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Estimation of Persistently Exciting Subspaces
for Robust Parameter Adaptation

Erick Mejia Uzeda∗† and Mireille E. Broucke∗‡

Abstract— Recently we proposed the µ-modification for
robust parameter adaptation, premised on the observation
that only the parameter dynamics along the subspace with
no persistent excitation must be rendered robust. Robust-
ness thereby reduces to a problem of subspace estimation.
This paper proposes a new subspace estimator that recov-
ers the non-PE subspace for a large class of regressors.
This is achieved through a characterization of persistently
exciting subspaces and the use of Principal Component
Analysis. Correctness of the design is proved using matrix
perturbation theory, while an averaging analysis demon-
strates that the design is best employed as a slow process.
We develop a general error model capturing those com-
monly appearing in adaptive control, and we prove that the
µ-modification provides a modular robust design, without
compromising error regulation.

Index Terms— Adaptive Control, Persistent Excitation,
Robustness, Subspace Estimation

I. INTRODUCTION

This paper proposes a new method of robust parameter
adaptation. To place ideas in context, consider a static error
model e(t) = w⊺(t)ψ̂ − y(t) = w⊺(t)(ψ̂ − ψ), where y(t) =
w⊺(t)ψ ∈ R is a measurement, ψ ∈ Rq is a vector of unknown
parameters, w(t) ∈ Rq is a known regressor, and ψ̂(t) is
an estimate of ψ. To estimate ψ, the simplest method is to
consider the instantaneous cost function

J(ψ̂) :=
1

2
e2(t) =

1

2
(w⊺(t)(ψ̂ − ψ))2 . (1)

Computing the gradient, one has ∇J(ψ̂) = ew(t) so that the
standard gradient algorithm is

˙̂
ψ = −γ∇J(ψ̂) = −γew(t)

where γ > 0. It has been noted that the instantaneous cost
only penalizes errors along w at time t rather than its full
range of excitation. For example, if w is persistently exciting
(PE) then the full error ψ̂−ψ should be penalized rather than
just the component along w(t). To this end, researchers have
considered an integral cost function

J(ψ̂) :=
ε

2

∫ t

t0

e−ε(t−τ)e2(τ) dτ (2)

=
1

2
(ψ̂ − ψ)⊺Σ(t)(ψ̂ − ψ) ,
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where Σ(t) := ε
∫ t
t0
e−ε(t−τ)w(τ)w⊺(τ) dτ . If it is known

that Σ(t) is invertible (i.e., w(t) is PE), one obtains the non-
recursive least squares algorithm: ψ̂(t) = Σ(t)−1Q(t), where
Σ and Q are generated by

Σ̇ = −εΣ+ εw(t)w⊺(t) , Σ(t0) = 0 (3a)

Q̇ = −εQ+ εw(t)y(t) , Q(t0) = 0 . (3b)

A recursive solution is provided by the Kreisselmeier integral
algorithm

˙̂
ψ = −γ∇J(ψ̂) = −γ(Σψ̂ −Q) ,

where Σ and Q are again updated using (3). These algorithms
and many more lack robustness and suffer computational
problems when w is not PE. In adaptive control, modifications
of parameter adaptation laws have been suggested to achieve
robustness [1]; they generally trade off error regulation.

In [2] we made the observation that only the parameter
adaptation dynamics along the subspace with no persistent
excitation needs to be rendered robust. We proposed the µ-
modification, a modular technique that provides robust adapta-
tion without sacrificing error regulation. To illustrate, suppose
it is known that w lies in a subspace W ⊊ Rq . Let W ∈
Rq×qpe have orthonormal columns such that W = Im(W ).
We can write w =Wwpe for some wpe(t) ∈ Rqpe (wpe is not
known to be PE at this stage). Now the instantaneous cost (1)
becomes

J(ψ̂) =
1

2
(w⊺

pe(t)(ψ̂pe −W ⊺ψ))2 = J(ψ̂pe) ,

where ψ̂pe := W ⊺ψ̂. The integral cost (2) can similarly be
shown to reduce to a function of ψ̂pe. It is now clear that the
root problem is that only the component ψ̂pe is penalized by
the cost function.

The µ-modification regularizes the cost function through a
penalty on the unexcited components of ψ. Define W⊥ such
that

[
W W⊥

]
∈ Rq×q is an orthogonal matrix. Then ψ̂ splits

as ψ̂ = WW ⊺ψ̂ +W⊥W
⊺
⊥ψ̂ =: Wψ̂pe +W⊥ψ̂⊥. Consider

the regularized instantaneous cost

Jµ(ψ̂) := J(ψ̂pe) +
µ

2γ
∥ψ̂⊥∥2 =

1

2
e2(t) +

µ

2γ
∥ψ̂⊥∥2 .

Taking the gradient, we arrive at the µ-modification

˙̂
ψ = −γ∇Jµ(ψ̂) = −γew(t)− µW⊥W

⊺
⊥ψ̂ .

It consists of a leakage term that is only applied along the
non-PE subspace W⊥ = Im(W⊥), which is appended to
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the standard gradient algorithm. As a final step, one requires
an estimate of the projection map W⊥W

⊺
⊥ onto the non-PE

subspace. One method is to leverage the fact that integral
cost functions are meant to capture the full range of exci-
tation of the regressor w. Noting that Σ(t) = WΛpe(t)W

⊺

where Λpe(t) := ε
∫ t
t0
e−ε(t−τ)wpe(τ)w

⊺
pe(τ) dτ , if Λpe(t) is

invertible then Im(Σ(t)) = Im(W ). Therefore, we can use the
Moore-Penrose pseudoinverse (denoted †) to obtain

WW ⊺ = Σ(t)Σ†(t) .

Under the assumption that wpe is PE, this holds eventually
and moreover W⊥W

⊺
⊥ = I −Σ(t)Σ†(t). As such, one variant

of the µ-modification with a suitable subspace estimator is

Σ̇ = −εΣ+ εw(t)w⊺(t) , Σ(t0) = 0 (4a)

Ω = I − ΣΣ† (4b)
˙̂
ψ = −γew(t)− µΩΩ⊺ψ̂ , (4c)

where we note that ΩΩ⊺ = W⊥W
⊺
⊥W⊥W

⊺
⊥ = W⊥W

⊺
⊥

eventually. In the remainder of the paper, we will derive
an equivalent design for estimation of the non-PE subspace
W⊥ for use in the µ-modification, but starting from first
principles concerning exciting subspaces. The final design may
be viewed as a recursive algorithm for computing minimum
2-norm parameter estimates.

A. Literature Review

Central to any discussion of parameter adaptation is the
notion of regressor excitation, among which the most im-
portant is persistent excitation (PE) [3]. Arguably the main
practical limitation of adaptive control is the PE requirement,
since it rarely holds in practice. Additionally, the PE condition
is difficult to verify since it must hold over the entire time
horizon, leading to a search for alternative characterizations.
In [4], the PE condition is related to the degree of sufficient
richness of a signal determined by its number of spectral
lines. A geometric characterization of PE using an excitation
distribution is provided in [5]. They note that almost periodic
signals span the entire space they reside in; an insight relevant
in our development. When a signal is not PE, one asks how
much excitation still remains. In [6] the exosystem state of an
LTI exosystem is shown to lie in a subspace whose dimension
matches the number of excited modes. An alternative approach
is to characterize the subspace that lacks persistent excitation,
as in [7]. A more complete characterization of both the excited
and unexcited subspaces for discrete-time systems was given
earlier in [8].

Beyond characterizing the PE condition, one asks when
parameter estimation is possible. The modern line of work
in adaptive control is to perform parameter estimation under
strictly weaker excitation than PE. A non-exhaustive list of
these techniques include: Dynamic Regressor Extension and
Mixing (DREM) [9] using regressor filtering, Concurrent
Learning (CL) approaches [10] using a separate memory
module and an initial excitation (IE) condition, and finite-
time convergence (FTC) schemes [11]. Some authors have
noticed that sometimes there is no form of excitation that

can be leveraged and only partial parameter convergence can
be guaranteed. For matrix regressors, a reduced order model
guaranteeing parameter convergence has been obtained using
the Gram-Schmidt procedure to identify linearly dependent
columns [12]. In [13], a semi-IE condition is introduced and
partial convergence is guaranteed along a subspace.

This paper adheres to a new design philosophy that param-
eter adaptation can be improved if one accounts for unexcited
dynamics. This idea can be found in our previous work [2]
as well as the independent works of [7], [14] and [15]. In
[7], [14], the property of lack of persistency of excitation
is introduced. A subspace estimator based on the Eigenvalue
Decomposition (EVD) is used in linear regression and adaptive
observers to guarantee parameter convergence by modifying
the dynamics along the subspace that lacks persistent ex-
citation. In [15], a DREM scheme for linear regression is
considered under various semi-excitation conditions. An EVD
is used to modify a matrix regressor along directions where it
is rank deficient to enhance parameter convergence. Our work
demonstrates the generality of this new design philosophy
by: (i) characterizing the inherent excitation of regressors; (ii)
providing a rigorous construction of subspace estimators using
the Singular Value Decomposition; and (iii) elaborating the
applicability to a general error model.

B. Contributions

Our contributions are multi-faceted and they culminate in
the ability to perform robust parameter adaptation without sac-
rificing asymptotic error regulation. This paper is an extension
of ideas in [2]. In [2] we assumed that the exogenous regressor
already resides in its PE subspace. Instead, here we take a
more intrinsic approach by defining the PE decomposition of
a regressor arising from its autocovariance. Our new subspace
estimator overcomes the following limitations of our prior
design: (i) the initial condition can now be arbitrary; (ii) the
convergence rate need not be slow; and (iii) we guarantee
recovery of the non-PE subspace when using a regressor
estimate. Conceptually our previous subspace estimator per-
formed a projection onto the non-PE subspace, while our
new subspace estimator starts by estimating the PE subspace.
Lastly, while our prior work established robustness by arguing
a nominal system is globally exponentially stable (GES), here
we derive explicit steady-state robustness bounds.

Our contributions are as follows. In Section II we provide
a complete characterization of PE subspaces for a large class
of regressors through a PE decomposition. While the idea of
exciting subspaces was first introduced in [8] for discrete-
time systems, our characterization starting from the autoco-
variance matrix is not technically equivalent. In Section III,
we rigorously construct a non-PE subspace estimator using
Kreisselmeier filters and techniques from Principal Component
Analysis (PCA). In Section IV, we perform an averaging
analysis demonstrating that the design is best run slowly,
consistent with biological systems. Lastly, in Section V we
define a general error model based on the error models of [16]
that can be robustified using the µ-modification, providing a
template on how our methods can be applied to new contexts.
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Explicit robustness bounds in the presence of various distur-
bances are presented. First in Theorem 7 we derive explicit
bounds on the steady-state error model states in the presence of
bounded disturbances, assuming those disturbances appearing
in the regressor measurement and subspace estimator are
sufficiently small. Theorem 8 removes the requirement of suf-
ficiently small disturbances in the regressor measurement by
treating such disturbances as part of the regressor excitation.
Applications to linear regression and regulation using state
feedback are found in Section VI. Technical proofs are found
in Section VII.

