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Abstract— This paper proposes a method to construct viabil-  viability controller, assuming that the control is congieal
ity kernels for single output nonlinear control systems affne in  to take values in a compact, convex set. This scenario was
the control. The safe set is a manifold with boundary and the first studied in [13] with the aim to solve a viability problem

control is constrained to take values in a compact polyhedno. . :
The results make use of the Frankowska method and the ©f collision avoidance. However, that theory was only fa th

notion of viable capture basins. Three examples illustratahe ~SMooth case; an assumption which is generally unrealistic.
methodology: the inverted pendulum, a linear system, and a The problem considered here is a special case of the much
fisheries management problem. larger class of problems studied in [2]. However, our focus
is on constructing viability kernels for a class of systems,
whereas the aim in [2] was to characterize them. Finally,

The purpose of this paper is to develop a methodologyis paper focuses on the basic results and examples; proofs
to construct viability kernels for nonlinear control syst® are omitted for brevity and are included in [8].

The central problem can be roughly described as enforcing The proposed method to find viability kernels has several
a control system to evolve in a “safe set” of the state spa@vantages over traditional numerical methods to find Isiabi
starting from any initial condition inside the set, by propeity kernels: (1) it is exact, whereas numerical methods give
assignment of the control input. When no control existenly an approximation of the viability kernel; (2) Numerica
to satisfy this requirement, then the problem is to find anethods generally do not allow the designer to specify up
largest subset inside the safe set, called a viability kerndront the class of control inputs with respect to which the
and an associated controller, called a viability controb®  viability kernel is to be found; (3) Computing viability ker
that the system remains inside the safe set, starting fromels by hand calculations for low-dimensional (say less tha
any initial condition in the viability kernel, using a vidity ~ five) benchmark examples has significant pedagogical value;
controller. The theory of viability kernels has been depeld (4) Extensions of our theory will allow the development of
over the last two decades by J.-P. Aubin and his co-workegability kernels for bang-bang controls and other control
[1]. The viability problem is strongly linked to problems of classes such as state feedbacks, of clear relevance tmlcontr
set invariance [16], [10] and control with state constrsint designers.

The recent text by Blanchini and Miani [5] provides a Notation Let X C R™ be a set. The complement of the
comprehensive treatment of methodologies for solving sget is—K := R™ \ K, the closure of the set is denotéd
invariance problems. The notion of a viability kernel iscals and the interior of the set is denotéd®. The Bouligand
closely related conceptually to that of controlled invade. contingent coneor tangent coneof K at a pointz € K, is
Recently, viability kernels have been recognized to be afenoted byTi(z) [1]. If f: R® — R", g : R® — R"X™,
theoretical importance in the development of generabirati and h : R" — R, then Lyh(z) = 2 f(x), LyLsh(z) =

of nonlinear regulator theory [9]. Also several interegtin 9( th) g(z), and we define recursivel;l,(}h(a:) = h(z) and
results have recently appeared on numerical methods tgv a(L5'h)

compute viability kernels [3], [6], [7], [11], [12]. Ma) = =—5—f ().

Despite substantial progress on viability theory and set
invariance in control theory, there remain many open ques-
tions. This paper explores how the geometric structure of Consider the multi-input, single-output nonlinear system
nonlinear systems can aid in constructing viability kesnel .

We propose a framework for the problem, a set of reasonable & = fla)+g(z)u
conditions (with respect to applications), and a consivact y = h(z), 1)

Imethoo!olt:gy to build \é'ablrl:ty If<e|1ne|_s for T‘O”“_”ef‘r syrsihxa where f € R™ andg € R™*™ are smooth and Lipschitz,
n particular, we study the following situation: we have,,qy, “pn . R js a smooth submersion, i.e. the gradient

a multi-input, single output nonlinear system affine in thEVh is non-vanishing everywhere i®". The input space
control. The safe set is the superlevel set of a smooth fomcti ; s a compact, convex polyhedroli  R™. A control

and geometrically is a manifold with boundary. We want to, . [0,00) — U is a measurable function ihwhich takes

