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A B S T R A C T

A longstanding open problem of systems neuroscience is to understand how the brain calibrates thousands
of reflexes to achieve near instantaneous disturbance rejection. While reflexes typically act locally at the site
of sensory measurements, the adaptation of reflex gains is the result of an ingenious architecture in which
knowledge of disturbances is transferred from the cerebellum to the deep cerebellar nuclei or the brainstem.
This paper investigates the use of control theory as the mathematical foundation to explain the mechanisms by
which such forms of learning, as well as forgetting, manifest themselves in systems neuroscience. Particularly,
we use adaptive control and averaging theory to model the computations performed in learning appropriate
reflex gains. While forgetting is perceived as counter-productive to learning, we show that if incorporated
correctly, it can endow the much needed robustness to train thousands of reflexes without interfering with
their adaptation. This is accomplished using the 𝜇-modification which achieves robustness of adaptive schemes
through the estimation of exciting subspaces. Our techniques are combined in a comprehensive model, with
simulations illustrating their effectiveness.
. Introduction

This paper regards certain forms of learning and forgetting in the
rain; however, given the current state of research this statement
robably tells the reader very little. The term ‘‘learning’’, in particular,
onjures a wealth of interpretations: machine learning, unsupervised
earning, supervised learning, reinforcement learning, associative learning,
eep learning, to name just a few. To be more precise, in systems
euroscience it has been proposed that unsupervised learning is the
omain of the cerebral cortex; supervised learning is the domain of
he cerebellum; and reinforcement learning is the domain of the basal
anglia (Caligiore et al., 2017; Doya, 1999). Using this anatomical
lassification, we can say that this paper regards a form of learning in
he cerebellum that is more closely associated with adaptive control and
utput regulation, two mainstays of control theory. More particularly,
e study a form of learning in which an adaptive brain process in the

erebellum trains another adaptive process (Broussard & Kassardjian,
004; Lee et al., 2015; Shutoh, Ohki, Kitazawa, Itohara, & Nagao, 2006;
amazaki, Nagao, Lennon, & Tanaka, 2015).

The term ‘‘forgetting’’ has fewer connotations, yet still arises in
everal contexts. It is commonly used in the visuomotor adaptation
iterature to refer to an adaptive process in which a re-alignment
etween what is seen and how to move is gradually forgotten after
he removal of a visual perturbation (such as magnifying lenses or
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artificially rotated vision) (Smith, Ghazizadeh, & Shadmehr, 2006). The
term also has connections to neuroplasticity, where the Use It or Lose It
Principle says that neural circuits not actively engaged over an extended
period begin to degrade (Kleim & Jones, 2008). Finally, in the control
literature our interpretation of forgetting is most directly related to the
𝜎-modification of adaptive control to robustify parameter adaptation
laws (Ioannou & Sun, 2012). The 𝜎-modification itself finds its analogue
in neuroscience by way of the Oja rule, a modification of Hebb’s rule of
synaptic plasticity of a neuron to include a forgetting or leakage term
with a variable (regressor-dependent) weight (Dayan & Abbott, 2001;
Oja, 1982).

This paper is concerned with modeling adaptive processes associ-
ated with the cerebellum, so we begin in the next section to review its
most salient facts.

1.1. The cerebellum

Cerebellum-like structures appeared in aquatic vertebrates such as
lampreys roughly 500 million years ago, while the cerebellum proper
was first present in sharks roughly 400 million years ago (Montgomery
& Bodznick, 2016). Its role was likely to assist in tracking prey using
the shark’s electrosensory system, while also suppressing disturbances
vailable online 7 November 2023
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induced by the shark’s own rhythmic movements, namely tail move-
ment and breathing. Over 400 million years, all vertebrates possess a
cerebellar design close to that of sharks (Bell, 2002; Montgomery &
Bodznick, 2016), while the cerebellum is larger in size in many species,
with the extreme case of the elephant cerebellum that contains 97.5
percent of the neurons in the elephant brain Herculano-Houzel et al.
(2014).

Early anatomical work showed that the cerebellum is made up of
relatively few neuron types (Eccles, Ito, & Szentagothai, 1967); its
remarkable structure may be summarized thus (Ramnani, 2006):

(i) a regular and simple cellular organization repeated throughout
the cerebellar cortex;

(ii) a purely feedforward architecture (in striking contrast with the
recurrent architecture of the cerebral cortex);

(iv) global connectivity with the rest of the brain through highly or-
ganized cerebellar loops, including the cerebello-thalamo-cortical
pathway and the cortico-ponto-cerebellar pathway on the output
and input sides, respectively, of the cerebellum (analogous path-
ways for the oculomotor system connect with the vestibular nuclei
in the brainstem);

(iv) extraordinary information processing capabilities provided by
approximately 50 billion neurons — roughly half the total num-
ber of neurons in the brain.

Within an individual, the cerebellar neural circuit is duplicated many
imes over forming functionally equivalent modules (Apps et al., 2018;
scarsson, 1979), while at the macroscopic level, cerebellar modules
re organized into 10 cerebellar lobules. It is estimated there are 4000

functional modules in the mouse cerebellum (Hawkes, 1997), while in
non-human primates and humans the total number is still not known.
All of these matters are of extreme interest to control theorists because
the cerebellum is responsible for regulation of all behaviors of precision.

The foundation of our work is the intriguing hypothesis, inspired
by experimental evidence (Cerminara, Apps, & Marple-Horvat, 2009;
Lisberger, 2009), that the cerebellum contains adaptive internal mod-
els to fulfill the internal model principle of control theory (Francis &
Wonham, 1975, 1976). The question that must be asked is: how far
can one go to model behaviors associated with the cerebellum using
the internal model principle? Thus far, it has allowed us to distill
in control theoretic terms a number of behaviors associated with the
flocculus and nodulus/uvula, two cerebellar lobules responsible for eye
movement regulation (Broucke, 2020, 2021a, 2022). Also we have
made preliminary investigations to understand sensorimotor adaptation
in terms of the internal model principle (Broucke, 2021b; Gawad &
Broucke, 2020; Hafez, Uzeda, & Broucke, 2021). This article continues
our pursuit of the question by examining how adaptive internal models
sub-serving the internal model principle can be used to train reflexes
of the body.

The hypothesis that the cerebellum contains internal models is
not new. Particularly two types of internal models have been studied
in neuroscience. A so-called forward model (in control terminology,
an observer) uses an efference copy of the motor command as input
and generates an estimate of the state of the part of the body being
regulated (Jordan & Rumelhart, 1992). An inverse model reverses this
process: it takes a desired reference signal and generates the ideal
control input to track that reference signal. There is broad consensus
among neuroscientists that either forward or inverse models or both
reside in the cerebellum (Gomi & Kawato, 1992; Ito, 2005; Kawato,
1999; Kawato & Gomi, 1992; Miall & Wolpert, 1996; Porrill, Dean, &
Anderson, 2013; Ramnani, 2006; Wolpert & Kawato, 1998; Wolpert,
Miall, & Kawato, 1998).

While forward and inverse models may not directly reference the
internal model principle, it is not uncommon to find statements in
the neuroscience literature proposing ‘‘internal models of the environ-
ment’’ (Doya, 1999); see for example the first proposal on the function
of the flocculus in Lisberger (2009). In a related vein, adaptive filters
2

performing disturbance rejection have been proposed to reside in the
cerebellum to suppress noise and compensate for time delays (Anderson
et al., 2012; Dean, Porrill, & Stone, 2002; Porrill et al., 2013).

Despite the promise of the internal model principle and more gen-
erally internal models to explain the function of the cerebellum, there
is still intense debate on what exactly the cerebellum is doing. The
challenge is that the cerebellum is involved in such a diverse array of
regulatory functions, it is difficult to see how all its functions can be
fit into the confines of one theory (Caligiore et al., 2017; D’Angelo &
Casali, 2013; Manto et al., 2012). The contribution of the cerebellum
to the motor systems is well-known: sensorimotor adaptation, control
of locomotion, arm movement, balance, etc. But it is also involved in
speech regulation, emotion regulation, self-motion perception, parcel-
lating endogenous and exogenous sensory signals, precise timing of
sensory events, perception of the motion of objects, and other cognitive
functions. Whether these cognitive functions can be explained using the
internal model principle is of extraordinary interest.