C. Notation

Let ∥ · ∥ denote the 2-norm and σi(·) denote the i-th largest
singular value. Then σmax(·) = σ1(·) denotes the largest
singular value and σmin(·) denotes the smallest singular value.
When applied to matrices, note that ∥ · ∥ = σmax(·). Define
the supremum norm ∥ · ∥L∞ := supt≥t0 ∥ · ∥. We write
d ∼ N (µ, σ2) if d(t) is white Gaussian noise with mean µ
and variance σ2. Given a subspace W ⊆ Rq , let W⊥ denote
its orthogonal complement. The inequalities ⪰, ≻ denote the
ordering of positive (semi-) definite matrices. Lastly, we write
ŵ → w if ŵ(t) converges asymptotically to w(t).

II. PE REGRESSORS AND SUBSPACES

This section presents inherent properties of regressors and
their persistently exciting subspaces. A regressor w(t) ∈ Rq
is PE if there exist β0, T > 0 such that

1

T

∫ t+T

t

w(τ)w⊺(τ) dτ ⪰ β0I , ∀ t ≥ 0 . (5)

In [2] we considered a class of regressors that can be expressed
as w =Wwpe, where W ∈ Rq×qpe has orthonormal columns
and wpe(t) ∈ Rqpe is PE. Additionally, we introduced the
notion of a PE subspace (therein called PE directions) as
the subspace along which a regressor is PE. In [2] the PE
subspace associated with w is Im(W ). Since the relationship
w =Wwpe may not always hold, here we consider a class of
regressors subsuming those previously studied.

Assumption 1: The regressor w(t) ∈ Rq is bounded and
piecewise continuous, and its autocovariance matrix

Rw(0) := lim
T→∞

1

T

∫ t0+T

t0

w(τ)w⊺(τ) dτ

exists, is independent of the initial time t0, and the conver-
gence of the time average is uniform in t0 ≥ 0. ▷

Remark 1: If a regressor w satisfies Assumption 1 and β0
is the constant from (5), then Rw(0) ⪰ β0I . ◁

Definition 1: Suppose Assumption 1 holds. The PE sub-
space W ⊆ Rq of the regressor w(t) ∈ Rq is the subspace

W := Im (Rw(0)) .

The non-PE subspace of w is W⊥. We denote qpe := dim(W)
as its degree of persistent excitation. ▷

When qpe = q, w is PE by [17, Proposition 2.7.1]. When
qpe = 0, we say w has no persistent excitation. When 1 ≤

qpe < q, one can split w into a PE part and a part with no
persistent excitation.

Proposition 1: Suppose Assumption 1 holds. If 1 ≤ qpe <
q, let

[
W W⊥

]
∈ Rq×q be orthogonal such that

W = Im(W ) , W⊥ = Im(W⊥) .

Then the PE decomposition of w is

w =WW ⊺w +W⊥W
⊺
⊥w =:Wwpe +W⊥w⊥ , (6)

where wpe(t) ∈ Rqpe is PE and w⊥(t) ∈ R(q−qpe) has no
persistent excitation. ⋄

Proof: Since Rq = Im(W ) ⊕ Im(W⊥), w = Wwpe +
W⊥w⊥ for some wpe ∈ Rqpe and w⊥ ∈ R(q−qpe). Then by
orthogonality of W and W⊥, we have wpe := W ⊺w and
w⊥ :=W ⊺

⊥w. Consider the autocovariance matrices

Rwpe
(0) = lim

T→∞

1

T

∫ t0+T

t0

wpe(τ)w
⊺
pe(τ) dτ

Rw⊥(0) = lim
T→∞

1

T

∫ t0+T

t0

w⊥(τ)w
⊺
⊥(τ) dτ ,

yielding the identities

Rwpe
(0) =W ⊺Rw(0)W , Rw⊥(0) =W ⊺

⊥Rw(0)W⊥ .

Given that Im(W⊥) = Im(Rw(0))
⊥ = Ker(Rw(0)), we have

W ⊺
⊥Rw(0)W⊥ = 0 and so w⊥ has no persistent excitation.

Next, to show wpe is PE it suffices to show W ⊺Rw(0)W ≻ 0
by [17, Proposition 2.7.1]. Suppose not. Then there exists a
non-zero v ∈ Rqpe such that

0 = v⊺W ⊺Rw(0)Wv = ∥Rw(0)1/2Wv∥2 ,

implying Wv ∈ Ker(Rw(0)) = Im(W⊥). But Wv ∈ Im(W )
where Im(W ) ∩ Im(W⊥) = { 0 }. Therefore Wv = 0 and so
v ∈ Ker(W ) = { 0 } because W has full column rank. This
contradicts the fact that v is non-zero.

Remark 2: The subspaces W and W⊥ are unique, and so
are the vectors Wwpe = WW ⊺w and W⊥w⊥ = W⊥W

⊺
⊥w.

Note that WW ⊺ and W⊥W
⊺
⊥ are orthogonal projections. If

w has no persistent excitation, then one may consider a PE
decomposition with W = 0 and W⊥ = I; an analogous
statement holds when w is PE. When w = Wwpe with wpe
PE, it follows that W = Im(Rw(0)) = Im(W ), agreeing with
the notion of a PE subspace in [2]. Finally, our Definition 1
can be considered a generalization of the independent work
[7, Definition 2.1], where the non-PE subspace is the subspace
that lacks persistency of excitation of order q − qpe. ◁

So far we have discussed properties of an exogenous re-
gressor w(t). In practice one rarely has direct access to w;
instead one builds an estimate ŵ = w(t) + w̃, where w̃ is the
estimation error. The following fact from [16, Chapter 6.3.1]
ensures that a vanishing transient w̃ does not modify the PE
subspace of ŵ relative to that of w.

Proposition 2: If limt→∞ w̃(t) = 0, then w̃ has zero
average and thus no persistent excitation. ⋄
The converse of Proposition 2 is not true in general. In
particular, the fact that w⊥ has no persistent excitation does not
imply w⊥ → 0. Even if we assume w is bounded and smooth
with all its derivatives bounded, it is possible to construct a
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non-vanishing w(t) ∈ R with no persistent excitation. This
can be done by partitioning R+ into a sequence of intervals
indexed by k of length 2k and fitting the same smooth bump
function in each of these intervals. There is, nevertheless, an
important case when one can conclude w⊥ → 0; namely, the
class of almost periodic functions, studied in stability theory
[18] and adaptive control [19], among others. Additionally,
the output of a linear time-invariant (LTI) exosystem having
only simple poles on the imaginary axis, commonly used in
regulator theory, is also an almost periodic function. The proof
of the following proposition is found in Section VII-A.

Proposition 3: If w is (Bohr) almost periodic, then its PE
decomposition satisfies w⊥ = 0. ⋄
As a consequence of Propositions 2-3, an almost periodic
steady-state implies a vanishing non-PE component.

Corollary 1: If there exists wss almost periodic such that
limt→∞ ∥w(t)− wss(t)∥ = 0, then limt→∞ w⊥(t) = 0. ⋄
In light of Corollary 1, in Section III we consider the following
regularity assumption. Section IV provides additional results
without the assumption.

Assumption 2: The component w⊥ of the regressor w along
its non-PE subspace satisfies limt→∞ w⊥(t) = 0. ▷

III. SUBSPACE ESTIMATOR

Our approach to achieve robust parameter adaptation in-
volves estimating the non-PE subspace W⊥ of w (or ŵ if
ŵ → w). We apply the well-established Principal Component
Analysis (PCA) used to compute principal components along
which a collection of data points can be best explained.
Principal components are generally computed as the singular
vectors of the Singular Value Decomposition (SVD) applied to
the sample covariance matrix. In our context, we seek singular
vectors that span W = Im(Rw(0)), where Rw(0) plays the
analogous role of a sample covariance matrix.

Since Rw(0) is symmetric and positive semi-definite, it has
an orthogonal diagonalization which coincides with its SVD.
As a result, the principal components are the eigenvectors of
Rw(0), which form a basis for W . The singular values of
Rw(0) quantify the average excitation the regressor w has
along these directions. Because Rw(0) is not directly available,
we are naturally lead to the following three step design:

1) generate a proxy of Rw(0), denoted Σ̂;
2) estimate W⊥ by applying PCA using Σ̂;
3) use the estimate of W⊥, denoted Ω, in the µ-modification

to achieve robust parameter adaptation.

A. Generating a Proxy of the Autocovariance Matrix

The first step of the design is to generate a proxy of Rw(0)
using a measurement ŵ. Our inspiration comes from the
Kreisselmeier integral algorithm. Consider the filter (a minor
variation of [20, Eq. (39a)])

˙̂
Σ = −εΣ̂ + εŵŵ⊺ , (7)

with ε > 0 and Σ̂(t) ∈ Rq×q . We make the following
observations. When ŵ is PE, Kreisselmeier shows in [20,
Theorem 3] that the filter matrix [20, Eq. (39a)] becomes

positive definite eventually. When ŵ is not PE, Marino and
Tomei show in [7, Lemma 2.1] that for a particular initial
condition, Σ̂ has the same lack of persistency of excitation as
ŵ. Finally, when ε > 0 is sufficiently small, (7) admits the
averaged dynamics

˙̂
Σav = −εΣ̂av + εRŵ(0) ,

which we investigate in Section IV. These observations sug-
gest that Σ̂ can recover the PE subspace of ŵ (and thus w).

Let Σ̂ = Σpe+Σ̃, where Σpe will correspond to the steady-
state component of the solution of (7) and Σ̃ corresponds to
the transient component. Using the PE decomposition (6) and
by linearity, (7) splits as

Σ̇pe = −εΣpe + εWwpe(t)w
⊺
pe(t)W

⊺ (8a)
˙̃Σ = −εΣ̃ + ε(∆⊥(t) + ∆̃(t)) , (8b)

where

∆⊥ :=Wwpew
⊺
⊥W

⊺
⊥ +W⊥w⊥w

⊺
peW

⊺ +W⊥w⊥w
⊺
⊥W

⊺
⊥

∆̃ := w(ŵ − w)⊺ + (ŵ − w)w⊺ + (ŵ − w)(ŵ − w)⊺ .

If ŵ → w and Assumption 2 holds, then we have ∆⊥+∆̃ → 0,
implying that Σ̃ → 0 for any Σ̃(t0); thus confirming the
interpretation of Σpe as the steady-state component of Σ̂.
Indeed, we will assign an initial condition (unknown to the
designer) to (8a) so that the excitation properties of Σpe are
invariant over time. The following lemma tells us that the
image of Σpe coincides with the image of Rw(0). Furthermore,
we can relate the excitation properties of Σpe to those of w
and the choice of ε. The proof is found in Section VII-B.

Lemma 1: Suppose Assumption 1 holds. Let qpe ≥ 1, wpe,
and W = Im(W ) result from the PE decomposition of w, and
let β0, T > 0 be the PE constants in (5) for the regressor wpe.
Consider (8a) with Σpe(t0) = εTRw(0). Then there exists a
bounded symmetric Λpe(t) ∈ Rqpe×qpe such that

Σpe(t) =WΛpe(t)W
⊺ , Λpe(t) ⪰ εTβ0e

−εT I

for all t ≥ t0 ≥ 0. Hence, Im(Σpe(t)) = Im(W ) for all
t ≥ t0 ≥ 0. ⋄
In the case when qpe = 0, we have Rw(0) = 0 and so there
is no PE component wpe. Then the steady-state dynamics
(8a) become Σ̇pe = −εΣpe with Σpe(t0) = εTRw(0) = 0,
resulting in Σpe(t) = 0 for all t ≥ t0 ≥ 0.