find the viability kernel associated with the safe set, and \Ei'alues inl7. Let (t, ) denote the unique solution of (1)
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Let I :={1,...,q} be the set of indices. Adang controlis Remark 6:When Assumption 5 holds we say that
a control that takes a single constant control valu&inA is the viability core of S. Its importance is in providing
bang-bang controis a control that is piecewise constant ancconcrete termination conditions for the viability problem
takes values irl/. and it is inspired by applications in ecology, biology and
The domain of the state space that we want to rendeobotics, where a viability core often arises. Without sach
positively invariant by proper choice of control, calleceth termination condition the computation of the viability ket
safe setis is significantly more complex. Indeed existence of a viapili
S={zxeR" | h(z)>0}. (2) core can be used as a guideline for classifying the difficulty
of a given instance of a viability problem. One way in
- B which Assumption 5 can be achieved is by assuming a well-
z € R" and for allk <7 — 1 Lgth(x) = 0. efined uniform relative degree. However, relative degsee i
Remark 2:The assumptlor(la(sLak)}ls that each component %o strong, as can be seen in applications [13]. Finally, we
the row vectorL,L5h(x) = —5i=g(x) is zero fork <  note that., need not have any significance as a useful control
r — 1; that is, no input appears before differentiations gction.
of the output. One interpretation is that the system do&Sur viability problem is formally stated as follows.
not have relative degree less than two at any point. The Problem 1: Given a control affine system (1), the closed
condition arises from a structural property of the systdris. | set K = SN, and a target se€ = CT N K, find u*,
a reasonable assumption for the given problem in the sengeviability controller, andS* := Capt(K,C), the viable
that if L,h(z) # 0 on some set, then the viability kernel is capture basin.
trivially computable on that set. It is possible to formelat
the present problem even if the system had relative degree
one on some points, but it does not significantly contribute In this section we present a construction of the viable
to the ideas of the paper. capture basin for the sét with targetC. Our construction is
Assumption 1 implies that the derivative bfalong solutions  centered on bang controls. This is motivated by the fact that

of (1) is %Ef) = Lh(é(t,70)). Thus, we can define the setunder reasonable conditions, there always exists a subset o

Assumption 1:There existsl < r < n such that for all

IIl. VIABLE CAPTURE BASIN

of states wheré is decreasing as K that can reaclt in finite time via a bang control (for if
N C is not reachable by bang control then it is not reachable
Wi={zeR"| Lfh(z) <0 }. by bang-bang control). It is also motivated by applications

Definition 3: [1], [2] A subsetK is said to be aiability where it is often known that bang controls are the correct

domainif for eachx € K, there exists a contral(t) such controls for a particularl dom.ain, without having explicit

that the unique solutiom, (¢, o) of (1) stays ink for all ~knowledge of system trajectories. _

t > 0. If K is not a viability domain, then there exists a Considerz, € R™ and for eachi < I, define ¢;(t, o)

largest closed (possibly empty) viability domaifiab(k) 0 e the unique solution of the autonomous systers:

contained ink’, which is called theviability kernelof . A /(2) +g(z)v" with initial conditionz,. Fora, € R", define

controlu which renders/iab(K) viable is called aviability ~ the hitting time #;(zo) to be the first time when, (¢, zo)

controller. reachesC before possibly leavingdC. If ¢;(t,zq) does not
The notion of a viability kernel with target was introducedr€achC or it leavesk. before reaching’, set;(zo) = oc.

in [15]. A related notion is that of viable capture basin of &0 7o € C, setii(zg) = 0. Define the sett; := {xzo €

set. R™ | #;(xo) < oo}. It can be shown that for eache I, i;
Definition 4: Let ¢ K. The subseCapt(K,C), called IS lower semicontinuous oR; [1].

the viable capture basiris the set of initial states, € K Next, forzo € R", we defineh;(zo) to be the value of

such that there exists a contralt) such that the solution of 7 at #i(zo), i-., hi(zo) = h(¢i(ti(z0), z0)). If T;(wo) =