In the next section we review some salient facts about the body’s
reflexes, which are known to be trained by the cerebellum.

1.2. Reflexes

A reflex is a rapid, involuntary response to environmental distur-
bances based on sensory measurements of the body. In control theoretic
terms, reflexes are simply feedforward control inputs. The key advan-
tage of reflexes is their low latency. Short-latency reflexes have delays
in the range of 20–45 ms, while long-latency reflexes have delays in the
range of 50–100 ms (Kurtzer, 2015), making reflexes the fastest acting
responses of the body to environmental disturbances. The prevalence
of feedback in control design belies the fact that instead feedforward
reflexes appear to perform the bulk of the work of disturbance rejection.
Understanding how reflexes work in concert to perform complex func-
tions such as locomotion has the potential, in our view, to revolutionize
robotics (Narkhede & Hazarika, 2018; Ramos & Kim, 2019; Tieck et al.,
2020).

Familiar examples of basic reflexes are the eye blink reflex, present
in most vertebrates; the vestibuloocular reflex (VOR) that drives the eye
position opposite to head movement to stabilize the retinal image; the
optokinetic reflex to drive the eye velocity in the same direction and
speed as the entire visual field; and the stretch reflexes to maintain
postural stability. The stretch reflexes provide a case study in the
degree of redundancy of the reflex control architecture of the body.
For stabilization of the head, there are at least four reflexes at play. The
cervico-collic reflex (CCR), driven by neck proprioceptive measurements,
maintains stability of the head with respect to disturbances from trunk
movement. The cervico-spinal reflex (CSR), also driven by neck muscle
prioprioception, stabilizes the trunk relative to disturbances from head
movement. The vestibulo-collic reflex (VCR) and the vestibulo-spinal reflex
(VSR) perform the analogous functions as the CCR and CSR, but they
are driven by sensory measurements of head movements provided by
the ears.

To appreciate the necessity of reflexes for robust control, we can
take the example of the VOR. Its purpose is to assist in stabilizing
retinal images during head movement (Robinson, 1981). Head velocity
is detected in the brainstem via signals from the semicircular canals of
the ears. The VOR uses this measurement to generate an eye movement
command that drives the eyes exactly opposite to the head movement,
effectively canceling the resulting movement of images on the retina
(such movement is called retinal slip). Human subjects with an impaired
VOR are unable to read signs while walking because the impulsive
disturbance induced by one’s footfalls causes blurred vision when not
compensated by the reflex (Leigh & Zee, 2015). There is no other
control mechanism fast enough to cancel this brief disturbance except
the reflex. The relevance of reflexes for robust control design in the
context of systems biology is discussed in Nahahira (2021), Sarma et al.
(2022), Stenberg et al. (2022).
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Fig. 1. Block diagram of the connections between various brain regions in the
oculomotor system.

Of particular interest to us is the fact that all reflexes are subject to
a process of long-term adaptation of the reflex gain (MacKay & Murphy,
1979). Moreover, this adaptive process ceases to function without the
cerebellum, despite the fact that the cerebellum is not directly involved
in the execution of reflexes (Anzai, Kitazawa, & Nagao, 2010; Boyden,
Katoh, & Raymond, 2004; Broussard & Kassardjian, 2004; Herzfeld,
Hall, Tringides, & Lisberger, 2020; Kassardjian et al., 2005; Lisberger
& Pavelko, 1986; Miles & Lisberger, 1981; Nagao, Honda, & Yamazaki,
2013; Shutoh et al., 2006). Our interest is to develop a control archi-
tecture that can explain how the cerebellum trains reflexes (over a long
timescale) to have appropriately modulated amplitudes.

1.3. Scope and aims

The connection between adaptive control and the cerebellum is
well-documented; witness the research monograph (Barlow, 2002) re-
viewing this extensive subject. Similarly, it is well-established that the
cerebellum is involved in adaptation of reflexes. This raises a funda-
mental question: is there anything new to be said about these subjects?
The answer is simple: until very recently, neither the cerebellum nor its
adaptation of reflexes has been examined under the lens of regulator
theory. One factor is that the forward model theory of the cerebellum
has dominated for the last 40 years, creating a research climate in
which there is reduced incentive to explore outlying theories. Second,
regulator theory has been overlooked both by control theorists and
by neuroscientists as a suitable mathematical foundation to explain
cerebellar function until recently (Huang et al., 2018). As such, one
will not find any mathematical model of the cerebellum or of reflex
adaptation that is built up from adaptive regulator theory, except in
our work.

Whether one decides to take on the challenge of applying regulator
theory in systems neuroscience is to some extent a question of timing.
With regard to the cerebellum, there are two challenges. First, the
experimental record for the cerebellum, while vast, is incomplete.
Recording from neurons in the human cerebellum is practically infeasi-
ble, while similar work with non-human primates is difficult and costly.
Non-invasive brain stimulation is an increasingly popular therapeutic
and experimental method, but it is inaccurate and experimental results
can be non-reproducible (Jalali, Miall, & Galea, 2017). To date, only
the oculomotor system has a sufficiently complete experimental record
to allow mathematical modeling to proceed (Leigh & Zee, 2015).

The second challenge is that control theory is not sufficiently devel-
oped to address modeling problems in systems neuroscience. Witness
that the area of adaptive internal models is still under development
with many control problems remaining to be solved. The aim of our
3

research has been to contend with the second issue, with a focus on
opportunities for new developments in regulator theory and adaptive
control.

The paper is addressed to control theorists who are interested
in control problems relevant to systems neuroscience. For graduate
students looking for new research areas in control, Section 2 provides
a rapid overview of the major theoretical tools. Such readers can then
check our references for a deeper study of each of the sub-areas of
control that we use. Those readers who are already experts in output
regulation can skim Section 2 to become familiar with the notation, but
the material will mostly be a tutorial.

We expect that most neuroscientists would not be familiar with
recent methods of output regulation and adaptive control; however, a
neuroscientist working on the cerebellum will immediately recognize
that we tackle one of the central problems of the area: how the
cerebellum trains the reflexes of the body. We have sprinkled remarks
(with the (∗) symbol) about neuroscience connections throughout the
paper for the benefit of such readers. Also, Section 6.5 summarizes the
biological plausibility of the obtained model and areas of ambiguity for
further investigations.

This paper may be read as a theoretically oriented consolidation
of our earlier papers (Battle & Broucke, 2021; Broucke, 2020, 2021a,
2021b, 2022; Gawad & Broucke, 2020; Hafez et al., 2021) and as a
companion to our concurrent work (Hafez, Uzeda, & Broucke, 2023;
Mejia Uzeda & Broucke, 2023; Uzeda & Broucke, 2022, 2023). The
major split between the earlier papers and the concurrent work regards
two issues. First, the former papers developed ideas about cerebellar
function using adaptive internal models without including any long-
term adaptation of reflexes; namely all reflex gains in the earlier models
were constants. Second, any regressors used in adaptation processes in
the earlier models were always assumed to be persistently exciting to
ease the analysis.

Our more recent papers (Uzeda & Broucke, 2022, 2023) develop the
𝜇-modification which is the underpinning of our ‘‘forgetting’’ method,
with (Uzeda & Broucke, 2022) particularly providing a more in depth
analysis of subspace estimation methods. The papers (Hafez et al.,
2023; Mejia Uzeda & Broucke, 2023) develop the learning problem
presented here. Particularly, Hafez et al. (2023) explores the use of
state feedback for disturbance rejection in the context of optimal steady-
state control (Jokic, Lazar, & vanden Bosch, 2009). The paper (Mejia
Uzeda & Broucke, 2023) uses linear regulator theory to introduce the
idea of adapting reflexes to improve robustness and manage long-
term energy expenditure, especially compared to standard adaptive
control algorithms. The present paper provides a broader perspective
on reflexes in the context of nonlinear regulator theory. By utilizing
novel theoretical developments on exciting subspaces, we also obtain
stronger closed-loop stability properties.