B. Recovery of the non-PE Subspace using PCA

The second step of the design is to recover the non-PE
subspace of w from Σ̂. We perform an SVD on Σ̂(t) (which
can be done using numerically stable algorithms), resulting in

Σ̂(t) = U(t)D(t)V ⊺(t)

=
[
U1(t) U2(t)

] [D1(t) 0
0 D2(t)

] [
V ⊺
1 (t)
V ⊺
2 (t)

]
, (9)

where each Di(t) is diagonal and positive semi-definite,
σmin(D1(t)) ≥ σmax(D2(t)), and D1(t) ∈ Rqpe×qpe with
all other matrices agreeing in dimension. Also, U(t), V (t) ∈
Rq×q are orthogonal matrices; i.e., UU⊺ = U⊺U = I , V V ⊺ =
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V ⊺V = I . When qpe ∈ { 1, q } we take the appropriate
Ui, Di, and Vi to be zero to simplify dealing with corner
cases. Our goal is to show that Im(U1(t)) recovers the PE
subspace W and Im(U2(t)) recovers the non-PE subspace
W⊥. Since qpe = dim(W) is unknown, the selection of
principal components spanning the PE or non-PE subspaces
must be based on the singular values. To this end, we apply
tools from matrix perturbation theory [21].

Consider Σ̂ = Σpe+ Σ̃, where Σ̂ is regarded as a perturba-
tion of Σpe. Since Σpe is a steady-state signal with unknown
initial condition, it is not available; nevertheless, for theoretical
purposes we consider its SVD. By Lemma 1, Σpe(t) has rank
qpe and is symmetric positive semi-definite for all t ≥ t0 ≥ 0.
Therefore, its SVD has the form

Σpe(t) =
[
U3(t) U4(t)

] [D3(t) 0
0 0

] [
U⊺
3 (t)

U⊺
4 (t)

]
, (10)

with a matrix partition consistent with (9). The following is
the main consequence of Lemma 1.

Corollary 2: Let Σpe be as in Lemma 1 with SVD (10).
Then WW ⊺ = U3(t)U

⊺
3 (t) for all qpe and t ≥ t0 ≥ 0. If

qpe ≥ 1, then σmin(D3(t)) ≥ εTβ0e
−εT for all t ≥ t0 ≥ 0. ⋄

Proof: When qpe = 0, we have WW ⊺ = 0 by virtue of
the PE decomposition. Additionally, we have U3U

⊺
3 = 0 given

that Σpe = 0. Otherwise, the result WW ⊺ = U3(t)U
⊺
3 (t)

follows from the fact that Im(W ) = Im(Σpe(t)) = Im(U3(t))
by Lemma 1 and the SVD (10), followed by the fact that
orthogonal projections are unique.

Again from Lemma 1 and (10), we have

Σpe(t) =WΛpe(t)W
⊺ = U3(t)D3(t)U

⊺
3 (t) .

Given that rank(Σpe(t)) = qpe, its qpe-th singular value is its
smallest non-zero singular value for all t ≥ t0 ≥ 0. Thus

σmin(D3(t)) = σqpe(U3(t)D3(t)U
⊺
3 (t))

= σqpe(WΛpe(t)W
⊺)

= σmin(Λpe(t)) ≥ εTβ0e
−εT

for all t ≥ t0 ≥ 0. The first equality is by definition of the
SVD. The second equality is from Lemma 1. The third equality
can be seen by writing an SVD for Λpe(t). The last inequality
is again from Lemma 1.

To compare singular values of our computed Σ̂ and the
steady-state Σpe one applies Weyl’s Theorem.

Theorem 1 (Weyl): Let S, Spe ∈ Rq×q . Then |σi(S) −
σi(Spe)| ≤ ∥S − Spe∥. ⋄
We also want to compare the column spans of Σ̂ and Σpe.
Wedin’s Theorem relates the column spans of the Ui.

Theorem 2 (Wedin [22]): Let S = UDV ⊺ and Spe =
UpeDpeV

⊺
pe admit SVDs partitioned as in (9) and (10). If there

exists a constant σtol > 0 such that σmin(D1) ≥ σtol, then

∥U1U
⊺
1 − U3U

⊺
3 ∥ ≤ max{ ∥(S − Spe)V1∥, ∥U⊺

1 (S − Spe)∥ }
σtol

.

⋄
We may now determine the subspaces that our U1(t) and

U2(t), computed from the SVD (9), recover asymptotically.
Lemma 2: Let S = UDV ⊺ and Σpe(t) admit SVDs parti-

tioned as in (9) and (10), where Σpe is as in Lemma 1. Let

qpe ≥ 1. Suppose there exists a constant σtol > 0 such that
σmin(D1) ≥ σtol. Then

∥U1U
⊺
1 −WW ⊺∥ = ∥U2U

⊺
2 −W⊥W

⊺
⊥∥

≤ min{σ−1
tol ∥S − Σpe(t)∥, 1 }

for all t ≥ t0 ≥ 0. ⋄
Proof: Using the invariance of the induced 2-norm under

multiplication by a unitary matrix, we have

∥(S − Σpe(t))V1∥ ≤ ∥S − Σpe(t)∥
∥U⊺

1 (S − Σpe(t))∥ ≤ ∥S − Σpe(t)∥ .

By Corollary 2, U3(t)U
⊺
3 (t) =WW ⊺ for all t ≥ t0 ≥ 0. Thus

we can apply Wedin’s Theorem (Theorem 2) to obtain

∥U1U
⊺
1 −WW ⊺∥ ≤ σ−1

tol ∥S − Σpe(t)∥ .

The inclusion of the min{ ·, 1 } is a consequence of ∥U1U
⊺
1 −

WW ⊺∥ ≤ 1 given that we have a difference of orthogonal
projection matrices [23]. The final result then follows by the
facts W⊥W

⊺
⊥ = I −WW ⊺ and U2U

⊺
2 = I − U1U

⊺
1 .

We are interested in showing U2U
⊺
2 →W⊥W

⊺
⊥. As such, we

need to isolate U2 in (9).
Lemma 3: Let S = UDV ⊺ and Σpe(t) admit SVDs par-

titioned as in (9) and (10), where Σpe is as in Lemma 1. If
qpe ≥ 1, then

σmin(D1) ≥ εTβ0e
−εT − ∥S − Σpe(t)∥

σmax(D2) ≤ ∥S − Σpe(t)∥

for all t ≥ t0 ≥ 0.
Proof: Using Weyl’s Theorem (Theorem 1) we have

|σqpe(S)− σqpe(Σpe(t))| ≤ ∥S − Σpe(t)∥
|σqpe+1(S)− σqpe+1(Σpe(t))| ≤ ∥S − Σpe(t)∥ .

By our SVDs (9) and (10) we know

σqpe(S) = σmin(D1) , σqpe(Σpe(t)) = σmin(D3(t))

σqpe+1(S) = σmax(D2) , σqpe+1(Σpe(t)) = 0 .

At this point, the second inequality is immediate. Note that
when qpe = q, we take D2 = 0 and so the second inequality
still holds. For the first inequality, we use the reverse triangle
inequality to obtain

σmin(D1) ≥ σmin(D3(t))− ∥S − Σpe(t)∥ .

The result then follows by Corollary 2.
At this stage recall that if Σ̂ evolves according to (7) and
ŵ → w, then Σ̂ → Σpe. Then by Lemma 3, with S = Σ̂(t),
its SVD satisfies

lim inf
t→∞

σmin(D1(t)) ≥ εTβ0e
−εT

lim sup
t→∞

σmax(D2(t)) = 0 .

Therefore the matrix U1(t) can be recovered eventually by
selecting the principal components of Σ̂ associated with sin-
gular values larger than or equal to εTβ0e

−εT , whereas the
remaining principal components must eventually reconstruct
U2(t). As such, we introduce a threshold σtol to separate U1(t)
from U2(t) based on their singular values.
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To formalize the above, define the binary threshold function

bin(c;σtol) =

{
1 c ≥ σtol

0 c < σtol
,

which is applied component-wise for multivariable inputs.
Recall Σ̂(t) = U(t)D(t)V ⊺(t) is its SVD. In practice, the
SVD is not computed continuously but rather at an increasing
sequence of times { ti }∞i=0 where ti → ∞. The output of the
non-PE subspace estimator Ω(t) ∈ Rq×q is constructed as

Ω(t) =

{
U(t) (I − bin(D(t);σtol)) t = ti

Ω(ti) t ∈ (ti, ti+1)
. (11)

Theorem 3: Suppose Assumption 1 holds. Let qpe, wpe, and
W⊥ = Im(W⊥) result from the PE decomposition of w, and
let β0, T > 0 be the PE constants in (5) for the regressor
wpe. If qpe = 0, set β0 = ∞ and T > 0 to any finite value.
Consider (8a) with Σpe(t0) = εTRw(0). For any S ∈ Rq×q
let S = UDV ⊺ denote its SVD and define

Ω := U(I − bin(D;σtol)) .

Then for every σtol ∈ (0, εTβ0e
−εT ) there exists a constant

ctol(ε, T, β0, σtol) > 0 such that

∥ΩΩ⊺ −W⊥W
⊺
⊥∥ ≤ min{ ctol∥S − Σpe(t)∥, 1 }

for all t ≥ t0 ≥ 0. ⋄
Proof: If qpe = 0 then Σpe = 0, and so

σmax(D) = σmax(S) = ∥S∥ = ∥S − Σpe(t)∥ ,

where we use σmax(·) = ∥·∥. If ∥S−Σpe(t)∥ < σtol we have
bin(D;σtol) = 0, implying that Ω = U(I−0) = U . Recalling
that UU⊺ = I we obtain

∥ΩΩ⊺ −W⊥W
⊺
⊥∥ = ∥UU⊺ − I∥ = 0 ≤ σ−1

tol ∥S − Σpe(t)∥ .

Altogether, ∥ΩΩ⊺ −W⊥W
⊺
⊥∥ is upper bounded by{

σ−1
tol ∥S − Σpe(t)∥ ∥S − Σpe(t)∥ < σtol

1 otherwise

= min{σ−1
tol ∥S − Σpe(t)∥, 1 } ,

where the property ∥ΩΩ⊺ −W⊥W
⊺
⊥∥ ≤ 1 is stated in [23].

Next suppose qpe ≥ 1. By Lemma 3 and our choice of σtol,
there exists δtol(ε, T, β0, σtol) > 0 such that ∥S − Σpe(t)∥ ≤
δtol implies

σmin(D1) ≥ σtol , σmax(D2) < σtol .

Therefore, if ∥S − Σpe(t)∥ ≤ δtol we have Ω = U(I −
diag(I, 0)) =

[
0 U2

]
, implying that ΩΩ⊺ = U2U

⊺
2 . Using

Lemma 2 there exists a constant c1(δtol, σtol) > 0 such that
∥ΩΩ⊺ −W⊥W

⊺
⊥∥ is upper bounded by{

σ−1
tol ∥S − Σpe(t)∥ ∥S − Σpe(t)∥ ≤ δtol

1 otherwise

≤ min{ c1∥S − Σpe(t)∥, 1 } .

As a result, the theorem follows from combining the inequal-
ities derived for qpe = 0 and qpe ≥ 1.

We conclude in the following that our subspace estimator
(7), (11) asymptotically recovers the non-PE subspace and its
dimension from a regressor estimate ŵ.