(1) starting atz with controlu stays inkC until reachingc ~ ° Sethi(zo) := —oo. Notice that by construction; is

in finite time. constant when evaluated along the trajectorit, zo) over

We are interested in finding the viability kernel of the sethe interval[0, Z;(zo)].
K :=S8nW, whereSNW is the closed set of states where Forz € K, define the set of indices
the system is safe but in danger of reaching an unsafe state. . - _
We also impose the practical requirement that the system I"(z) = argmax;¢ { hi(z) | ti(z) <oo}. 4)
reach a target sef C K from the setC in finite time. L . . )
This formulation is meaningful if we can guarantee that th&l0te the cardinality of this set may vary with Define the
system can remain i after arriving atC. To do so, we function u* : K — V by p*(z) := v7, wherej € I*(z) is

define the sets selected arbitrarily. Finally, for each initial conditiag € K
Ct = {z€R"|A(x)>0,Lsh(x)>0,..., L} "h(z) >0} We define
¢ = Cc'nk. 3) w*(t, o) = p*(x0) t € [0,7(z0)], )

Assumption 5:For all zy € C, there exists an open-loop wheret(zg) :=%;(xo) if u*(z0) = 7. Intuitively, this choice
controlu, : Rt — U such that%h(q&up (t,z9)) > 0, for of controller maximizes the first local minimum value ff
all t > 0. on an interval[0,¢], by using only a single control value



in V. The controlleru* terminates at the timé when, by S* is the viable capture basin & with targetC under the
construction, = 0 and the targe€ is reached. restriction of bang controls, and* is a viability controller.
Define a functiomh* : R™ — R by It is interesting to consider the differences between the
previous result, which requires no additional assumptions
on §*, and Frankowska’'s method. To apply the Frankowska
method, we must show that conditions (i)-(ii) of Theorem 8
hold. Condition (i) holds by Lemma 10. The following

W () = max{ hi(z) }.

Finally, we define

S*:={z eR" | h*(x) > 0}. (6) example shows that, instead, condition (ii) does not géiyera
. . ) hold thoughs™ is the viabl ture basi ing b
Assumption 7:h* is continuous onDom(h*) := {x € antrﬁ;/sen OUgI>™ 1S The viable capture basin tising bang

R™ | [[h*(z)|| < oo} andS* is closed.

) _ Example 12:Consider the system
Note thatS* C K, because ifzg ¢ K thent;(zg) = oo,

Vi € I. Our aim is to show tha$* is the viable capture basin T1 = T2

solving Problem 1, and we do so in three steps depending iy = —1.52%5 + (14 1.52235)u.

on the class of controls: bang controls, bang-bang controls )

and measurable controls. Our main theoretical tool is tH¥ith U :=[=1,1]. Let i(z) =21, S0§ = { x € R¥ [ 21 >
following characterization of viable capture basins, addp 0} andW ={z € R* |z, <0}. Thetargetsetis = { = €
from [2]. R? | 1 > 0,22 = 0 }. Now it can be seen thai (zg) = co

Theorem 8:Let K andC be closed sets such thatc k. for zo € S N W because the vector field corresponding to

The viable capture basiflapt(K,C) is the unique closed v' iS (0,—1) alongC so trajectories cannot reach from
subsetD satisfyingC ¢ D ¢ K and S NW. Also, it is easily verified that for alkg € SN W,

(i) For eachz, € D, there exists a contral(t) such that f2(zo) = [22(0)| andhy(zo) := 21(0) — 5173(0)- Therefore,
the trajectory starting at, and using control, reaches 1
C in finite time without first exitingD. S*={reR?® |z > a3 22 <0}

(i) D is backward invariant relative t&. That is, for every 2

2o € D and every solutiom(-, ), if there exists” > 0 and a viability controller isu* = 1. Let p(x) := (~1,2)
such thate(t, o) € K for t € [T, 0], theng(t, zo) € be the outward normal vector & atz € 0S* N W. Then,

Dforte [-T,0]. Ts+(x) = { v € R? | (v,p(z)) < 0}. Now consider the
Remark 9:Theorem 8 is a version of Frankowska'spoint @ := (1,—v2) € 88* N W. The vector field with
method [14] which gives a unique characterization of vicontrolv! = —1 evaluated af is (—v/2,3v/2—1). Now we

ability kernels and capture basins. We use Theorem 8 in - -1

the following way. First we show in Lemma 10 that byVverify (9) atz. We have[ v2 —3v2+1 | | =
constructionu* satisfies condition (i). Second, we replace L .
condition (i) by equivalent tangential conditions (sed)[2 ~2V2+ 6 > 0. Therefore we have a situation in which

given by: Frankowska’s second condition is violated, even thodgh

o is the viable capture basin under the restriction of bang
= (f(x) +g(x)u) € Tp(z) ,Vz € DNK", Vu e U (") controls.
= (f(@) + g(z)u) € Tp(z) UT-k(x), Vo € DNOK, YueU. Let 9WWNS be partitioned as the disjoint unighVNS =