Our overarching goal is to translate brain architectures into a net-
work of control modules with clear and distinct roles. By first con-
sidering the learning problem of training reflexes in Section 3, we
elucidate a feedback loop acting over long timescales, thus explaining
the role of the cerebellum in reflex adaptation. Learning processes are
then supplemented through the use of forgetting in Section 5, with the
help of subspace estimators, to provide the much needed robustness
to perform accurate computations in noisy environments such as the
brain. To keep our developments concrete, a running example of output
regulation for single-input single-output (SISO) linear time-invariant
(LTI) systems is presented in great detail in Sections Section 4, 6 with
supporting simulations in Section 7. As a result, we build controllers
that implement the functionality of architectural diagrams studied in
systems neuroscience, such as Fig. 1 representing the brain architecture
for the oculomotor system.

2. Analysis and design tools

This section reviews the most important theoretical tools for our
development: notions of stability (Khalil, 2002); the basics of adaptive
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control (Ioannou & Sun, 2012; Narendra & Annaswamy, 1989; Sastry
& Bodson, 1989); an adaptive internal model design for minimum-
phase LTI systems (Isidori, 2017; Serrani, Isidori, & Marconi, 2001);
and two timescale analysis (Sastry & Bodson, 1989; Teel, Moreau, &
Nesic, 2003).

2.1. Notation

Given a function 𝑓 (𝑡), we use the shorthands

𝑑𝑡𝑓 (𝑡) =
𝑑
𝑑𝑡

[𝑓 (𝑡)] , 𝜕𝑡𝑓 (𝑡) =
𝜕
𝜕𝑡

[𝑓 (𝑡)]

to express derivatives. We use the notation 𝑓 (⋅) to refer to a function
of its (unspecified) arguments and let (𝛿) ∶= { 𝑥 ∶ ‖𝑥‖ ≤ 𝛿 } denote
the closed ball of radius 𝛿 ≥ 0, where the underlying space in which
the ball resides is inferred from context. Given a symmetric matrix 𝑃 ,
we write 𝑃 ≻ 0 if it is positive definite and 𝑃 ⪰ 0 if it is positive
semi-definite. Analogous statements hold for negative (semi-) definite
matrices. Moreover, we write 𝑃 ⪰ 𝑄 to say 𝑃 −𝑄 ⪰ 0. Unless otherwise
specified, ‖ ⋅ ‖ denotes the 2-norm. For a subspace  , we write ⟂ as
its orthogonal complement under the standard inner product. For a set
, we let int() denote its interior and cl() denote its closure. Lastly,
useful canonical matrices (whose dimensions depend on the context)
are:

𝐴◦ =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮ 𝐼
0
0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐵◦ =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐶◦ =
[

1 0 ⋯ 0
]

.

.2. Preliminaries

We review some results on stability analysis; the reader is referred
o Khalil (2002) for more background. Consider the nonautonomous
ystem

̇ = 𝑓 (𝑡, 𝑥) , (1)

atisfying 𝑓 (𝑡, 0) = 0 for all 𝑡 ≥ 0.

efinition 1. The equilibrium 𝑥 = 0 of (1) is:

• stable if for each 𝜖 > 0 and any 𝑡0 ≥ 0, there exists 𝛿 = 𝛿(𝜖, 𝑡0) such
that ‖𝑥(𝑡0)‖ < 𝛿 implies ‖𝑥(𝑡)‖ < 𝜖 for all 𝑡 ≥ 𝑡0 ≥ 0.

• uniformly stable if for each 𝜖 > 0, there exists 𝛿 = 𝛿(𝜖) > 0 such
that ‖𝑥(𝑡0)‖ < 𝛿 implies ‖𝑥(𝑡)‖ < 𝜖 for all 𝑡 ≥ 𝑡0 ≥ 0.

• asymptotically stable (AS) if it is stable and there exists 𝑐 = 𝑐(𝑡0)
such that ‖𝑥(𝑡0)‖ < 𝑐 implies lim𝑡→∞ 𝑥(𝑡) = 0.

• uniformly asymptotically stable (UAS) if it is uniformly stable
and there is a positive constant 𝑐, independent of 𝑡0, such that
‖𝑥(𝑡0)‖ < 𝑐 implies lim𝑡→∞ 𝑥(𝑡) = 0.

• globally uniformly asymptotically stable (GUAS) if it is uniformly
stable, 𝛿(𝜖) > 0 can be chosen to satisfy lim𝜖→∞ 𝛿(𝜖) = ∞, and for
each pair 𝜂, 𝑐 > 0, there is 𝑇 = 𝑇 (𝜂, 𝑐) > 0 such that

‖𝑥(𝑡)‖ < 𝜂 , ∀𝑡 ≥ 𝑡0 + 𝑇 (𝜂, 𝑐) , ∀‖𝑥(𝑡0)‖ < 𝑐.

• locally exponentially stable (LES) if there exist positive constants 𝛿,
𝑐, and 𝜆 such that

‖𝑥(𝑡)‖ ≤ 𝑐‖𝑥(𝑡0)‖e−𝜆(𝑡−𝑡0) , ∀𝑡 ≥ 𝑡0 ≥ 0, ∀‖𝑥(𝑡0)‖ < 𝛿,

and globally exponentially stable (GES) if the above is satisfied for
any initial state 𝑥(𝑡0).

• exponentially stable over a set  ⊆ R𝑛 if there exist 𝑐 > 0 and 𝜆 > 0
such that

‖𝑥(𝑡)‖ ≤ 𝑐‖𝑥(𝑡0)‖e−𝜆(𝑡−𝑡0) , ∀𝑡 ≥ 𝑡0 ≥ 0, ∀𝑥(𝑡0) ∈  .

Each of these stability definitions may be said to hold uniformly
4

with respect to some parameter 𝜃 in a (compact) set if the associated
constants are independent of the value of 𝜃. Exponential stability over
a set naturally extends to exponential stability over every ball, a notion
sometimes called semi-global exponential stability. The following relates
LES, GUAS, and exponential stability over every ball; see for exam-
ple (Haidar, Chitour, Mason, & Sigalotti, 2022) with a proof provided
in Section 9.

Proposition 1. Consider the system (1). The equilibrium 𝑥 = 0 is GUAS
and LES if and only if it is ES over every ball. Moreover, the exponential
rate can be selected independently of the ball considered.

Below is a useful characterization of locally Lipschitz functions as a
semi-global property.

Proposition 2. Let  be a set. A function 𝑓 (𝜃, 𝑥) is locally Lipschitz in 𝑥
uniformly in 𝜃 ∈  if and only if it is Lipschitz over any compact set in 𝑥
uniformly in 𝜃 ∈ .

2.3. Adaptive control

We highlight three important results of adaptive control: the notion
of persistent excitation, and the exponential stability theorems for the
two most common error models. The reader is referred to Ioannou
and Sun (2012), Narendra and Annaswamy (1989), Sastry and Bodson
(1989), Slotine and Li (1991) for more background.

Definition 2. The signal 𝑤(𝑡) ∈ R𝑞 is persistently exciting (PE) if there
exist 𝛽0, 𝛽1, 𝑇 > 0 such that

𝛽0𝐼 ⪯ 1
𝑇 ∫

𝑡+𝑇

𝑡
𝑤(𝜏)𝑤⊺(𝜏) 𝑑𝜏 ⪯ 𝛽1𝐼 , ∀ 𝑡 ≥ 0.

We primarily deal with regressors 𝑤(𝑡) that are stationary, for which
he following limit, called the autocovariance of 𝑤, exists uniformly in
0 ≥ 0:

𝑤(0) ∶= lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑤(𝜏)𝑤⊺(𝜏)𝑑𝜏 . (2)

emma 1. Let 𝑤(𝑡) ∈ R𝑞 be stationary. Then 𝑤(𝑡) is PE if and only if
𝑤(0) is positive definite.