Theorem 4: Suppose Assumptions 1-2 hold and ŵ → w.
Let qpe, W⊥, β0, and T be as defined in Theorem 3. Consider
the subspace estimator (7), (11) where Σ̂(t) = U(t)D(t)V ⊺(t)
by its SVD and { ti }∞i=0 is an increasing sequence with ti →
∞. Then for every σtol ∈ (0, εTβ0e

−εT ) we have

lim
t→∞

∥Ω(t)Ω⊺(t)−W⊥W
⊺
⊥∥ = 0

lim
t→∞

rank(Ω(t)Ω⊺(t)) = q − qpe

for any Σ̂(t0) ∈ Rq×q . ⋄
Proof: If Assumption 2 holds and ŵ → w then we know

that Σ̂ → Σpe. Since Assumption 1 holds, we may apply
Theorem 3 by letting S = Σ̂(ti) for each ti, resulting in

∥Ω(ti)Ω⊺(ti)−W⊥W
⊺
⊥∥ ≤ min{ ctol∥Σ̂(ti)− Σpe(ti)∥, 1 } .

The first limit then holds because Σ̂ → Σpe and any subse-
quence of a convergent sequence must converge to the same
limit given that ti → ∞.

To see the second limit we split into two cases. If qpe = 0,
then Σ̂ → Σpe = 0 as argued after Lemma 1. Thus there
exists a ∆t ≥ 0 such that Ω(ti) = U(ti) for all ti ≥ t0 +∆t,
and the result follows since U(ti)U

⊺(ti) = I . Otherwise, by
Lemma 3 there exists a ∆t ≥ 0 such that

σmin(D1(ti)) ≥ σtol , σmax(D2(ti)) < σtol

for all ti ≥ t0 +∆t. Then Ω(ti) =
[
0 U2(ti)

]
and the result

follows because rank(U2(ti)) = q − qpe.
Remark 3: From a design perspective, knowledge of some

σtol ∈ (0, εTβ0e
−εT ) is not restrictive. Theorem 3 tells us

σtol must merely be selected sufficiently small to achieve a
correctly functioning subspace estimator. Further, one could
estimate bounds on β0 and T using past data by probing
regressors, similar in spirit to methods in [24]. Finally, we
endorse the view that σtol is a design tolerance: one sets
a threshold σtol to declare a minimum PE level permitted
to drive adaptation, thus allowing the designer to distinguish
relevant regressor excitation from measurement noise; see also
[2]. ◁

IV. AVERAGING ANALYSIS

This section applies Krylov-Bogoliubov-Mitropolsky aver-
aging [25] to reveal that the proposed design is best run slow.
We show that if one relaxes Assumption 2, then it is still
possible to approximate Rw(0) (and thus the non-PE subspace)
for ε > 0 sufficiently small.

Recall from Lemma 1 that we found a bound Λpe(t) ⪰
εTβ0e

−εT I . This bound suggests that using a large gain ε
in (7) makes recovery of the non-PE subspace numerically
difficult, since limε→∞ εTβ0e

−εT = 0. This observation
makes sense because a PE regressor may have long periods
of no excitation (as long as sufficient excitation is available
periodically), resulting in a Σ̂ rapidly tracking intervals of no
excitation. The same bound εTβ0e−εT misleads one to think
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that selecting ε small must result in similar numerical issues.
We show using averaging analysis that this is not the case.

First, we drop Assumption 2, implying that Σ̃ of (8b)
does not necessarily converge to 0. As before we split Σ̂ =
Σpe + Σ⊥ + Σ̃, where Σpe corresponds to the steady-state
PE component, Σ⊥ corresponds to the steady-state non-PE
component, and Σ̃ is the transient component. With some
overloaded notation and by linearity, (7) can be split as

Σ̇pe = −εΣpe + εWwpe(t)w
⊺
pe(t)W

⊺ (12a)

Σ̇⊥ = −εΣ⊥ + ε∆⊥(t) (12b)
˙̃Σ = −εΣ̃ + ε∆̃(t) , (12c)

where Σ̂(t0) = Σpe(t0) + Σ⊥(t0) + Σ̃(t0) and ∆⊥, ∆̃ are
defined in Section III-A. If ŵ → w, then ∆̃, Σ̃ → 0 as
before. Instead ∆⊥ does not necessarily vanish. Also notice
(Σpe,Σ⊥) = (Rw(0), 0) need not be an equilibrium of (12a)-
(12b). Define Σ̃pe := Σpe −Rw(0). Using (12a), we have

˙̃Σpe = −εΣ̃pe + ε
(
Wwpe(t)w

⊺
pe(t)W

⊺ −Rw(0)
)
.

We are interested in computing the average dynamics, which
exist because Rw(0) exists with convergence uniform in t0 ≥
0. Using the PE decomposition w =Wwpe+W⊥w⊥, we have

w(t)w⊺(t) =Wwpe(t)w
⊺
pe(t)W

⊺ +∆⊥(t) . (13)

Recall wpe =W ⊺w and W⊥ = Ker(Rw(0)). Then

RWwpe
(0) =WW ⊺Rw(0)WW ⊺

= (I −W⊥W
⊺
⊥)Rw(0)(I −W⊥W

⊺
⊥) = Rw(0) .

Thus, Wwpew
⊺
peW

⊺−Rw(0) has zero average. Now take the
time average of (13):

Rw(0) = RWwpe(0) + lim
T→∞

1

T

∫ t0+T

t0

∆⊥(τ) dτ .

Combining the previous two calculations, we find ∆⊥ has zero
average. We conclude that the averaged dynamics of (12a)-
(12b) are

( ˙̃Σpe)av = −ε(Σ̃pe)av (14a)

(Σ̇⊥)av = −ε(Σ⊥)av . (14b)

The next result shows that Σpe approximates Rw(0) to an
arbitrary precision provided ε > 0 is sufficiently small.

Lemma 4: Suppose Assumption 1 holds. Consider the sys-
tems (12a)-(12b) with (Σpe,Σ⊥)(t0) = (Rw(0), 0). Then
there exist class-K functions δwpe(·), δw⊥(·) and a constant
ε1(w) > 0 such that

∥Σpe(t)−Rw(0)∥ ≤ δwpe(ε) , ∥Σ⊥(t)∥ ≤ δw⊥(ε) ,

for all ε ∈ (0, ε1] and t ≥ t0 ≥ 0. ⋄
Proof: Clearly the equilibrium ((Σ̃pe)av, (Σ⊥)av) =

(0, 0) is GES for (14). Due to our choice of initial conditions
(Rw(0), 0), we have ((Σ̃pe)av, (Σ⊥)av)(t) = (0, 0) for all t ≥
t0 ≥ 0. Then by the Hovering Theorem [25, Theorem 5.5.1]

there exist class-K functions δwpe(·), δw⊥(·) and a constant
ε1(w) > 0 such that

δwpe(ε) ≥ ∥Σ̃pe(t)− (Σ̃pe)av(t)∥ = ∥Σpe(t)−Rw(0)∥
δw⊥(ε) ≥ ∥Σ⊥(t)− (Σ⊥)av(t)∥ = ∥Σ⊥(t)∥

for all ε ∈ (0, ε1] and t ≥ t0 ≥ 0.
With Σpe(t0) = Rw(0) one may re-apply the argument

at the beginning of the proof of Lemma 1 to deduce that
Σpe(t) = WΛpe(t)W

⊺. By unitary invariance of the induced
2-norm and Lemma 4, we have

∥W ⊺(Σpe(t)−Rw(0))W∥ ≤ ∥Σpe(t)−Rw(0)∥ ≤ δwpe(ε) .

Then we obtain

Λpe(t) =W ⊺Σpe(t)W

= Rwpe
(0) +W ⊺ (Σpe(t)−Rw(0))W

⪰
(
β0 − δwpe(ε)

)
I (15)

for all ε ∈ (0, ε1] and qpe ≥ 1. This lower bound provides a
significantly better approximation of the regressor excitation
level compared to our previous bound εTβ0e−εT in Lemma 1,
if ε > 0 is sufficiently small. We can see this because

β0 = lim
ε→0+

(
β0 − δwpe(ε)

)
> lim
ε→0+

εTβ0e
−εT = 0 .

The implication is that rather than first selecting ε and then
setting σtol sufficiently close to 0, instead we can select σtol
to be representative of the excitation level β0 and then set ε
to sufficiently slow down the subspace estimator. Effectively,
we have increased the allowable range for σtol up to the PE
lower bound β0. As stated below, with proof in Section VII-C,
this is possible when system (7) is run sufficiently slowly.

Theorem 5: Suppose Assumption 1 holds. Let qpe, wpe, and
W⊥ = Im(W⊥) result from the PE decomposition of w, and
let β0 > 0 be the PE constant in (5) for the regressor wpe. If
qpe = 0, set β0 = ∞. Consider (8a) with Σpe(t0) = Rw(0).
For any S ∈ Rq×q let S = UDV ⊺ denote its SVD and define

Ω := U(I − bin(D;σtol)) .

Then for every σtol ∈ (0, β0) there exists constants
ε⋆(w, σtol), ctol(w, σtol) > 0 such that

∥ΩΩ⊺ −W⊥W
⊺
⊥∥ ≤ min{ ctol∥S − Σpe(t)∥, 1 }

for all ε ∈ (0, ε⋆] and t ≥ t0 ≥ 0. ⋄
Similar to Theorem 4, the following result establishes con-
vergence results when employing the subspace estimator (7),
(11). We note that the dimension of the non-PE subspace W⊥

can still be recovered even if W⊥ itself cannot be. Its proof
is found in Section VII-D.

Theorem 6: Suppose Assumption 1 holds and ŵ → w.
Let qpe, W⊥, and β0 be as defined in Theorem 5. Also,
let δw⊥(·) be given by Lemma 4. Consider the subspace
estimator (7), (11) where Σ̂(t) = U(t)D(t)V ⊺(t) by its
SVD and { ti }∞i=0 is an increasing sequence with ti →
∞. Then for every σtol ∈ (0, β0) there exists constants
ε⋆(w, σtol), ε⋆⋆(w, σtol), ctol(w, σtol) > 0 such that

lim sup
t→∞

∥Ω(t)Ω⊺(t)−W⊥W
⊺
⊥∥ ≤ ctolδ

w
⊥(ε)
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for all ε ∈ (0, ε⋆] and limt→∞ rank(Ω(t)Ω⊺(t)) = q− qpe for
all ε ∈ (0, ε⋆⋆], both for any Σ̂(t0) ∈ Rq×q . If Assumption 2
also holds then we have

lim
t→∞

∥Ω(t)Ω⊺(t)−W⊥W
⊺
⊥∥ = 0

for all ε ∈ (0, ε⋆] and any Σ̂(t0) ∈ Rq×q . ⋄
Remark 4: The lim sup is used because ΩΩ⊺ need not have

a limit as t→ ∞. We do not pursue obtaining an estimate of
ε⋆(w, σtol) nor of δwpe(·), δw⊥(·) as this would involve a lengthy
discussion about averaging theory. ◁
The primary forte of Theorems 5-6 is that one has an effective
design even when Assumption 2 does not hold. In comparing
Theorem 4 and Theorem 6, we observe that the Hovering
Theorem [25, Theorem 5.5.1] allows us to incorporate a
meaningful bound on the mismatch between the subspace
estimate Ω(t)Ω⊺(t) and the projection onto the non-PE sub-
space W⊥W

⊺
⊥. One cannot obtain this desirable behaviour

with a large gain ε. Additionally, in comparing Theorem 3
and Theorem 5, we may now threshold with the significantly
larger constant σtol ∈ (0, β0) rather than σtol ∈ (0, εTβ0e

−εT )
as ε→ 0+, thus improving numerical stability.

From our analyses in Section III and Section IV, we have
designed a subspace estimator whose steady-state behaviour
is agnostic to the initial condition Σ̂(t0), is valid for all gains
ε > 0, and is agnostic to the presence of transients ŵ → w.

