hsisking as fast as it can using only
local information. To see why and in what sense this is traparametrize the curve in terms
of its Euclidean arc-length, defined via the differential arc-length elemelst:= ||0x/0p||dp.

With this we can write the length of a curve as
0x

L(t) 1
Lt:/ ds:/ —
() 0 0 Op

To take the time derivative of this expression we differateti|0x/0p|| and obtain
oo _ 1 gox 9 ox
ot ||op|l  ||ox/op|| \Op dp ot |
Substituting this intalL/dt and integrating by parts, we obtain

dL L 0x

Therefore, the direction ofx/0t in which L(t¢) is decreasing most rapidly i8x/0t = kN,

dp. (7)

which is the Euclidean curve shortening rule (1). Note that flow is optimal only in the sense
that the velocity of the curve at each point always pointshi@ direction that maximizes the

rate of decrease af(t).
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We now give an analogous result for the discrete polygon.asen ann-gon we can write

its perimeter as
=Y |z — 2. ©)
i=1

To take the time derivative of’(t) consider taking the derivative df;,; — z|*> = (241 —
ziy zit1 — 2i) (for u,v € C*, (u,v) = u*v, where* denotes complex conjugate transpose). This
yields

d d ) .
£|Zi+1 —z)* = £<Zi+1 %y Zip1 — 2i) = 2R {(zip1 — 2, G — &)}

But also,%|zi+1 — 2z = 2|zi41 — zi|%|zi+1 — z;/|. Combining these two expressions and letting

Zi4+1 ) o
Z%{<\2z+1—2z| i uz>}

Since all indices are evaluated moduldhis can be rewritten as

Z% — Z 4 Ri+l — i u; . (10)
‘Zz I_Zz| ‘Zi+1_zi|7

To maximize the rate of decrease]é(t), u; should point in the direction ofz;_1 — 2;)/|zi-1 —

%; = u;, we obtain

zi| + (zis1 — 2i)/|zis1 — 2. This direction bisects the internal anglg of the n-gon. In
general, neither the linear scheme (2) nor the shorteninléyger-Melnikov curvature points
in this direction. However, this direction does not ensina the polygon becomes circular (nor
elliptical); in simulation, adjacent vertices may capteeeh other and the polygon may collapse
to a line.

Using (10) and (2) we can determiti&(t). For P(t) to be defined we require that adjacent
vertices be distinct. This is ensured, for example, if theises start in a star formation about
their centroid. The following result is analogous to theutes [11] that under (1) the length
of the curve monotonically decreases.

Theorem 10:Consider am-gon whose distinct vertices evolve according to (2). Ifaadnt
vertices remain distinct, the perimetB(t) of the n-gon monotonically decreases to zero.

Proof: Substituting (2) into (10) and expanding we obtain

: BN Ri T Ri-1
P(t) = 5;%{_|Zi_zi—l‘_|zi+l ZZ\+<|227,zi+1—zi>

Zi—1
Zi+1 — %
+ <7, Zi — Zi—1 .
‘ZH—I - Zi|
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Each term in this summation has the for¥—|u| — |v| + (u/|u|,v) + (v/|v],u)}. From

the Cauchy-Schwarz inequality we ha¥{ (u/|ul,v)} < |v|, R{(v/|v|,u)} < |u|, and thus
R{—|u| — |v] + (u/]u|,v) + (v/|v],u)} < 0. Therefore,P(t) < 0. Equality is achieved if and
only if u/|u| = v/|v| for each term in the summation; that is, if and only if

BT Ri—1 R4l T &

Vi, (11)

|2i — 2i—1] a |zig1 — 2|
However, assume by way of contradiction that (11) is satlsfiRotate the coordinate system
such thatz; andz, lie on the real axis and, —z; > 0. Settingi = 2 in (11) we havez; —z, > 0,
settingi = 3 we havez, — z3 > 0, and so on. Hence;,; — z; > 0, Vi = 1,...,n — 1, which
implies thatz, > z;. But setting: = n in (11) we havez; — z, > 0, a contradiction. Therefore
(11) cannot be satisfied?(t) < 0, and since the vertices converge to their stationary ciehtro

P(t) monotonically decreases to zero. O

V. LIMITATIONS OF THE LINEAR SCHEME

There are two ways in which the linear scheme does not mimatidgan curve shortening.
First of all, if an embedded curve is evolved via Euclidearvewshortening, its area is mono-
tonically decreasing. However, for the linear scheme, inegal, the area of a simple polygon
is not monotonically decreasing. The second way in whichlitear scheme does not mimic
Euclidean curve shortening is in its effect on simplayons. If an embedded curve evolves
according to the Euclidean curve shortening flow, it remangedded. In contrast, a simple
n-gon can become self-intersecting under the linear schaime. topic is discussed in more
detail in [23].

VI. CONCLUSION

In summary, under the simple distributed linear control &) the robots rendezvous and
also become more organized, in the sense that the polygamiascelliptical. Furthermore, star
formations remain so, convex polygons remain so, and thimpter of the polygon decreases
monotonically. These results are intended as a possibféngtgoint for more useful behavior.
As an example scenario, consider a number of mobile robdataliy placed at random, and
which should self-organize into a regular polygon (cirdi@) the purpose of forming a large-
aperture antenna. Distributed control laws for this goalidave to be nonlinear. Research on

this front is on-going.
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Another topic for future research is to look at polygon seoitg flows for wheeled robots
which are subject to nonholonomic motion constraints.

Finally, drawing upon the results on curve shortening flotnsre has been a similar devel-
opment of curve expanding flows—If a smooth, closed, and elohde curve is deformed along
its outer normal vector field at a rate proportional to thwerse of its curvatureit expands
to infinity, and the limiting shape is circular [24]. Thus, eheme fordeploymenbf a fleet of

mobile robots could be achieved by creating the analogolygpo expanding flow.
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