The following gives some geometric intuition for persistent excita-
tion.

Lemma 2. If 𝑤(𝑡) ∈ R𝑞 is PE and there exists 𝛼 ∈ R𝑞 such that 𝛼⊺𝑤(𝑡) = 0
for all 𝑡 ≥ 0, then 𝛼 = 0.

Consider 𝑦 = 𝜓⊺𝑤(𝑡), a scalar measurement that depends linearly on
unknown parameters 𝜓 ∈ R𝑞 and a known regressor 𝑤(𝑡) ∈ R𝑞 . Let 𝜓̂(𝑡)
be an estimate of 𝜓 and define the parameter error 𝜓̃ ∶= 𝜓̂ − 𝜓 . The
simplest error model of adaptive control, a static model, along with the
gradient adaptation law are

𝑒 = 𝜓̂⊺𝑤(𝑡) − 𝑦 (3a)
̇̂ = −𝛾𝑒𝑤(𝑡) , (3b)

where 𝛾 > 0 is the adaptation rate. Equivalently one can write a linear
time-varying (LTV) differential equation

̇̃𝜓 = −𝛾𝑤(𝑡)𝑤⊺(𝑡)𝜓̃ . (4)

The main stability result is Ioannou and Sun (2012, Theorem 4.3.2),
Narendra and Annaswamy (1989, Theorem 2.16), or Sastry and Bodson
(1989, Theorem 2.5.1).

Theorem 1. Suppose 𝑤(𝑡) is piecewise continuous and PE. Then the

equilibrium 𝜓̃ = 0 of (4) is GES.
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Remark 1 (∗). The gradient adaptation law (3b) is ubiquitous in the-
oretical neuroscience, where it is the starting point for discussions on
synaptic plasticity, Hebb’s law, and unsupervised learning at the neuronal
evel (Dayan & Abbott, 2001, Ch. 8). Its biological plausibility specifi-
ally with regard to learning in the cerebellum is discussed in Sejnowski
1977); therein called the covariance rule. See also Dean and Porrill

(2008, 2014) for a detailed discussion in terms of an adaptive filter
model of the cerebellum. ⊲

The second simplest error model is a dynamic model with error state
𝑥 ∈ R𝑛, presented along with the gradient adaptation law:

𝑥̇ = 𝐴𝑥 + 𝐵𝑤⊺(𝑡)𝜓̃ (5a)
̇̃𝜓 = −𝛾(𝐵⊺𝑃𝑥)𝑤(𝑡) , (5b)

where 𝛾 > 0, 𝐴 is Hurwitz, (𝐴,𝐵) is controllable, and 𝑃 ≻ 0 solves
the Lyapunov equation 𝐴⊺𝑃 + 𝑃𝐴 = −𝐼 . The main stability result
is Ioannou and Sun (2012, Corollary 4.3.1), Narendra and Annaswamy
(1989, Theorem 2.17), or Sastry and Bodson (1989, Theorem 2.6.5).

Theorem 2. Suppose 𝑤(𝑡) is PE and 𝑤, 𝑤̇ are bounded. Then the equilib-
rium (𝑥, 𝜓̃) = (0, 0) of (5) is GES.

2.4. Adaptive internal models

Since the early papers (Nikiforov, 1996, 1997a, 1997b), adaptive
internal model designs have proliferated in the control literature; for
example (Basturk & Krstic, 2014, 2015; Gerasimov, Paramonov, &
Nikiforov, 2020; Marino & Tomei, 2003, 2015; Marino & Tomei, 2021;
Serrani et al., 2001; Yilmaz & Basturk, 2019); see Nikiforov and Gerasi-
mov (2022) and the references therein. Here we use a representative
design from Serrani et al. (2001), while our presentation follows Isidori
(2017). Consider the SISO LTI system

̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐸𝜁 (6a)

𝜁̇ = 𝑆𝜁 (6b)

𝑒 = 𝐶𝑥 +𝐷𝜁 (6c)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑢(𝑡) ∈ R is the control input, 𝜁 (𝑡) ∈ R𝑞 is
the exosystem state, and 𝑒(𝑡) ∈ R is the error. Standard assumptions on
the system are as follows.

Assumption 1. The open-loop system (6) satisfies:

(A1) (𝐶,𝐴,𝐵) is a minimal realization and minimum phase;
(A2) 𝑆 only has simple eigenvalues on the 𝑗𝜔-axis;
(A3) the non-resonance condition holds:

det
[

𝐴 − 𝜆𝐼 𝐵
𝐶 0

]

≠ 0 , ∀ 𝜆 ∈ 𝜎(𝑆) ;

(A4) the dimension 𝑞 is interpreted as a known upper bound on the
order of the exosystem;

(A5) the relative degree 𝑟 and the sign of the high frequency gain
𝑏 ∶= 𝐶𝐴𝑟−1𝐵 of (𝐶,𝐴,𝐵) are known;

(A6) the measurement is 𝑒.

Using (A3), let (𝛱,𝛤 ) uniquely solve the regulator equations

𝛱𝑆 = 𝐴𝛱 + 𝐵𝛤 + 𝐸 , 0 = 𝐶𝛱 +𝐷 . (7)

Defining the error state 𝑧 ∶= 𝑥 −𝛱𝜁 , system (6) becomes

𝑧̇ = 𝐴𝑧 + 𝐵(𝑢 − 𝑑) 𝑒 = 𝐶𝑧 (8a)

𝜁̇ = 𝑆𝜁 𝑑 = 𝛤𝜁 . (8b)

We consider a regulator of the form
5

𝑢 = 𝑢𝑠 + 𝑢𝑖𝑚,
where 𝑢𝑠 is for stabilization and 𝑢𝑖𝑚 is for disturbance rejection.
We first deal with the stabilizer for minimum phase LTI systems.

Given that the system is SISO with no feedthrough term, the relative
degree satisfies 𝑟 ≥ 1. According to Isidori (2017, Proposition 2.2), there
exists a coordinate transformation 𝑧 ↦ (𝑧0, 𝜉) mapping the system (8a)
to its strict normal form

̇ 0 = 𝐴00𝑧0 + 𝐴01𝜉 (9a)

𝜉̇ = (𝐴◦ + 𝐵◦𝑎
⊺
11)𝜉 + 𝐵◦𝑎

⊺
10𝑧0 + 𝑏𝐵◦(𝑢 − 𝑑) (9b)

𝑒 = 𝐶◦𝜉 (9c)

where 𝑧0(𝑡) ∈ R𝑛−𝑟, 𝜉(𝑡) ∈ R𝑟, 𝐴00, 𝐴01, 𝑎10, 𝑎11 are some matrices, and
the matrices 𝐴◦, 𝐵◦, 𝐶◦ are given in Section 2.1. If the relative degree
is 𝑟 = 1, then we choose the high-gain stabilizer

𝑢𝑠 = − sgn(𝑏)𝐾𝑒 . (10)

If 𝑟 > 1, we instead employ the reduction procedure described in Isidori
(2017, Section 2.4) that effectively converts the system to relative
degree 1 using a high-gain observer. To that end, select 𝑎 ∈ R𝑟−1 such
that 𝐴◦−𝐵◦𝑎⊺ is Hurwitz. Define 𝜉◦ ∶= (𝜉1,… , 𝜉𝑟−1) and 𝑒0 ∶=

[

𝑎⊺ 1
]

𝜉
to obtain
[

𝑧̇0
𝜉̇◦

]

=
[

𝐴00 𝐴′
01

0 𝐴◦ − 𝐵◦𝑎⊺

] [

𝑧0
𝜉◦

]

+ 𝐵0𝑟𝑒0

𝑒̇0 = 𝑎𝑟𝑟𝑒0 + 𝑎
⊺
𝑟0

[

𝑧0
𝜉◦

]

+ 𝑏(𝑢 − 𝑑)

for some matrices 𝐴′
01, 𝐵0𝑟, 𝑎𝑟0, and 𝑎𝑟𝑟. By (A1) the matrix 𝐴00 is

Hurwitz and, therefore, so is
[

𝐴00 𝐴′
01

0 𝐴◦ − 𝐵◦𝑎⊺

]

.