OWie U Wi, UOWs U C where

These are then adapted to obtain our main condition (%)W
le

which guarantees backward invariancef relative to K. = {m €EWNSNC| (32 k(z) <7 —1,k(z) even

The difference between (7)-(8) and (9) is that (9) is more (k(2)—1) k(=)
precise about identifying those controls important in asgu Lyh(z)=---=Lj h(z) =0, L h(z) < 0}
backward invariance, based off. The most important
consequence of this is that computationally, (9) is a finitd"Vie = {1’ €IWNSN-C|[(32<k(x) <r—1k(z)odd
test, where (7)-(8) generally are not. O .

Lemma 10:Given a system (1), a safe set (2), and a target Lih(z) = - = L™ Vh(z) = 0, L} h(z) < 0}
set (3), suppose that Assumptions 1, 5, and 7 hold. For eachyy, — ([ cownsn—C|@2<k(z)<r—2)
xo € S*, the trajectory starting at, and using controb* (k@)1 k@
reacheg in finite time without first exitingS*. Lih(@) == Lj h(@) =0, Ly hix) > 0} '

Note that forr = 2, OW,, = oW1, = OW, = 0, and for

A. Bang-Bang Controls =3, OWy, = OW, = 0.

In this section we study the special case when only bang Lemma 13:S* N oS NW = 0.
or bang-bang controls are allowed. Due to the properties of Lemma 14:Trajectories arrive afNdW;. only from—K.
bang controls and the special structureS3f we have the  Lemma 15:5* N oW, = ().
following straightforward result. Remark 16:Lemma 13 and 15 show that, moreover, for

Proposition 11: Given a system (1), a safe set (2), and &ll zo € (SN W)U OW; and for all trajectories,, (¢, zo),
target set’, suppose that Assumptions 1, 5, and 7 hold. Thethere existsy > 0 such thatp, (, zo) € -k, Vt € (0,0).



Theorem 17:Given a system (1), a safe set (2), and addition, suppose there exigts< 0 such that Assumption 19
target set (3), suppose that Assumptions 1, 5, and 7 holdolds; for allz € N. N —C. and for allj & I*(x), —(f(z)+
In addition, suppose that for all € 9S* N —=C and for all g(z)v’) € Ts:(x); and for allz € oW1, NC andu €

jé1*(z), U, —(f(x) + g(z)u) € Ts«(x) UT-x(z). ThenS* is the
- viable capture basin of with targetC, andu* is a viability
—(f(z) + g(@)v!) € Ts (). ) controller.
ThenS* is the viable capture basin &f with targetC under
the restriction of bang-bang controls, and is a viability IV. EXAMPLES
controller.

Example 21:We illustrate the steps of the design for a

This result means that the Frankowska method can be usgg-ond-order model of the pendulum on a cart assuming
to glistinguish when a viable capture basin can be consttuctg, cart mass is neglible with respect to the pendulum mass
using only bang controls, even if bang-bang controls are pelng g parameters are set to 1.4if is the position of the

mitted. For instance, suppose we find the viable capturaﬂba%endmum from the upright vertical ane, is its angular
K* and therefore condition (9) holds d&*, but (our)u* is velocity, then the model is:

not a viability controller. A candidate viability contrell is

instead a bang-bang control with possible switching points T = X2

The key observation is tha* # S*, and that condition (9) &o = sinz, — ucoszy ,

fails for S*. We can summarize by saying thatkif is the

viable capture basin of with targetC, v* is a bang-bang Wherez & R? and U := [-1,1] C R. We assume that

viability controller, andS* # K*, then (9) fails on at least e pendulum angler; is unwrapped, meaning that we

one point ofS* andv* is not a bang viability controller. ~ distinguish between angles differing by multiples 2f.
Let v! = —1 andv? = 1. The viability problem is to

B. Measurable Controls keep the pendulum in a region about the upright (unstable)
In this section we extend the previous results to shoeqUIIIbrIum such that, € [~c, ] wherec > 0. To simplify