V. ROBUST PARAMETER ADAPTATION

Consider a parameter adaptation law of the form

˙̂
ψ = −γeŵ (16)

with adaptation gain γ > 0, scalar error signal e(t) ∈ R,
and regressor estimate ŵ(t) ∈ Rq . It is well known that (16)
is not in general robust [1]. We are interested to render the
parameter adaptation dynamics (16) robust without sacrificing
error regulation. This problem has remained largely unsolved
in the adaptive control literature without introducing further
assumptions such as having a priori information about ψ [1,
Section 8.5] or assuming weaker notions of excitation [26]. We
forgo such assumptions by combining our newly developed
subspace estimator with our µ-modification presented in [2].

A. General Error Model

Our development of a robust parameter adaptation scheme
begins by presenting a general error model encompassing all
the relevant features of the error models appearing in [16,
Ch. 7]. We consider an error model e = E [ψ̂, w, ν], where
E [·] is a time-varying system of the form

ξ̇ = f(t, ξ, ŵ⊺
◦ ψ̂ − w⊺

◦ (t)ψ) (17a)

e = g(t, ξ, ŵ⊺ψ̂ − w⊺(t)ψ) , (17b)

where ξ(t) ∈ Rn is the error state; ψ̂(t) ∈ Rq is the parameter
estimate; ψ ∈ Rq is the unknown parameter; w◦(t) ∈ Rq
is a regressor related to w; and ν(t) ∈ Rv is a transient
state. The transient state ν arises due to transients that vanish
independently of all other dynamics when using the estimates

ŵ◦ and ŵ. These transients are assumed to be generated by
an asymptotically stable system

ν̇ = ∆(t, ν) (18a)
ŵ◦ = w◦(t) + w̃◦(t, ν) (18b)
ŵ = w(t) + w̃(t, ν) . (18c)

The motivation for a new regressor w◦ is to capture the fact
that the regressor present in the error dynamics need not be the
same regressor used to drive parameter adaptation. An example
is error model 4 [16, Ch. 7.5], where the regressor appearing
in the plant dynamics must be filtered through an LTI system
before it can be used for parameter adaptation.

Next we state technical assumptions on the error model.
In brief, Assumption 3 restricts attention to well-behaved
regressors via (E0); states relevant structural properties of
the dynamics in (E1)-(E3); and imposes nominal stability
requirements in (E4)-(E7).

Assumption 3: The regressor w and the closed-loop error
model (16)-(18) satisfy:
(E0) regressors w◦ and w satisfy Assumptions 1-2;
(E1) the PE subspace of w◦ and w coincide;
(E2) functions f(·) and g(·) are piecewise continuous in t

and globally Lipschitz uniformly in t, for t ≥ t0 ≥ 0.
Moreover, they satisfy f(t, 0, 0) = 0 and g(t, 0, 0) = 0;

(E3) the functions w̃◦(·) and w̃(·) are piecewise continuous
in t and continuous uniformly in t, for t ≥ t0 ≥ 0.
Moreover, they satisfy w̃◦(t, 0) = w̃(t, 0) = 0;

(E4) the equilibrium ν = 0 of (18a) is globally uniformly
asymptotically stable (GUAS);

(E5) the equilibrium ξ = 0 of ξ̇ = f(t, ξ, 0) is GES;
(E6) given any q ∈ N, ψ ∈ Rq , and appropriate w◦(t) ∈ Rq

satisfying (E0)-(E1), if ν = 0 and w(t) ∈ Rq is PE then
the equilibrium (ξ, ψ̂) = (0, ψ) is GES for

ξ̇ = f(t, ξ, w⊺
◦ (t)(ψ̂ − ψ))

e = g(t, ξ, w⊺(t)(ψ̂ − ψ))

˙̂
ψ = −γew(t) .

(E7) given qpe ≥ 1, (w◦)pe, and wpe from the PE decom-
position of w◦ and w, let ψ̂(t), ψ ∈ Rqpe . Then the
equilibrium (ξ, ψ̂) = (0, ψ) is GES for

ξ̇ = f(t, ξ, (w◦)
⊺
pe(t)(ψ̂ − ψ))

e = g(t, ξ, w⊺
pe(t)(ψ̂ − ψ))

˙̂
ψ = −γewpe(t) .

▷
Remark 5: The choice of w◦ for (E6) depends on context.

As mentioned, in error model 4 [16, Ch. 7.5] w◦ is filtered
component-wise through a stable LTI system to obtain the
regressor w appearing in the augmented error e. By the
Swapping Lemma [17, Lemma 3.6.5], one can show that the
PE subspace of w◦ and w coincide provided (e.g.) the LTI
filter is minimum phase. In contrast, w◦ = w for error model
3 [16, Ch. 7.4]. Special care is needed to verify that a regressor
w◦ is suitable with respect to (E6). This includes the derived
PE regressors (w◦)pe and wpe used in Theorems 7-8. ◁
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Remark 6: The reader may wonder why (E6) and (E7) are
stated separately. First, (E6) is a nominal stability property
concerning PE regressors not tied to any PE decomposition.
Instead, (E7) says that this stability property should be retained
in the reduced system after performing a PE decomposition.
Presenting both (E6) and (E7) suggests the possibility to boot-
strap from known results concerning PE regressors; indeed,
one could remove (E6) and only ask for (E7). ◁

Through an appropriate identification of states, every error
model considered in [16, Ch. 7] can be represented as the
system (16)-(18) satisfying Assumption 3. An important fea-
ture of Assumption 3 is that the only stability properties of
the error dynamics that we ask for are (E5)-(E7), both dealing
only with the two extreme cases (w = 0 and w PE) that
are most amenable to analysis. As we show in the proof of
Theorem 7, the fact that the PE subspace of w◦ and w coincide
in (E1) allows us to deduce stability properties when w has
some non-trivial PE subspace.

B. Robust Design using the µ-modification

The µ-modification takes the form

˙̂
ψ = −γeŵ − µΩΩ⊺ψ̂ , µ > 0 , (19)

where Ω is the output of any general non-PE subspace estima-
tor, including (7), (11) or the one presented in [2]. Our goal is
to show that this modification renders the closed-loop system
robust when considering the general error model in Section V-
A. Additionally, we want to recover error regulation when the
closed-loop system using the µ-modification is unperturbed.

The next two results (with proofs in Section VII) estab-
lish robustness to bounded disturbances in every state and
measurement of our design. Looking ahead at (20)-(21), there
are three key observations. (i) Arbitrarily small perturbations
(dw, dΣ) will not cause unbounded growth of states regardless
of the PE properties of w. This is not the case using (16)
without w being PE [1]. (ii) Error regulation is retained when
there are no disturbances. This can be seen in the steady-state
bound ∥d2(t)∥L∞∥(d2, de)(t)∥L∞+∥d(t)∥L∞ implying that if
d = 0 then all states converge to their equilibrium and e→ 0.
(iii) While our results require dΣ to be sufficiently small, we
note that (dψ, dΣ) typically are negligible because (20c)-(20d)
are generally implemented on a computer. We also show in
Theorem 8 that smallness of dw can be removed provided it
introduces sufficient excitation. The following results pertains
to the design in Section III; a similar statement could be made
for the design in Section IV.

Theorem 7: Consider the system (16)-(18) satisfying As-
sumption 3. Let qpe, wpe, and W = Im(W ) result from the PE
decomposition of w, and let β0, T > 0 be the PE constants in
(5) for the regressor wpe. If qpe = 0, set β0 = ∞ and T > 0
to any finite value. Fix ε > 0, σtol ∈ (0, εTβ0e

−εT ), and
consider the subspace estimator (7), (11). Define the perturbed

closed-loop error model

ξ̇ = f(t, ξ, ŵ⊺
◦ ψ̂ − w⊺

◦ (t)ψ) + dξ (20a)

e = g(t, ξ, ŵ⊺ψ̂ − w⊺(t)ψ) + de (20b)
˙̂
ψ = −γeŵ − µΩΩ⊺ψ̂ + dψ (20c)
˙̂
Σ = −εΣ̂ + εŵŵ⊺ + dΣ (20d)

with transients

ν̇ = ∆(t, ν) (21a)
ŵ◦ = w◦(t) + w̃◦(t, ν) + d1 (21b)
ŵ = w(t) + w̃(t, ν) + d2 , (21c)

which replaces (16) with the µ-modification (19) and where
d(t) := (dξ, de, dψ, dw, dΣ)(t) is a bounded disturbance
perturbing the system with dw := (d1, d2). Then all states
(ξ, ψ̂, Σ̂) are uniformly bounded and there exist constants
γ⋆, d⋆ > 0 such that

lim sup
t→∞

∥(ξ, ψ̂ −WW ⊺ψ, Σ̂− Σpe)(t)∥

≤ γ⋆ (∥d2(t)∥L∞∥(d2, de)(t)∥L∞ + ∥d(t)∥L∞)

for all ∥(dw, dΣ)(t)∥L∞ ≤ d⋆ sufficiently small, where Σpe
evolves according to (8a) with Σpe(t0) = εTRw(0). ⋄

Remark 7: We do not perturb the dynamics of ν directly
since GUAS in (E4) of (18a) and [27, Lemma 9.3] imply
that it suffices to place the perturbations in (21b)-(21c). Also,
the proof of Theorem 7 assumes continuous differentiability
by relying on [27, Theorem 4.14]. This can be relaxed by
considering upper Dini derivatives. Finally, notice that γ⋆ and
d⋆ depend on various constants not explicitly mentioned and
that each ∥ · ∥L∞ could be replaced with lim supt→∞ ∥ · ∥,
meaning only steady-state bounds are relevant. ◁

In the next result we redefine the regressors (w◦, w) to
absorb the disturbances dw = (d1, d2), under the rationale that
dw introduces excitation that can be leveraged for parameter
adaptation. The theorem shows that dw aids in recovering
WW ⊺ψ (rather than ψ). Thus, by viewing large disturbances
as a source of excitation, we can derive an analogous result to
Theorem 7. Interestingly, the theorem shows that if d1 and d2
live in the non-PE subspace W⊥ and all other disturbances are
zero, then there is no steady-state error. This can be seen from
the fact that (d1, d2) is pre-multiplied by W ⊺ in appropriate
locations in the estimates below.

Theorem 8: Consider the perturbed closed-loop error model
of Theorem 7. Define the perturbed regressors w̄◦ := w◦+ d1
and w̄ := w+d2, and suppose that these regressors substituted
into the error model satisfy Assumption 3. Let q̄pe ≥ 1, w̄pe,
and W̄ = Im(W̄ ) result from the PE decomposition of w̄. If
the perturbed regressor w̄ satisfies

1

T

∫ t+T

t

w̄pe(τ)w̄
⊺
pe(τ) dτ ⪰ β0I , ∀ t ≥ 0 ,

then all states (ξ, ψ̂, Σ̂) are uniformly bounded and there exist
constants γ⋆(dw), d⋆ > 0 such that

lim sup
t→∞

∥(ξ, ψ̂ − W̄W̄ ⊺WW ⊺ψ, Σ̂− Σ̄pe)(t)∥

≤ γ⋆ (∥d2(t)∥L∞∥(W ⊺d2, de)(t)∥L∞ + ∥dpe(t)∥L∞)
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for all ∥dΣ(t)∥L∞ ≤ d⋆ sufficiently small, where

dpe := (dξ, de, dψ,W
⊺d1,W

⊺d2, dΣ)

and Σ̄pe evolves according to

˙̄Σpe = −εΣ̄pe + εW̄ w̄pe(t)w̄
⊺
pe(t)W̄

⊺

with Σ̄pe(t0) = εTRw̄(0). ⋄

VI. APPLICATIONS

To apply the µ-modification with our new subspace estima-
tor, the designer must select three parameters:

1) µ, determining the leakage rate of ψ̂⊥;
2) ε, affecting how well W⊥ can be recovered;
3) σtol, setting a soft excitation threshold for w.