Then we use the high-gain observer and high-gain stabilizer
̇̂𝜉 = 𝐴◦𝜉 +𝐷𝜅𝐿(𝑒 − 𝐶◦𝜉) (11a)

̂0 =
[

𝑎⊺ 1
]

𝜉 (11b)

𝑢𝑠 = − sgn(𝑏)𝐾𝑒0 , (11c)

where 𝜉(𝑡) ∈ R𝑟, 𝐾, 𝜅 > 0 are to be selected sufficiently large, 𝐷𝜅 ∶=
diag(𝜅, 𝜅2,… , 𝜅𝑟), and 𝐿 ∈ R𝑟 is selected so that 𝐴◦ − 𝐿𝐶◦ is Hurwitz.
This completes the design of the stabilizer 𝑢𝑠.

Next we present the internal model design that determines 𝑢𝑖𝑚.
From the perspective of the plant, it is wlog to assume the exosystem
has the property that (𝛤 , 𝑆) is observable. Given any controllable pair
(𝐹 ,𝐺) with 𝐹 ∈ R𝑞×𝑞 Hurwitz, there exists a coordinate transformation
𝑤0 ∶=𝑀𝜁 (Nikiforov & Gerasimov, 2022, Lemma 2.1) such that

𝑤̇0 = 𝐹𝑤0 + 𝐺𝑑 (12a)

𝑑 = 𝜓⊺
0𝑤0 (12b)

with 𝜓⊺
0 ∶= 𝛤𝑀−1. Then the adaptive internal model is

̇̂𝑤0 = 𝐹𝑤̂0 + 𝐺𝑢 (13a)
̇̂𝜓0 = − sgn(𝑏)𝛾𝑒0𝑤̂0 (13b)

𝑢𝑖𝑚 = 𝜓̂⊺
0 𝑤̂0 , (13c)

where 𝑤̂0(𝑡), 𝜓̂0(𝑡) ∈ R𝑞 and 𝛾 > 0.
To analyze the resulting closed-loop system, define the observer

errors 𝑤̃0 ∶= 𝑤̂0 − 𝑤0 − 𝑏−1𝐺𝑒0 and 𝜉 ∶= 𝜅𝑟𝐷−1
𝜅 (𝜉 − 𝜉). Also define the

parameter error 𝜓̃0 ∶= 𝜓̂0 −𝜓0. Let 𝑥◦ ∶= (𝑧0, 𝜉◦, 𝑤̃0, 𝑒0) be an aggregate
state. The closed-loop dynamics are
[

𝑥̇◦
̇̃𝜓0

]

=
[

𝐴(𝐾) 𝑏𝐵◦𝑤̂
⊺
0

− sgn(𝑏)𝛾𝑤̂0𝐵
⊺
◦ 0

] [

𝑥◦
𝜓̃0

]

+ 𝐵1(𝐾, 𝜅, 𝑤̂0)𝜉 (14a)

̇̃𝜉 = 𝜅(𝐴◦ − 𝐿𝐶◦)𝜉 + 𝐵2(𝐾, 𝑤̂0)
[

𝑥◦
𝜓̃0

]

+ 𝐵3(𝐾, 𝜅)𝜉 (14b)
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where 𝑤̂0 = 𝑤0(𝑡) +𝑀𝑤𝑥◦ for some 𝑀𝑤 and

𝐴(𝐾) ∶=

⎡

⎢

⎢

⎢

⎢

⎣

[

𝐴00 𝐴′
01

0 𝐴◦ − 𝐵◦𝑎⊺

]

0 𝐵0𝑟

−𝑏−1𝐺𝑎⊺𝑟0 𝐹 𝑏−1(𝐹𝐺 − 𝐺𝑎𝑟𝑟)
𝑎⊺𝑟0 𝑏𝜓⊺

0 𝑎𝑟𝑟 + 𝜓
⊺
0𝐺 − |𝑏|𝐾

⎤

⎥

⎥

⎥

⎥

⎦

𝐵1(𝐾, 𝜅, 𝑤̂0) ∶= −
[

|𝑏|𝐵◦𝐾
sgn(𝑏)𝛾𝑤̂0

]

[

𝑎⊺ 1
]

𝜅−𝑟𝐷𝜅

𝐵3(𝐾, 𝜅) ∶= |𝑏|𝐵◦𝐾
[

𝑎⊺ 1
]

𝜅−𝑟𝐷𝜅

with 𝐵2(⋅) continuously differentiable. Stability analysis of (14) pro-
ceeds in two steps. First we analyze stability when 𝜉 = 0, resulting in a
system whose form is notably similar to (5):
[

𝑥̇◦
̇̃𝜓0

]

=
[

𝐴(𝐾) 𝑏𝐵◦𝑤̂
⊺
0

− sgn(𝑏)𝛾𝑤̂0𝐵
⊺
◦ 0

] [

𝑥◦
𝜓̃0

]

. (15)

Stability of the matrix 𝐴(𝐾) is dealt with using a Schur complement
argument; see Isidori (2017, Section 2.3) for details.

Lemma 3. There exists 𝐾⋆ such that for all 𝐾 ≥ 𝐾⋆, the matrix 𝐴(𝐾) is
Hurwitz. Moreover, there exists a matrix 𝑃0 ≻ 0 and a scalar 𝜌 > 0 such
hat 𝑃 ∶= diag(𝑃0, 1) satisfies the Lyapunov Linear Matrix Inequality (LMI)
⊺(𝐾)𝑃 + 𝑃𝐴(𝐾) ⪯ −𝜌𝐼

or all 𝐾 ≥ 𝐾⋆.

The main results on stability of (15) and then (14) are the fol-
owing (Isidori, 2017; Serrani et al., 2001); proofs are provided in
ection 9. First, we have a stability result under the assumption of a
erfect state measurement when 𝜉 = 0 (Isidori, 2017, Section 4.8).

emma 4. Consider system (15). Suppose 𝑤0(𝑡) is PE. Let 𝐾⋆ be defined
s in Lemma 3. Then for every 𝐾 ≥ 𝐾⋆ the equilibrium (𝑥◦, 𝜓̃0) = (0, 0) is

GUAS and LES.

Next we reintroduce the high gain observer. The following stability
result depends on the nonlinear separation principle of Teel and Praly
(1995).

Theorem 3. Consider system (14). Suppose 𝑤0(𝑡) is PE. For each 𝛿1 > 0
there exists 𝐾⋆ > 0 and 𝜅⋆(𝐾, 𝛿1) ≥ 1 such that for any fixed 𝐾 ≥ 𝐾⋆ and
𝜅 ≥ 𝜅⋆ the equilibrium (𝑥◦, 𝜓̃0, 𝜉) = (0, 0, 0) is ES over (𝑥◦, 𝜓̃0)(𝑡0) ∈ (𝛿1)
and 𝜉(𝑡0) ∈ (𝛿1𝜅𝑟−1).