. ™

that S* is the viable capture basin even when measurablg@® computations, we assume< 4’ We chooseh(z) :
controls are permitted. We would like to retain the finite”> — 2 S0 thatS = {z € R? | ¢ — a7 > 0}. (Note this
test in (9). From applications it is observed that the fornghoice ofh is consistent with the convention that angles are
of h* is typically independent of the level value d¢f unwrapped.) Assumption 1 holds with=2soW = { z €
which determines the safe set. Similiarly, (9) typicallynca RQ | z125 >0 } andC = {x | ?2 — 21 > 0,212 = 0} It
be verified independently of the level value bf which is easily verified that Assumption 5 holds.
determines the viability kernel. These observations lead t It can be determined that far = +1, the set of initial
a suitable notion of robustness of viability kernels (whicteonditions inS N W that can reaclt in finite time are:
are inherently fragile): if the level value df defining the — \/ /5 )
safe set is perturbed by a sufficiently small value, then thet1 = {2z € SOW: |ao| < \/2V2 4 2sinzy — 2cos a1},
(r;fevf\bl*wablhty kernel is determined by a perturbed level ealu Xo={z €SN : || < \/2\/5 — 2sinay — 2cosa ).

Let ¢ € R and define the setsS. := {z € To obtain formulas foh;, we note that for constant values of
R* | h(z) > €, K. = S n W, ¢t := wuthesystem admits a first integr 2+coszi+using =

" r—1 a, wherea € R is determined by the initial condition

{(E eR | h((E) > €, th((E) > 0, . ,Lf h(l’) 2_50 }! (551 (0)71-2(0)) We setq = %x%((})-}-cos l’l(O)-FUSiHl’l (O)
andC. := C* NK.. Forzg € R andi € I, definet; (z9) to  Second, solve far; (7) at the first time the trajectory reaches
be the first time whem; (¢, z() reache<. before possibly 9. (Becausearccos(-) and arcsin(-) appear in this step,
leaving /C.. If ¢;(t,z) does not reaclt, or it leavesk, care must be taken so that the rangexgfallows to use

before reachingC,, setZ (o) — oo. For @y € C., set the principle valuesArccos(-) and Arcsin(-)). Finally, the

—c S e —c expressions forz; are substituted in: to yield h;. For
I5(xo) = 0. Also, definels (o) == h(¢;(T;(x0),20)). If S o oidy ) y

T;(20) = oo, setﬁf-(_:co) := —oo. Finally, for z € K., define L
hf(x) := max;er{ h:(:v) }. h:m) = 1 1 1 2
Remark 18:It is easy to show that for at < 0 and for [Z + Arcsin <_ﬁmg(0) - cos z1(0) — - |Sinw](0)|>}

all zg € S* USS, h*(.%'o) = h:(.%'o) . L . . .

. . . The final step of the design is to verify condition (9). Since
Givene <0, defineN. := {z € R" | e < hi(x) <0}. AlSO e computatioﬁ)'ls are symr%etric we oI%Ily consider(tr?e region
for eachd € [e, 0], defineS; := {x € R" | hX(z) > 6}. r1 € [—c, 0], where the boundary of the viable capture basin

Assumption 19There existse < 0 such thath! is is given byh;(z) = 0. Sinceh; is differentiable, condition
continuous onDom(h?) := {z € R™ | |h*(z)| < oo}. (9) reduces to verifying that for alt € 95* N ~C andz; €

For eachd € [¢,0], Sf is closed andIS; "W = {z € [=¢.0l V() - (f(z) +g(x)v?) < 0. We obtainVh ()

W | hi(z) = 6}. (f(@) + g(x)v?) =
Theorem 20:Given a system (1), a safe set (2), and a 2ewg [o (,1 _ I) _ %(Sinm ,le)] _
7\') 1 2)2 4 2

2 2v2 2

target set (3), suppose that Assumptions 1 and 5 hold. In¢1 S CICE



Now for z; € [—¢,0] with ¢ € (O,E), we have that

4
cos (:1:1 _T > 0 andsinz; — cosx1 < 0; therefore the

last term is positive. However, sinag < 0 for this region
of the boundary oDS*, we obtain the desired result.

some algebraic steps, we obtain

2(z) — ha(x)

3
2

=l

1
—2x2 — 29wy — g(xg + 22024 + 22 — 225)

1 16
N g(:ﬂ% + 2wawa + 2] + 2w)? = 303(552 +23) P2}
+ 305(502 + 503)77563 + §c7(x2 + :1:3)*9;135 N

Now we know that on¥; N Xs, 29 < 0 and alsocy, < 0 for

k = 3,5,7,.... Therefore every term in the sum above is
positive. Thus we obtain that*(z) = he(z) andu* = +1
forallz € SNW.