To showcase the effectiveness of our design, we first consider
the simplest case of linear regression, known as error model 1
[16, Ch. 7.2]. Afterwards, we solve the regulator problem for
a known plant and unknown exosystem using state feedback.
This second application is related to error model 2 [16,
Ch. 7.3] and focuses on the effects of transients arising from
the construction of an internal model to estimate the exogenous
regressor. In a companion paper [28], we solve the regulator
problem for a known plant and unknown exosystem with
output feedback and using the subspace estimator in [2]; this
context highlights the relevance of (E1).

A. Error Model 1 - Linear Regression
The linear regression model corresponds to an error

e = E [ψ̂, w, ν] = ŵ⊺ψ̂ − w⊺(t)ψ . (22)

Suppose ψ =
[
1 1

]⊺
and w(t) =

[
sin(t) 0.8(t2 + 1)−1

]⊺
.

Its PE decomposition is

w(t) =Wwpe(t) +W⊥w⊥(t) =

[
1
0

]
sin(t) +

[
0
1

]
0.8

t2 + 1
.

One can verify this error model satisfies Assumption 3, where
the ξ dynamics are vacuous, and there is no transient state ν
if we take ŵ = w. Note that

1

π

∫ t+π

t

wpe(τ)w
⊺
pe(τ) dτ =

1

π

∫ t+π

t

sin2(τ) dτ = 0.5

so β0 = 0.5 and T = π. Figure 1 simulates (22) and (16) with
and without the µ-modification (19). For the µ-modification,
we employ the subspace estimator (7), (11) using the threshold
σtol = 0.3εT e−εT and update time ti+1 − ti = 1. We set
γ = µ = ε = 1, ψ̂(t0) = −ψ, and Σ̂(t0) = 0.

From Figure 1c, one observes that W⊥ = Im(W⊥) =
Im(

[
0 1

]⊺
), as expected from the PE decomposition of w.

The PE dynamics consist of ψ̂pe = ψ̂1 = W ⊺ψ̂ (green) and
the non-PE dynamics consist of ψ̂⊥ = ψ̂2 = W ⊺

⊥ψ̂ (olive
green). Using the standard gradient algorithm without the
µ-modification, Figure 1a shows that only ψ̂1 converges to
ψ1 = 1, whereas ψ̂2 is temporarily driven by w⊥ without
converging to its true value ψ2 = 1. Regardless, the error e is
regulated to zero. With the µ-modification on in Figure 1b, the
leakage term drives the non-PE dynamics ψ̂2 to zero, whereas
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(a) µ-modification off
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(b) µ-modification on

(c) Subspace estimator

Fig. 1: Comparison of the error (red) and parameter adaptation
dynamics (green, olive green) for error model 1 as well as a
plot of the columns of the subspace estimator (blue, light blue)
and the non-PE subspace (grey dashed line).
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(a) µ-modification off
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(b) µ-modification on

(c) Subspace estimator

Fig. 2: Comparison of the noisy error (red) and parameter
adaptation dynamics (green, olive green) for error model 1 as
well as a plot of the columns of the subspace estimator (blue,
light blue) and the non-PE subspace (grey dashed line).

the other dynamics remain relatively unchanged. This agrees
with Theorem 7 in the case when d = 0.
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(b) µ-modification on

(c) Subspace estimator

Fig. 3: Comparison of the noisy error (red) and parameter
adaptation dynamics (green, olive green) for error model 1 in
the presence of large noise in the regressor as well as a plot
of the columns of the subspace estimator (blue, light blue).
Notice the non-PE subspace is { 0 }.

Next, we investigate robustness in the presence of noise.
Consider the perturbed closed-loop error model (20)-(21),
where we ignore dξ and set dw = d1 = d2. Suppose we
inject the following white Gaussian noise:

de, (dψ)1 ∼ N (0, 0.52) , (dψ)2 ∼ N (−0.05, 0.52) ,

(dw)i ∼ N (0, 0.152) , (dΣ)ij ∼ N (0, 0.052) ,

where i, j ∈ { 1, 2 }. Simulation results are found in Figure 2.
Note that we plot the error e without the disturbance de, since
from the perspective of error regulation we are not interested
in the measured error with de ̸= 0. Without the µ-modification,
we observe in Figure 2a that the parameter ψ̂2 exhibits a
negative linear growth; that is, unstable behaviour. In contrast,
Figure 2b shows that ψ̂2 converges near zero, illustrating how
parameter adaptation dynamics are rendered robust using the
µ-modification in the presence of noise. Furthermore, looking
at the subspace estimator in Figure 2c we note that it too is
robust to noise as it still closely recovers the non-PE subspace.
These observations also agree with Theorem 7.

Lastly, we investigate the effect of a large disturbance dw.
Leaving the other noise profiles the same, we now assume:

(dw)1 ∼ N (0, 02) , (dw)2 ∼ N (0, 12) .

By Figure 3c it is clear that dw introduces sufficient excitation
so that the conditions of Theorem 8 are satisfied. In particular,
given that our subspace estimator vanishes, we deduce that w+
dw is now PE, despite w not being PE. As observed in Figure 3
and expected from Theorem 8, we have robustness of all states

in the presence of noise, including large dw. Moreover, we
notice that we have robustness both with and without the µ-
modification. This fact is not a coincidence but a consequence
of Theorem 8, which can be explored as future work.

B. Error Model 2 - Regulation using State Feedback
Consider the single-input LTI system

ẋ = Ax+B (u− Γζ) (23a)

ζ̇ = Sζ , (23b)

where x(t) ∈ Rn is the state, u(t) ∈ R is the control input,
and ζ(t) ∈ Rq is the exosystem state. Define the disturbance to
reject d := Γζ. Our goal is to regulate the state x to 0 while
rendering the closed-loop dynamics exponentially stable. In
other words, we consider a disturbance rejection problem. As
is standard in regulator theory, we assume the following.

Assumption 4: The system (23) satisfies:
(A1) the pair (A,B) is known and controllable;
(A2) the matrix S only has simple eigenvalues on the jω-axis;
(A3) wlog the pair (Γ, S) is observable;
(A4) the dimension q is interpreted as a known upper bound

on the exosystem order;
(A5) the measurement is x. ▷

Following the regulator design in [29, Ch. 4.1.2], we con-
struct a regulator of the form

u = us + uim , (24)

where us is for closed-loop stability and uim is for disturbance
rejection. The stabilization piece is a pole placement controller
us = K⊺x, where K ∈ Rn is selected such that Acl :=
A+BK⊺ is Hurwitz. To perform disturbance rejection, select
a controllable pair (F,G) ∈ Rq×q×Rq with F Hurwitz. Then
there exists a new exosystem state w :=Mζ and an unknown
parameter ψ⊺ := ΓM−1 yielding the exosystem

ẇ = Fw +Gd

d = ψ⊺w ,

for some M ∈ Rq×q . Then the disturbance rejection piece
uim = ψ̂⊺ŵ consists of two parts. First, an internal model

η̇ = Fη + (FN −NA)x−NBu (25a)
ŵ = η +Nx , (25b)

where N satisfies NB = −G. Second, an adaptive law

˙̂
ψ = −γ(B⊺Px)ŵ , (26)

where we select γ > 0 and P ≻ 0 solves the Lyapunov
equation A⊺

clP + PAcl = −I .
Define w̃ := ŵ−w. The resulting closed-loop dynamics are

ẋ = Aclx+B(ŵ⊺ψ̂ − w⊺(t)ψ) (27a)
˙̂
ψ = −γ(B⊺Px)ŵ (27b)
˙̃w = Fw̃ . (27c)

To map (27) back to the error model in Section V-A, identify
the error state as ξ = x, the error signal e = B⊺Px, and the
transient state ν = w̃. Since w is the state of an LTI exosystem,
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Fig. 4: Comparison of the error (red) and parameter adaptation
dynamics (green, olive green) for error model 2.

it is an almost periodic signal and, by Proposition 3, the PE
decomposition of w is w = Wwpe. Note that w◦ = w. Also,
the nominal stability requirements (E5)-(E7) are well known
facts of adaptive control.

We simulate system (23) with matrices

A =

[
0 1
0 0

]
, B =

[
0
1

]
Γ = 1 , S = 0 ,

and initial conditions x(t0) =
[
1 1

]⊺
and ζ(t0) = 0.5.

Moreover, at t = 40 we turn off the exosystem by setting Γ =
0. The regulator (24)-(26) is built with values N = −GB⊺,

F =

[
0 1
−1 −1

]
, G =

[
0
1

]
, K =

[
−1
−1

]
, γ = 2 ,

and initial conditions η(t0) = 0 and ψ̂(t0) = 0. Note that our
internal model is of order q = 2, whereas the exosystem is of
order strictly less than q. Therefore, parameter adaptation will
not be robust and we must employ the µ-modification. Here
we compare, without introducing noise, our proposed subspace
estimator with our previous subspace estimator [2].

When using our new subspace estimator (7), (11) we set
parameters µ = 1 and ε = σtol = 0.1, update time ti+1− ti =
2, and initial condition Σ̂(t0) = 0. On the other hand, recall
our old subspace estimator

v̇ = −εŵŵ⊺v + εσtol(1− ∥v∥2)v

from [2], where v(t) ∈ Rq denotes any column of Ω(t) ∈
Rq×q . For the latter subspace estimator, we let ε = 0.75 and
select the (full rank) initial condition

Ω(t0) =

[
1 −1
1 1

]
,

while other parameters remain the same as above. We do not
verify that σtol is sufficiently small but instead treat it as
a design specification for the expected minimum excitation
threshold for w.

In Figure 4 we compare the closed-loop dynamics resulting
from employing both subspace estimators. First of all, we
observe that asymptotic error regulation is always achieved.
In contrast, the parameter adaptation dynamics differ during
the window t ∈ [40, 80]. Notice that during t ∈ [0, 40] the
disturbance d is a constant, meaning that the PE subspace
of w is 1-dimensional. One can show W = Im(

[
1 0

]⊺
)

and W⊥ = Im(
[
0 1

]⊺
). We see in Figure 5 that by

(a) New subspace estimator

(b) Old subspace estimator

Fig. 5: Columns of our subspace estimators (blue, light blue)
and a plot of non-PE subspaces (grey dashed lines).

t = 40 the columns of both subspace estimators align, and
each spans the non-PE subspace. Returning to Figure 4, the
component ψ̂1 is driven to its true value of ψ1 = 1 while
the µ-modification drives ψ̂2 to 0. When the exosystem is
suddenly turned off for t ∈ [40, 80], there is no excitation
to drive parameter adaptation, so the non-PE subspace is all
of R2, and we expect ψ̂ → 0. In Figure 5a we see that our
new subspace estimator recovers all of R2, but in Figure 5b
our old one fails to do so. This follows from the fact that
Ω(40) in Figure 5b no longer appears to be full rank given
that both of its columns align, which is needed for correct
functioning of the subspace estimator in [2]. Consequently, the
µ-modification with the old subspace estimator fails to forget
unexcited parameters to provide robustness during t ∈ [40, 80]
as seen in Figure 4b. Altogether, we have illustrated that our
new subspace estimator provides the advantage of being live
in suddenly changing environments given that its convergence
properties are independent of its initial condition.