2.5. Two timescale analysis

Consider a two timescale system of the form

𝜒̇ = 𝐹 (𝑡, 𝜒, 𝛼̃) + 𝜀𝑔(𝑡, 𝜒, 𝛼̃) (16a)
̇̃𝛼 = 𝜀𝑓 (𝑡, 𝜒, 𝛼̃) (16b)

where 𝜀 > 0 and 𝜒(𝑡) ∈ R𝑛𝑓 , 𝛼̃(𝑡) ∈ R𝑛𝑠 are the fast and slow states
respectively. To study this system, it is useful to define the averaging
operator (⋅)𝑎𝑣 applied to 𝑓 (⋅) as

𝑓𝑎𝑣(𝛼̃𝑎𝑣) ∶= lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑓 (𝜏, 0, 𝛼̃𝑎𝑣) 𝑑𝜏 . (17)

hen we may identify fast and averaged systems

𝜒̇𝑓 = 𝐹 (𝑡, 𝜒𝑓 , 𝛼̃) , ̇̃𝛼 = 0 (18a)
̇̃𝛼𝑎𝑣 = 𝜀𝑓𝑎𝑣(𝛼̃𝑎𝑣) . (18b)

he standard assumptions for two timescale averaging analysis may be
ound in Sastry and Bodson (1989); here they are presented in a more
arsimonious (and slightly stronger) form; see Section 9.4.

ssumption 2. The system (16) and its associated systems (17)–(18)
atisfy:
6

(C1) 𝐹 (⋅), 𝑓 (⋅), and 𝑔(⋅) are piecewise continuous in 𝑡 and continuously
differentiable in (𝜒, 𝛼̃) uniformly in 𝑡 ≥ 0;

C2) 𝐹 (𝑡, 0, 0) = 𝑔(𝑡, 0, 0) = 0 and 𝑓 (𝑡, 0, 0) = 0 for all 𝑡 ≥ 0;
C3) 𝑓𝑎𝑣(⋅) and (𝜕𝛼̃𝑓 )𝑎𝑣(⋅) exist, and convergence to the latter is uniform

in 𝑡0 ≥ 0 and in 𝛼̃𝑎𝑣 over compact sets;
C4) for some 𝛿𝑓 , 𝛿𝛼 > 0, the equilibrium 𝜒𝑓 = 0 of (18a) is ES over

𝜒𝑓 (𝑡0) ∈ (𝛿𝑓 + 1) uniformly in 𝛼̃ ∈ (𝛿𝛼);
C5) the equilibrium 𝛼̃𝑎𝑣 = 0 of (18b) is GES.

The main result concerning practical asymptotic stability of two
imescale systems is a specialization of the result in Teel et al. (2003),
ere restated for a time-varying framework and restricted to exponen-
ial stability.

heorem 4. Consider the system (16) satisfying Assumption 2. Then for
ach residual 𝜖 > 0 there exists 𝛿𝑠(𝛿𝛼), 𝜀⋆(𝛿𝑓 , 𝛿𝛼 , 𝜖) > 0 such that for any
ixed 𝜀 ∈ (0, 𝜀⋆) the trajectories satisfy

𝜒(𝑡)‖ ≤ 𝑐𝑓‖𝜒(𝑡0)‖e
−𝜆𝑓 (𝑡−𝑡0) + 𝜖

‖𝛼̃(𝑡)‖ ≤ 𝑐𝑠‖𝛼̃(𝑡0)‖e−𝜀𝜆𝑠(𝑡−𝑡0) + 𝜖

or all 𝑡 ≥ 𝑡0 ≥ 0 over (𝜒, 𝛼̃)(𝑡0) ∈ (𝛿𝑓 ) × (𝛿𝑠), where 𝑐𝑓 (𝛿𝑓 , 𝛿𝛼), 𝜆𝑓 (𝛿𝑓 ,
𝛼), 𝑐𝑠, 𝜆𝑠 > 0. More generally, one can always select 𝛿𝑠(𝛿𝛼) = 𝛿𝑠(𝛿𝛼 , 𝑓𝑎𝑣(⋅))
ndependent of 𝐹 (⋅) and 𝑓 (⋅) such that

lim
𝛼→∞

𝛿𝑠(𝛿𝛼) = ∞.

By imposing an equilibrium in (C2) and exponential stability in
C4)–(C5), one may also recover exponential convergence to the equi-
ibrium using the Lyapunov method in Sastry and Bodson (1989, Sec-
ion 4.4).

heorem 5. Consider the system (16) satisfying Assumption 2. Then
here exists 𝛿𝑠(𝛿𝛼), 𝜀⋆(𝛿𝑓 , 𝛿𝛼) > 0 such that for any fixed 𝜀 ∈ (0, 𝜀⋆) the
quilibrium (𝜒, 𝛼̃) = (0, 0) is ES over (𝜒, 𝛼̃)(𝑡0) ∈ (𝛿𝑓 ) × (𝛿𝑠). More
enerally, one can always select 𝛿𝑠(𝛿𝛼) = 𝛿𝑠(𝛿𝛼 , 𝑓𝑎𝑣(⋅)) independent of 𝐹 (⋅)
nd 𝑓 (⋅) such that

lim
𝛼→∞

𝛿𝑠(𝛿𝛼) = ∞.

Proof of Theorems 4 and 5 are found in Section 9.

. A learning problem: Training reflexes

This section presents the main learning problem we consider: the
raining of reflexes for the purpose of reducing the work of disturbance
ejection by the cerebellum. We frame the problem in the context of
onlinear regulator theory; see Huang (2004), Isidori (1995, 2017)
or more background. In the section following this one, the LTI case
ill be considered by invoking the regulator design from Section 2.4.
hroughout this section we will assume that any regressors used in
arameter adaptation are PE. This unrealistic assumption will be re-
oved in Section 5, where lack of persistent excitation will be tied to
biological process of forgetting.

Consider the single-input autonomous nonlinear system

̇ = 𝑓◦(𝑥, 𝜁, 𝑢) (19a)

𝜁̇ = 𝑠(𝜁 ) (19b)

𝑒 = ℎ(𝑥, 𝜁) (19c)

here 𝑥(𝑡) ∈ R𝑛 is the state, 𝑢(𝑡) ∈ R is the control input, 𝜁 (𝑡) ∈ R𝑞 is
he exosystem state, and 𝑒(𝑡) ∈ R𝑚 is the error. Also suppose we have
partial disturbance measurement 𝑦(𝑡) ∈ R𝑝 generated by a nonlinear

xosystem

̇𝑦 = 𝑠𝑦(𝜁𝑦) (20a)

𝑦 = 𝑦(𝜁, 𝜁𝑦) , (20b)
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where 𝜁𝑦(𝑡) ∈ R𝑞𝑦 is the additional exosystem state that determines
the measurement 𝑦. Notice that our choice of a separate exosystem for
𝑦 allows for new frequency content not appearing in 𝜁 . Additionally,
the decoupling of 𝜁 and 𝜁𝑦 captures the conceptual fact that regu-
lation is tasked only with rejecting 𝜁 , whereas 𝑦 is a supplementary
measurement which may or may not be used towards this purpose.

Remark 2 (∗). The possibility of distinct frequency content in 𝑦 that
is not present in the exosystem state 𝜁 is most clearly captured in an
oculomotor experiment called VOR cancellation (Leigh & Zee, 2015).
In this experiment, a subject seated in a sinusoidally rotating chair is
tasked with visually tracking a head fixed target at the central position.
Since the target remains at the central position with respect to the head
throughout the experiment, the reference signal for tracking is zero, so
there is no exogenous disturbance acting on the retinal error. However,
the measurement 𝑦, which corresponds to the head angular velocity,
is a sinusoid due to the rotation of the chair. Therefore, 𝑦 contains
disturbance frequencies not present in the exogenous disturbances
acting on the plant, which are independently modeled by the exosystem
(19b). ⊲

Assumption 3. The open-loop system (19) and the measurement (20)
satisfy:

(R1) the functions 𝑓◦(⋅), 𝑠(⋅), 𝑠𝑦(⋅), ℎ(⋅), and 𝑦(⋅) are continuously differ-
entiable;

(R2) the exosystems (19b) and (20a) are neutrally stable;
(R3) for some set  ⊆ R𝑞 compact and invariant under (19b) there exist

unique functions 𝜋, 𝛾 ∶  → R𝑛 solving the regulator equations

𝜕𝜁𝜋(𝜁 )𝑠(𝜁 ) = 𝑓◦(𝜋(𝜁 ), 𝜁 , 𝛾(𝜁 )) (21a)

0 = ℎ(𝜋(𝜁 ), 𝜁) . (21b)

Remark 3. The notion of neutrally stable is discussed in Isidori (1995,
p. 388). It implies that the nonlinear exosystems (19b) and (20a) each
generate solutions that are bounded and persist in time. This notion
provides a suitable generalization to the nonlinear setting of an LTI
exosystem with simple eigenvalues on the imaginary axis, used to
generate step and sinusoidal signals. The generalization to nonlinear
exosystems is relevant in neuroscience applications where disturbance
and reference signals often cannot be modeled by LTI exosystems. ⊲