Example 22:We consider a fourth-order single output The final step of the design is to verify condition (9). For

linear system given by:

1 0 -1 -1 0

. 0 1 0 1 0
T 1 -1 -1 —1 1=+ - |w (10)

0 -1 0 -1 1
y = [1 -1 -1 —1]=. (11)
DefineU := [-1,1] C R and letv! = —1 andv? = 1. The

viability problem is to maintaini(z) := y — ¢ > 0, where
c € R is a given constant. Thefi = {z € R? | y — ¢ > 0}
and since Assumption 1 is satisfied we compute =
{ z€R®| 22 <0 }. The first step is to computg and

for this we first compute the system trajectories for cortstan =

u. We obtainz; (t) = gyut*+ £ (220 + 240 +u)t® + (2320 +
240) 12+ (210~ T30 —2a0)t, 2(t) = Sut?+(240+T20)t+220,
23(t) = Fut'+ 2 (za0+w20)t> + 2220t + (210 — T20 — T30 —
40 — u)t+$30, $4(t) = —%th + (u — 40 —1‘20)t+$40. To
solve fort;, we setr,(t) = 0 and solve fort. Forzg € SNW
this yields

20 + a0 — /(a0 + w20)? + 2220,

. if z40 + w20 > 0, (Ta0 + 220)* + 2320 > 0

t1 (:Eo) = (12)
—,
otherwise
ty = —m20 — w40 + \/ (Ta0 + ®20)? — 220 - (13)

The analysis shows that for = +1, the set of initial

conditions inS N that can reacl®V in finite time are:
X, = { reSNW | T4 + To 20,(x4—|—x2)2+2x2 20} .
Xo=S8 ﬂW.

We observe that Assumptions 5 and 7 are satisfiedCon

Next we want to compute;(z) = x1 (¢;) —z2(t;) —23(t;) —

x4(t;) — c. We obtain

1
hl(I) =T1 — Lo — X3 — T4 —|—ZCQ(I4 +ZC2) + §(I2 —|—ZC4)3

1
- g(xg + 2womy + 32 + 22)7 —c.

— 1
hg(m) =1 — X2 — T3z — T4 —1‘2($4 +$C2) + g(xg +.I'4)3

e

1
— §<x§ + 22924 + 75 — 229)2 —c.

The next step is to computle*(z) = max{h; (z), ha(z)}
for all z € SOW On XQ\X:[, h*(I) = hQ(I) onX; N,
we must calculate which is larger. Let := (Z). Skipping

all z € 98* N W, we have that*(z) = {2}. Therefore, for
all z € SN, the boundary of the viable capture basin is
given by hs(x) = 0 and sinceh, is differentiable, condition
(9) reduces to verifying that for alt € 0S* N W, Vha(x) -
(f(x) + g(x)v!) < 0. We obtain

Vha(z) - (f(z) + g(z)v') =

2 [xg — (w9 + 14)? + (w2 4+ 24) (22 + 24)* — 2:62)%:| )
Now we observe that

0 < (22 + 24)[(x2 + 24)° — 25172]%

[(232 + £C4)4 — 2xo(x2 + 234)2} 3
< [(z2 + 24)* — 2@2(22 + 24)* + 23]
= —(z2 — (2 + )).

=

Therefore condition (9) is satisfied.

Example 23:We consider an example of fisheries man-
agement adapted from [3], which models the effect of fishing
activity on a prey-predator system. Let denote the popula-
tion level of a prey species, let denote the population level
of a predator species and lef denote the effort expended by
humans in fishing the predator species. We assume that in
the absence of any predation, the prey population follows
an exponential growth model with intrinsic growth rate
r1 > 0. Similarly, in the absence of any fishing activity,
the predator population follows an exponential growth nhode
with intrinsic growth rater, > 0. We do not assume any
carrying capacity limitations on either the prey or predato
populations. The system model is given by

i?l = (7’1 — IQ)ZCl

By = (ro — 23)T2
ig =Uu
wherez € R3 andU = [-1,1] C R.