VII. PROOFS

A. Proof of Proposition 3
Since w is almost periodic, so is ww⊺. By [30, Appendix,

Theorem 6] w satisfies Assumption 1. Then by Proposition 1,
w has a PE decomposition given by w =Wwpe+W⊥w⊥. We
want to show w⊥ =W ⊺

⊥w = 0. For the sake of contradiction,
suppose W ⊺

⊥w ̸= 0. Then there exists a non-zero v ∈ Im(W⊥)
such that f(t) := (v⊺w(t))2 ≥ 0 is not identically 0. As a
result, there are some constants ϵ, t⋆ > 0 such that f(t⋆) ≥
3ϵ. Again since w(·) is almost periodic, so is f(·). Recalling
that an almost periodic function is continuous, we have that
for all δ > 0 sufficiently small, f(t) ≥ 2ϵ for t ∈ (t⋆ −
δ, t⋆+δ). By definition of almost periodicity in [30, Appendix,
Definition 5], the set T (f, ϵ) := { τ : |f(t + τ) − f(t)| <
ϵ ∀ t ∈ R } is relatively dense. Thus there exists L > 0 such
that [τ, τ + L] ∩ T (f, ϵ) ̸= ∅ for all τ ≥ 0.
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Now partition R into intervals of length 3L and position
them such that t⋆ is in the middle third of any one of the
intervals. Wlog we assume that δ < L. By relative density
of T (f, ϵ), we can construct a strictly increasing sequence
{ τi }∞i=0 with τ0 = t⋆, where each τi+1 lies in the middle
third of each successive interval, and with τi − τ0 ∈ T (f, ϵ).
By construction of the τi and the definition of T (f, ϵ), we
have that f(t) ≥ ϵ for all t ∈ (τi − δ, τi + δ) and for all i.
Thus the integral of f(·) ≥ 0 over every interval of length 3L
must be at least ϵ · 2δ. As a result, one has

v⊺Rw(0)v = lim
T→∞

1

T

∫ t0+T

t0

v⊺w(τ)w⊺(t)v dτ

= lim
T→∞

1

T

∫ t0+T

t0

f(τ) dτ ≥ 2ϵδ

3L
> 0 .

But v ∈ Im(W⊥) = Ker(Rw(0)) so that v⊺Rw(0)v = 0,
which is a contradiction.

B. Proof of Lemma 1

Let W⊥ also result from the PE decomposition of w. By
pre- and post-multiplying (8a) by W⊥, we have

W ⊺
⊥Σ̇pe = −εW ⊺

⊥Σpe + 0 , W ⊺
⊥Σpe(t0) = 0 (28a)

Σ̇peW⊥ = −εΣpeW⊥ + 0 , Σpe(t0)W⊥ = 0 (28b)

since Im(W⊥) = Ker(Rw(0)) = Im(W )⊥. Thus W ⊺
⊥Σpe

and ΣpeW⊥ are identically zero. Recalling that I =
WW ⊺ + W⊥W

⊺
⊥ by orthogonality, one has that Σpe(t) =

WW ⊺Σpe(t)WW ⊺. Therefore, it suffices to show that
Λpe(t) :=W ⊺Σpe(t)W satisfies the conclusions of Lemma 1.
Taking the time derivative, the Λpe dynamics are

Λ̇pe = −εΛpe + εwpe(t)w
⊺
pe(t) (29)

Λpe(t0) = εTRwpe
(0) .

Given that ε > 0, wpe is bounded by Assumption 1, and
Λpe(t0) is symmetric, it is clear that Λpe is bounded and
symmetric. We will show that Λpe(t) ⪰ εTβ0e

−εT I for all
t ≥ t0 ≥ 0 inductively, effectively employing the proof of [7,
Lemma 2.1]. Let v ∈ Rqpe be any unit vector and partition

[t0,∞) =

∞⋃
k=1

[t0 + (k − 1)T, t0 + kT ) .

Base Case: First, we show the bound holds for t ∈ [t0, t0+
T ) (i.e., k = 1). Recall that Rwpe

(0) ⪰ β0I . Since the system
(29) is linear and all terms involved are positive, we have that
the time solution satisfies

v⊺Λpe(t)v = v⊺
(
e−ε(t−t0)Λpe(t0)

)
v

+ v⊺
(
ε

∫ t

t0

e−ε(t−τ)wpe(τ)w
⊺
pe(τ) dτ

)
v

≥ e−εT v⊺Λpe(t0)v ≥ εTβ0e
−εT .

Induction Step: Suppose that the bound holds for t ∈
[t0, t0 + kT ), we want to show it holds for t ∈ [t0 + kT, t0 +

(k+1)T ). Let t = ∆t+ T such that ∆t ∈ [t0, t0 + kT ), then
one can show

Λpe(∆t+ T ) =

e−εT

(
Λpe(∆t) + ε

∫ ∆t+T

∆t

eε(τ−∆t)wpe(τ)w
⊺
pe(τ) dτ

)
.

By the fact that Λpe(∆t) ⪰ 0 from the induction hypothesis,
and using both the PE constants for wpe as well as the fact
that eε(τ−∆t) ≥ 1 for τ ∈ [∆t,∆t+ T ) we get

v⊺Λpe(∆t+ T )v

≥ εT e−εT
1

T

∫ ∆t+T

∆t

eε(τ−∆t)(v⊺wpe(τ))
2 dτ ≥ εTβ0e

−εT

for all ∆t ∈ [t0, t0 + kT ). This implies Λpe(t) ⪰ εTβ0e
−εT I

for t ∈ [t0 + T, t0 + (k + 1)T ), proving the result.

C. Proof of Theorem 5
The proof follows the same procedure as that in Theorem 3,

with a few changes. If qpe = 0, then once again Σpe = 0 and
the proof follows verbatim Theorem 3. Now suppose qpe ≥ 1.
Using Assumption 1, let δwpe(·) and δw⊥(·) be class-K functions
and ε1(w) > 0 be a constant provided by Lemma 4. Then, as
we have shown in (15), we have results similar to Lemma 1
and Corollary 2 but with

Λpe(t) ⪰ (β0 − δwpe(ε))I , σmin(D3(t)) ≥ β0 − δwpe(ε)

for all ε ∈ (0, ε1] and t ≥ t0 ≥ 0. Then Lemma 3 follows but
with the changes

σmin(D1) ≥ β0 − δwpe(ε)− ∥S − Σpe(t)∥
σmax(D2) ≤ ∥S − Σpe(t)∥

for all ε ∈ (0, ε1] and t ≥ t0 ≥ 0. Using the facts σtol < β0
and δwpe(·) is a class-K function, we can select ε⋆(w, σtol) > 0
no larger than ε1 such that

β0 − δwpe(ε⋆) > σ
tol
.

Moreover, notice that β0 − δwpe(ε) ≥ β0 − δwpe(ε⋆) > σtol for
all ε ∈ (0, ε⋆]. Thus there exists δtol(w, σtol) > 0 such that
for all ∥S − Σpe(t)∥ ≤ δtol and ε ∈ (0, ε⋆] we have

σmin(D1) ≥ σtol , σmax(D2) < σtol ;

that is, Ω = U(I − diag(I, 0)) =
[
0 U2

]
. At this point,

one can directly follow the same procedure as the proof of
Theorem 3 involving Wedin’s Theorem.

D. Proof of Theorem 6
The proof follows the same procedure as that in Theorem 4,

with a few changes. To prove the first limit, apply Theorem 5
with S = Σ̂(ti) for each ti. In particular, recalling that Σ̂ =
Σpe +Σ⊥ + Σ̃, we use the fact that

∥Σ̂(t)− Σpe(t)∥ ≤ ∥Σ⊥(t)∥+ ∥Σ̃(t)∥ ≤ δw⊥(ε) + ∥Σ̃(t)∥

for all ε ∈ (0, ε⋆] and t ≥ t0 ≥ 0, with Σ̃ → 0 because
ŵ → w. To prove the third limit, note that if Assumption 2
holds then it is wlog to assume δw⊥(ε) = 0 by absorbing ∆⊥
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into ∆̃; that is, consider (8) rather than (12). Finally, to prove
the second limit, let ε⋆⋆(w, σtol) > 0 be such that

β0 − δwpe(ε⋆⋆)− δw⊥(ε⋆⋆) > σtol , δw⊥(ε⋆⋆) < σtol .

Then, for qpe ≥ 1, substituting Σ̂− Σpe = Σ⊥ + Σ̃ we get

σmin(D1(t)) ≥ β0 − δwpe(ε)− δw⊥(ε)− ∥Σ̃(t)∥
σmax(D2(t)) ≤ δw⊥(ε) + ∥Σ̃(t)∥

for all ε ∈ (0, ε⋆⋆] and t ≥ t0 ≥ 0, where Σ̃ → 0 when ŵ →
w. At this point, one can directly follow the same procedure
as the proof of Theorem 4.

E. Proof of Theorem 7
We only prove the case when 1 ≤ qpe < q as the other

cases follow by specialization of the proof. There are four
main steps of the proof. First, by (E0)-(E1) there exists PE
decompositions

w◦ =W (w◦)pe +W⊥(w◦)⊥ , w =Wwpe +W⊥w⊥

where (w◦)⊥, w⊥ → 0. Define Ω̃ := ΩΩ⊺ −W⊥W
⊺
⊥ and the

coordinate transformation[
ψ̃pe
ψ̂⊥

]
=

[
W ⊺

W ⊺
⊥

]
(ψ̂ −WW ⊺ψ) .

Second, the perturbed closed-loop error model becomes

ξ̇ = f(t, ξ, (w◦)
⊺
peψ̃pe) + p1(·) + dξ

˙̃
ψpe = −γe◦wpe + p2(·) +W ⊺dψ
˙̂
ψ⊥ = −µψ̂⊥ + p3(·) +W ⊺

⊥dψ

where e◦ := g(t, ξ, w⊺
peψ̃pe) and

p1(·) = f(t, ξ, ŵ⊺
◦ ψ̂ − w⊺

◦ψ)− f(t, ξ, (w◦)
⊺
peψ̃pe)

p2(·) = −γ(e− e◦)wpe − γeW ⊺(ŵ − w)

− µW ⊺Ω̃(Wψ̃pe +W⊥ψ̂⊥ +WW ⊺ψ)

p3(·) = −γe(W ⊺
⊥(ŵ − w) + w⊥)

− µW ⊺
⊥Ω̃(Wψ̃pe +W⊥ψ̂⊥ +WW ⊺ψ) .