We consider a disturbance rejection problem where our controller
is of the form

𝑥̇𝑐 = 𝑓𝑐 (𝑥𝑐 , 𝑥, 𝜁 , 𝜁𝑦) (22a)

𝑢𝑠 = 𝑢𝑠(𝑥𝑐 , 𝑥, 𝜁 , 𝜁𝑦) (22b)

𝑖𝑚 = 𝑢𝑖𝑚(𝑥𝑐 , 𝑥, 𝜁 , 𝜁𝑦) (22c)

𝑢𝑟 = −𝛼̂⊺𝑟 𝑦 (22d)

𝑢𝑥 = 𝛼̂⊺𝑥𝑥 (22e)

𝑢 = 𝑢𝑠 + 𝑢𝑖𝑚 + 𝑢𝑟 + 𝑢𝑥 , (22f)

here 𝑥𝑐 (𝑡) ∈ R𝑛𝑐 is the controller state; 𝑢𝑠 is for stabilization; 𝑢𝑖𝑚 is
he output of the internal model; and 𝑢𝑟 and 𝑢𝑥 are the reflexes: one a
eedforward input and the other a state feedback. The vectors 𝛼̂𝑟 and
𝛼̂𝑥 are called reflex gains (MacKay & Murphy, 1979).

emark 4 (∗). We will see in the sequel that mathematically there
s little distinction between 𝑢𝑟 and 𝑢𝑥 since both are involved in dis-
urbance rejection. Indeed, neuroscientists often do not draw a strict
ine between states and exogenous measurements for the reason that
he distinction can be ambiguous. For example, the head velocity
easurement in the semicircular canals of the ears utilized by the

culomotor system may be viewed as a measurement of a state in
combined oculomotor-head model, or as an exogenous input in
7

an oculomotor model only. For a sufficiently flexible reflex control
architecture, we must allow both interpretations. On the other hand, we
make a distinction between the stabilizing term 𝑢𝑠 and the disturbance
rejection term 𝑢𝑥. The key qualitative difference is that 𝑢𝑠 vanishes
as regulation progresses (see (R7)), whereas 𝑢𝑥 does not, so long as
disturbances persist. ⊲

Remark 5. We also make some additional comments on the measure-
ment structure. We assume a full state measurement of 𝑥 is available
to 𝑢𝑥 for the sake of simplicity, but the control architecture may be
easily extended to deal with partial state measurements. Also, the form
of (22) is meant to capture state feedback, error feedback, and other
types of controllers. Thus, the dependence of the right hand sides of
(22a)–(22c) on 𝑥, 𝜁 , and 𝜁𝑦 does not imply that direct measurements of
those signals are available to the regulator. ⊲

Our goal is to devise an adaptation scheme for the reflex gains

𝛼̂ ∶= (𝛼̂𝑟, 𝛼̂𝑥)

so that 𝑢𝑟 + 𝑢𝑥 enhances the disturbance rejection properties of 𝑢𝑖𝑚.
Formally, we aim to minimize the following cost function

min
𝛼̂

(

lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0

1
2
‖𝑢𝑖𝑚(𝜏)‖2 𝑑𝜏

)

(23)

subject to lim
𝑡→∞

𝑒(𝑡) = 0 ,

capturing the (persistent) average cost of operating the internal model,
which must itself achieve error regulation.

In the spirit of modular design, we want the reflex adaptation
scheme to be agnostic to the choice of the internal model and the sta-
bilizing compensator. As such, we must identify the general properties
of any regulator (that determines 𝑢𝑠 + 𝑢𝑖𝑚) so that learning in 𝛼̂ reduces
the work of the regulator. The following assumption imposed on the
regulator is a variant of the Nonlinear Output Regulation Problem with
Exponential Stability (Huang, 2004, p. 77).

Assumption 4. Suppose 𝛼̂ is constant. The closed-loop system (19),
(20) and (22) satisfies:

(R4) the functions 𝑓𝑐 (⋅), 𝑢𝑠(⋅), and 𝑢𝑖𝑚(⋅) are continuously differentiable;
(R5) for some set 𝑦 ⊆ R𝑞𝑦 compact and invariant under (20a)

and constants 𝛿𝑓 , 𝛿𝛼 > 0 there exists a continuously differen-
tiable function 𝜋𝑐 ∶  × 𝑦 × (𝛿𝛼) → R𝑛𝑐 and constants
𝑐𝑓 (𝛿𝑓 , 𝛿𝛼 ,,𝑦), 𝜆𝑓 (𝛿𝑓 , 𝛿𝛼 ,,𝑦) > 0 such that, defining the error
states

𝑧 ∶= 𝑥 − 𝜋(𝜁 ) , 𝑧𝑐 ∶= 𝑥𝑐 − 𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂) , (24)

we have

‖(𝑧, 𝑧𝑐 )(𝑡)‖ ≤ 𝑐𝑓‖(𝑧, 𝑧𝑐 )(𝑡0)‖e
−𝜆𝑓 (𝑡−𝑡0)

for all 𝑡 ≥ 𝑡0 ≥ 0 over (𝑧, 𝑧𝑐 )(𝑡0) ∈ (𝛿𝑓 + 1) uniformly in
(𝜁, 𝜁𝑦)(𝑡0) ∈  ×𝑦 and 𝛼̂ ∈ (𝛿𝛼).

R6) there exists 𝛿 > 0 such that (𝑥, 𝑥𝑐 )(𝑡0) ∈ (𝛿), (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦,
and 𝛼̂ ∈ (𝛿𝛼) implies (𝑧, 𝑧𝑐 )(𝑡0) ∈ (𝛿𝑓 );

(R7) lim𝑡→∞ 𝑢𝑠(𝑥𝑐 (𝑡), 𝑥(𝑡), 𝜁(𝑡), 𝜁𝑦(𝑡)) = 0.

Remark 6. The classical statement of the nonlinear output regulation
problem includes asymptotic stability of the unforced system when
(𝜁, 𝜁𝑦) = 0, and regulation of 𝑒(𝑡) to zero (Isidori, 1995, p. 394). Here the
regulation requirement has been replaced by the stronger requirement
(R5), which says that for some set of initial conditions of (𝑥, 𝑥𝑐 ) and
for any constant 𝛼̂ in a ball, the plant and regulator states (𝑥, 𝑥𝑐 )
will converge exponentially to their steady-states (𝜋(𝜁 ), 𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂)). This
property in turn implies the classical requirement of error regulation.
Namely, by continuity of ℎ(⋅) and by the nonlinear regulator Eqs. (21)
we have

lim 𝑒(𝑡) = lim ℎ(𝑥(𝑡), 𝜁(𝑡)) = lim ℎ(𝜋(𝜁 (𝑡)), 𝜁(𝑡)) = 0.

𝑡→∞ 𝑡→∞ 𝑡→∞
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The requirement of asymptotic stability of the unforced system in
the classical regulator problem is removed in the adaptive problem
because asymptotic stability generally cannot be achieved by parameter
adaptation laws when the exosystem state is not PE. ⊲

3.1. Reflex adaptation law

Given any regulator satisfying Assumption 4, we investigate how
𝑢𝑟 + 𝑢𝑥 can be used to enhance the disturbance rejection process
as is done by reflexes in biological systems. Consider the change of
coordinates (24), where we assume 𝛼̂ is constant. Using (19), (20a),
21), and (22), we obtain the closed-loop system

̇ = 𝑓◦(𝑧 + 𝜋(𝜁 ), 𝜁 , 𝑢) − 𝑓◦(𝜋(𝜁 ), 𝜁 , 𝛾(𝜁 )) (25a)

̇ 𝑐 = 𝑓𝑐 (𝑧𝑐 + 𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂), 𝑧 + 𝜋(𝜁 ), 𝜁 , 𝜁𝑦)

−
[

𝜕𝜁𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂) 𝜕𝜁𝑦𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂)
]

[

𝑠(𝜁 )
𝑠𝑦(𝜁𝑦)

]

. (25b)