Let v! = —1 andv? = 1. The viability problem is to keep
the stock level of the prey above some positive level 0.
We defineh(z) = z1 — ¢, s0 Lyh(z) = (r1 — z2)x1 and
S={zeR? |2y —c>0}. Assumption 1 holds withr =
3, s0W = { r€R3| (ry —x2)z1 <0 } If 2o € SNW,
thenz1(0) > ¢ > 0 andxz2(0) > r; > 0. Thus, we compute
Ct={x : 21 >c,wa <711, (r1—x2)%x1 — (ro—3) 1172 >
0} andC = {« x1 > ¢,wa = 11,23 > 1ro}. Using the
expression fo it can be easily verified that Assumption 5



holds withu, = 1.

Define the functionsm,(t) :=
and ma(t) :=

iy

[y elrz=zsON7=37" 47 Note that these
are expressible in terms of the error functienf(z) =

=l e~'" dt. For constant values of we have that

£ (0)e OO ity = !
O = gy @)ert-m O if w0,

xo(t) = ;CQ(O)e(Tz*Ia(O))tf%utz

V. CONCLUSION

The paper proposes and solves a viability problem for
control affine systems. The problem formulation is based
on the notion of viable capture basins, it is shaped by the
practical concern to be able to conclude execution of the
viability controller in a finite time, and it is relevant in
almost all nonlinear control applications of current ietsr
An explicit formula for the viability kernel and a viability
controller are derived, and these formulas are shown to be
valid using the Frankowska method, which provides the
essential backward invariance condition to obtain theltesu
A natural next step would be to extend the results to multi-

X3 (t) =ut + 23 (O) . (16)

To computet;, we remark that foru = =1 the set

{z € R® | ; = 0} is an asymptote of the system and hence
the z; = 0 component ofd)V cannot be reached in finite [
time. Therefore, we must consider (15) to determine if[Z]
there exists a timég; such thatzs(#;) = r;. Substituting

x5(%;) = r1 in (15) and solving forf; we get (31
T = —(rs — 23(0)) — \/(r2 — 25(0))2 +21n #(10) an
T = (rs — 23(0)) + \/(7’2 — 25(0))2 — 2In #(10) . (18) [

The analysis shows that fox = +1, the set of initial
conditions inS NV that can reaclt in finite time are:

—21n2} . (8]

(7]

T3 > 12+

X1:{$€Smw
T2

Xo=8SnNW. 5
Finally, substituting (17) and (18) into the expression for
we get 0
El (.”L'O) =1 (O)enfl—mz(o)ml(fl) _¢,

EQ(:CO) = (O)eTltgfibQ(O)mg(tg) —c. [11]
It can be shown thab*(z) = hy(z) for all z € S NW;
therefore,u* = 1. The final step of the design is to verify [12]
condition (9). For allz € 9S* N W, we have that’*(z) =
{2}. Therefore, for allz € SN W, the boundary of the
viable capture basin is given by (z) = 0 and sinceh, is
differentiable, condition (9) reduces to verifying that fall
x € d8* N —C, Vha(z) - (f(z) + g(x)v') < 0. We obtain

Vﬁg(x)(f(x)-t-g(x)vl) = ((m —x2) — (r2 — :r;;):rgmg(fg)) 2c.

For x € SN, we have thatts > r; > 0. Moreover,
sinceerf(-) is an increasing function, the value ofy(f2)
is always nonnegative (this is also obvious from the integrél6]
definition of m2(t)). Therefore, if(ry — x3) > 0 the result
follows immediately. Now, if(ro — z3) < 0, then

[13]
[14]

[15]

(r1 — x2) — (r2 — x3)T2m2(T2)

to
< (r1—x2) = (r2 — 1’3)1’2/ P

0
= (r1 —x2) — (rs — x3)72 elrzm=a)t2 _q
( )= ( )

1
(ro — x3) (

. ra)E. 172
<rp —meelm2T T2 <

Therefore condition (9) is satisfied.

output systems.
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