Noting that we can write ŵ⊺ψ̂ − w⊺ψ as

w⊺
peψ̃pe + (ŵ − w)⊺Wψ̃pe + (w⊥ +W ⊺

⊥(ŵ − w))⊺ψ̂⊥

+ (−W⊥w⊥ +WW ⊺(ŵ − w))⊺ψ

and synonymously for ŵ⊺
◦ ψ̂ − w⊺

◦ψ, we may use the global
Lipschitz property from (E2) to obtain the bounds

∥p1(·)∥ ≤ ℓf (∥(w◦)⊥∥+ ∥ŵ◦ − w◦∥)(∥(ψ̃pe, ψ̂⊥)∥+ ∥ψ∥)
∥e− e◦∥ ≤ ℓg(∥w⊥∥+ ∥ŵ − w∥)(∥(ψ̃pe, ψ̂⊥)∥+ ∥ψ∥)

+ ∥de∥
∥e∥ ≤ ℓg(∥w⊥∥+ ∥ŵ − w∥)(∥(ψ̃pe, ψ̂⊥)∥+ ∥ψ∥)

+ ∥de∥+ ℓg(1 + ∥w(t)∥L∞)∥(ξ, ψ̃pe)∥

where ℓf , ℓg ≥ 0 are global Lipschitz constants for f(·), g(·).
Defining η = (η1, η2) where

η1 := ∥(w◦)⊥∥+ ∥ŵ◦ − w◦∥ , η2 := ∥w⊥∥+ ∥ŵ − w∥

we can derive the bounds

∥p1(·)∥ ≤ ℓfη1(∥(ψ̃pe, ψ̂⊥)∥+ ∥ψ∥)
∥(p2,p3)(·)∥ ≤ γℓg(1 + ∥w(t)∥L∞)η2∥(ξ, ψ̃pe)∥

+ γ(∥w(t)∥L∞ + η2)(ℓgη2(∥(ψ̃pe, ψ̂⊥)∥+ ∥ψ∥) + ∥de∥)
+ µ∥Ω̃∥(∥(ψ̃pe, ψ̂⊥)∥+ ∥ψ∥) .

By defining the aggregate state χ := (ξ, ψ̃pe, ψ̂⊥) we can
compactly write the perturbed closed-loop system as

χ̇ = F (t, χ) + P (·)

where

F (t, χ) =

f(t, ξ, (w◦)
⊺
pe(t)ψ̃pe)

−γe◦wpe(t)
−µψ̂⊥


and

∥P (·)∥ ≤ γ1(∥η∥+ η22 + ∥Ω̃∥)∥χ∥
+ γ1(∥η∥+ η22 + ∥Ω̃∥+ η2∥de∥+ ∥(dξ, de, dψ)∥)

=: P1(η, Ω̃)∥χ∥+ P2(η, Ω̃, d)

for some constant γ1 > 0 (whose dependence on other
constants we do not track). We introduce further constants
γi > 0 below, as needed.

Third, to carry out a Lyapunov analysis to prove the desired
result, we need to establish steady-state bounds on η and Ω̃.
Using (w◦)⊥, w⊥ → 0 by (E0), w̃◦(·), w̃(·) are continuous
uniformly in t with w̃◦(t, 0) = w̃(t, 0) = 0 by (E3), and
ν → 0 by (E4), we have

lim sup
t→∞

ηi(t) ≤ ∥di(t)∥L∞ , lim sup
t→∞

∥η(t)∥ ≤ ∥dw(t)∥L∞

by the fact that lim supt→∞ ∥ · ∥ ≤ ∥ · ∥L∞ . Next, letting
∆⊥ and ∆̃ be as defined in Section III-A and using the fact
that w is bounded (in conjunction with the aforementioned
properties), we have

lim sup
t→∞

∥∆⊥(t)∥ = 0

lim sup
t→∞

∥∆̃(t)∥ ≤ γ2(1 + ∥d2(t)∥L∞)∥d2(t)∥L∞ .

Letting Σ̃ := Σ̂− Σpe we have

˙̃Σ = −εΣ̃ + ε(∆⊥(t) + ∆̃(t)) + dΣ .

Using [31, Lemma 2] and the Comparison Lemma we have

lim sup
t→∞

∥Σ̂(t)− Σpe(t)∥

≤ lim sup
t→∞

∥∆̃(t)∥+ lim sup
t→∞

ε−1∥dΣ(t)∥

≤ γ2(1 + ∥d2(t)∥L∞)∥d2(t)∥L∞ + ε−1∥dΣ(t)∥L∞ .

Then by Theorem 3 we have

lim sup
t→∞

∥Ω̃(t)∥ ≤ lim sup
t→∞

(
min{ ctol∥Σ̂(t)− Σpe(t)∥, 1 }

)
≤ γ3∥(d2, dΣ)(t)∥L∞
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where the ∥d2(t)∥2L∞
term can be ignored using the min{ · }

provided γ3 > 0 is selected sufficiently large. Altogether,
lim supt→∞ P1(η(t), Ω̃(t)) is upper bounded by

γ4(∥d2(t)∥2L∞
+ ∥(dw, dΣ)(t)∥L∞)

and lim supt→∞ P2(η(t), Ω̃(t), d(t)) is upper bounded by

γ5(∥d2(t)∥L∞∥(d2, de)(t)∥L∞ + ∥d(t)∥L∞) .

Furthermore, each Pi(·) is uniformly bounded as a function of
t because w̃◦(·) and w̃(·) are continuous uniformly in t and
ν(t) is uniformly bounded provided ν(t0) is restricted to a
compact set.

Fourth, by (E7) and because µ > 0 there exists a converse
Lyapunov function V (t, χ) for the dynamics χ̇ = F (t, χ)
satisfying the conclusions of [27, Theorem 4.14] globally with
constants ci > 0. Note that if qpe = 0 then we use (E5)
instead. Taking its time derivative with respect to trajectories
of the perturbed closed-loop error model and applying Young’s
Inequality we have

V̇ (t, χ) ≤ −c3∥χ∥2 + c4∥χ∥∥P (·)∥

≤ − (c3 − c5 − c4P1(·)) ∥χ∥2 +
(

c4
2
√
c5
P2(·)

)2

for some c5 > 0 selected so that c3 − c5 > 0. From here, a
standard Lyapunov argument using the Comparison Lemma,
the same two step approach as [2, Proposition 2], and dealing
with the lim sup using [31, Lemma 2], which we omit for
brevity, proves the result. In particular, one is to use the fact
that P1(·) can be made arbitrarily small in steady-state by
selecting ∥(dw, dΣ)(t)∥L∞ sufficiently small.

F. Proof of Theorem 8
The proof follows the same procedure as the proof of

Theorem 7, so here we only present the required modifications.
First, there exists PE decompositions

w̄◦ = W̄ (w̄◦)pe + W̄⊥(w̄◦)⊥ , w̄ = W̄ w̄pe + W̄⊥w̄⊥

where (w̄◦)⊥, w̄⊥ → 0. Define Ω̃ := ΩΩ⊺ − W̄⊥W̄
⊺
⊥ and the

coordinate transformation[
ψ̃pe
ψ̂⊥

]
=

[
W̄ ⊺

W̄ ⊺
⊥

]
(ψ̂ − W̄W̄ ⊺WW ⊺ψ) .

Second, noting that

w⊺ψ = w̄⊺(WW ⊺ψ) + (W⊥w⊥ −W (W ⊺d2))
⊺ψ

we can write ŵ⊺ψ̂ − w⊺ψ as

w̄⊺
peψ̃pe + (ŵ − w̄)⊺W̄ ψ̃pe + (w̄⊥ + W̄ ⊺

⊥(ŵ − w̄))⊺ψ̂⊥

+ (−W̄⊥w̄⊥ + W̄W̄ ⊺(ŵ − w̄))⊺(WW ⊺ψ)

+ (−W⊥w⊥ +W (W ⊺d2))
⊺ψ ,

and synonymously for ŵ⊺
◦ ψ̂−w⊺

◦ψ. Following through similar
algebra as in the proof of Theorem 7, using the fact that
∥w̄pe∥ ≤ ∥w∥+ ∥d2∥, and defining χ := (ξ, ψ̃pe, ψ̂⊥) as well
as η = (η1, η2) where

η1 := ∥(w̄◦)⊥∥+ ∥ŵ◦ − w̄◦∥ , η2 := ∥w̄⊥∥+ ∥ŵ − w̄∥

we can compactly write the perturbed closed-loop system as

χ̇ = F (t, χ, dw) + P (·)

where e◦ := g(t, ξ, w̄⊺
pe(t)ψ̃pe),

F (t, χ, dw) =

f(t, ξ, (w̄◦)
⊺
pe(t)ψ̃pe)

−γe◦w̄pe(t)
−µψ̂⊥

 ,
and

∥P (·)∥ ≤ γ1(∥η∥+ η22 + ∥Ω̃∥+ η2∥d2∥)∥χ∥
+ γ1(∥η∥+ η22 + ∥Ω̃∥+ η2∥d2∥)
+ γ1(∥d2∥+ η2)(∥w⊥∥+ ∥W ⊺d2∥+ ∥de∥)
+ γ1(∥(dξ, de, dψ,W ⊺d1,W

⊺d2)∥)
+ γ1(∥(w◦)⊥∥+ ∥w⊥∥)

=: P1(η, Ω̃, d2)∥χ∥+ P2(t, η, Ω̃, d)

for some constant γ1 > 0.
Third, observe that ŵ◦−w̄◦ = w̃◦(t, ν) and ŵ−w̄ = w̃(t, ν)

vanish because ν → 0. Hence η → 0. Using

1

T

∫ t+T

t

w̄pe(τ)w̄
⊺
pe(τ) dτ ⪰ β0I , ∀ t ≥ 0

we have that Σ̄pe satisfies the conclusions of Lemma 1 with
respect to the perturbed regressor w̄ for q̄pe ≥ 1. Comparing
the difference between Σ̂ and Σ̄pe, one has that

lim sup
t→∞

∥Ω̃(t)∥ ≤ ctolε
−1∥dΣ(t)∥L∞ .

Thus lim supt→∞ P1(η(t), Ω̃(t), d2(t)) is upper bounded by

γ2∥dΣ(t)∥L∞

and lim supt→∞ P2(t, η(t), Ω̃(t), d(t)) is upper bounded by

γ3(∥d2(t)∥L∞∥(W ⊺d2, de)(t)∥L∞ + ∥dpe(t)∥L∞) .

Fourth, the converse Lyapuonv function V (t, χ; dw) for the
dynamics χ̇ = F (t, χ, dw) now depends on dw, meaning that
the constants ci(dw) > 0 also depend on dw. In turn, we obtain
a γ⋆(dw) > 0 for the scaling factor describing the steady-
state behaviour of all the states. Also, notice that P1(·) can be
made arbitrarily small in steady-state by now only selecting
∥dΣ(t)∥L∞ sufficiently small. Altogether, the result follows
by the same Lyapunov argument used in Theorem 7.

VIII. CONCLUSION

This paper is premised on the philosophy that robust pa-
rameter adaptation can be achieved by forgetting the unexcited
dynamics. In systems neuroscience, this approach is referred to
as the Use it or Lose it Principle. To formalize this principle,
we developed a framework based on PE subspaces yielding
the PE decomposition of a general class of regressors. Then
we presented a new subspace estimator that can be employed
to provide robustness to parameter adaptation laws without
compromising on asymptotic error regulation. We showed that
our new design can be operated on a fast time-scale, while
arguing that it is most effective as a slow process.
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An important next step is to expand the class of error models
for which we can apply the µ-modification. We made the
assumption that we have a regressor estimate ŵ = w(t) + w̃
with w̃ vanishing independently. Some examples where this
assumption holds were considered in Section VI. In other
control problems such as model reference adaptive control
(MRAC) or adaptive output regulation of unknown plants and
unknown exosystems, the evolution of w̃ may be coupled with
the plant and parameter dynamics. In such cases our design
using a subspace estimator must be revisited.

Our developments revolved around the classical notion of
persistent excitation. The µ-modification can be adapted for
different characterizations of regressor excitation, such as
semi-initial excitation [13] or the conditions established for
Dynamic Regressor Extension and Mixing (DREM) [26]. We
believe such extensions will be relatively straightforward; the
key question is which notion of excitation best characterizes
the properties of any regressor.
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