It follows from (R5) that (𝑧, 𝑧𝑐 ) = (0, 0) is an exponentially stable
equilibrium of this system. Now we want to examine the system’s
steady-state; namely when (𝑧, 𝑧𝑐 )(𝑡) ≡ (0, 0). Let 𝑢𝑠𝑠 denote the steady-
state of 𝑢 (again assuming 𝛼̂ is a constant). From (25a) at steady-state
and (R3) we have

0 = 𝑓◦(𝜋(𝜁 ), 𝜁 , 𝑢𝑠𝑠) − 𝑓◦(𝜋(𝜁 ), 𝜁 , 𝛾(𝜁 ))

= 𝑓◦(𝜋(𝜁 ), 𝜁 , 𝑢𝑠𝑠) − 𝜕𝜁𝜋(𝜁 )𝑠(𝜁 ) . (26)

On the other hand, using (22f), (R7), and by continuity in (R4), we
know that

𝑢𝑠𝑠 = 𝑢𝑖𝑚(𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂), 𝜋(𝜁 ), 𝜁 , 𝜁𝑦) + 𝛼̂
⊺
𝑥𝜋(𝜁 ) − 𝛼̂

⊺
𝑟 𝑦(𝜁, 𝜁𝑦).

Since 𝑢𝑠𝑠 is defined for 𝜁 ∈ , and from (26) it solves the same regulator
equations as 𝛾(⋅), it must be that 𝑢𝑠𝑠 = 𝛾(𝜁 ) by uniqueness in (R3). As a
result, we can express 𝑢𝑖𝑚 in steady-state as

𝑢𝑖𝑚(𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂), 𝜋(𝜁 ), 𝜁 , 𝜁𝑦) = 𝛾(𝜁 ) + 𝛼̂⊺
[

𝑦(𝜁, 𝜁𝑦)
−𝜋(𝜁 )

]

. (27)

This formula clarifies the overall strategy of a control architecture
that exploits reflexes. Firstly, if we had 𝛼̂ = 0 (no reflexes), then
the internal model would be tasked with generating a compensatory
input 𝑢𝑖𝑚 to cancel the effective disturbance 𝛾(𝜁 ). Now suppose that some
component of the signal 𝛾(𝜁 ) could be perfectly canceled by a signal
generated as 𝛼⊺

[

𝑦(𝜁, 𝜁𝑦)⊺ −𝜋(𝜁 )⊺
]⊺ for a suitable 𝛼. Then the work of

the internal model could be reduced in steady-state with the help of
properly adapted reflexes if the residual disturbance

𝛾 ′(𝜁 ) ∶= 𝛾(𝜁 ) + 𝛼⊺
[

𝑦(𝜁, 𝜁𝑦)
−𝜋(𝜁 )

]

(28)

has smaller signal energy in a suitable norm.
To contain the complexity of our developments, we consider the

case when the residual disturbance 𝛾 ′(𝜁 ) can be perfectly canceled by
suitably adapted reflexes 𝑢𝑟 + 𝑢𝑥 such that 𝛾 ′(𝜁 ) = 0.

Assumption 5. The effective disturbance 𝛾(𝜁 ) and our measurement
𝑣 ∶= (𝑦,−𝜋) in steady-state satisfy:

(R8) there exists 𝛼 = (𝛼𝑟, 𝛼𝑥) such that 𝛾(𝜁 ) = −𝛼⊺𝑣(𝜁, 𝜁𝑦);
(R9) the autocovariance matrix

𝑅𝑣(0) ∶= lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑣(𝜏)𝑣⊺(𝜏) 𝑑𝜏

of 𝑣(𝑡) ∶= 𝑣(𝜁 (𝑡), 𝜁𝑦(𝑡)) exists, where its convergence is uniform in
𝑡0 ≥ 0 and (𝜁, 𝜁𝑦)(𝑡0) ∈  ×𝑦.

emark 7. We emphasize that (R8) is a somewhat artificial assumption
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hat will not be valid for all reflexes. For example, the assumption fails
or certain reflexes of the oculomotor system because there is no direct
easurement in the brain of visual target positions that constitute
reference signal for oculomotor tracking. Instead, for the stretch

eflexes, the assumption is satisfied because a full measurement of the
orque disturbance on each joint is available for use by the reflex. This
eans the stretch reflexes can fully compensate for torque disturbances,
ithout direct support from the cerebellum, so long as their reflex gains
re properly adapted.

Fortunately, (R8) can be removed, and the stability analysis tools
eeded for the more general development will be the same as the ones
resented here, especially as regards the use of the two timescale results
f Section 2.5. The more general result will be presented in a separate
aper. Finally, we mention that (R9) is a technical assumption to ensure
hat the averaging process is valid. ⊲

Using (R8) we can re-express 𝑢𝑖𝑚 in steady-state as

𝑖𝑚(𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂), 𝜋(𝜁 ), 𝜁 , 𝜁𝑦) = (𝛼̂ − 𝛼)⊺𝑣(𝜁, 𝜁𝑦) . (29)

The goal of the reflex inputs is to minimize the steady-state work of the
internal model, as stated in (23). As elaborated in Hafez et al. (2023),
one can equivalently consider the instantaneous cost function

𝐽𝑖𝑚 = 1
2
𝑢2𝑖𝑚 , (30)

with 𝑢𝑖𝑚 interpreted to be in steady-state. By the steady-state expression
for 𝑢𝑖𝑚 in (29), we arrive at the gradient law for adaptation of the reflex
gains:

̇̂𝛼 =
[ ̇̂𝛼𝑟
̇̂𝛼𝑥

]

= −𝜀𝑢𝑖𝑚

[

𝑦
−𝑥

]

(31)

with 𝜀 > 0 to be selected sufficiently small.
We notice that 𝜀 must be selected to be sufficiently small in order

that the internal model, which operates on a fast timescale, has suf-
ficient time for 𝑢𝑖𝑚 to reach a quasi-steady-state. Meanwhile the slow
variation of 𝛼̂ makes it appear quasi-static to the internal model. The
two rates associated with the fast adaptive process in (22a) and the slow
adaptive process in (31) are what give rise to a two timescale control
architecture, motivating the discussion in Section 2.5.

Remark 8. The design of the reflex adaptation law (31) started from an
(R8) that the residual disturbance can be made zero by a suitable value
of 𝛼. The gradient of the instantaneous cost (30) immediately leads to
the reflex adaptation law. These ideas can more generally be cast in
terms of optimal steady-state control (OSS), recently developed primarily
for power system applications (Bianchin, Cortes, Poveda, & Dall’Anese,
2022; Colombino, Dall’Anese, & Bernstein, 2020; Dall’Anese, Dhople,
& Giannakis, 2015; Hauswirth, Bolognani, Hug, & Dörfler, 2021; Jokic
et al., 2009; Lawrence, Simpson-Porco, & Mallada, 2021). We further
developed the connection with OSS control problems by formulating
the optimal steady-state regulation (OSSR) problem in Hafez et al. (2023).
The idea of OSSR is that regulation can be performed by several types of
controllers: adaptive internal models, static internal models, state feed-
backs, and feedforward controls, among others, but these controllers
can have widely different steady-state costs associated with them. The
goal of the OSSR problem is to find the right mix of controllers to
minimize the overall steady-state cost of regulation.

The OSSR problem considered here can be interpreted as one where
there are three types of controllers for regulation: a state feedback
𝑢𝑥, a feedforward control 𝑢𝑟, and an adaptive internal model with
output 𝑢𝑖𝑚. The average cost (23) and the instantaneous cost (30)
capture the fact that the (biological) cost of operation of the adaptive
internal model far outweighs the cost of operating state feedbacks and
feedforward controls. In the OSSR framework, rather than imposing the
assumption (R8), one proves existence and uniqueness of solutions of
the posed instantaneous and averaged optimization problems (Hafez
et al., 2023). ⊲
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Remark 9 (∗). Over 400 million years, it appears all vertebrates utilize
a two timescale control architecture in which reflexes are trained
by the cerebellum in a process of long-term adaptation of the reflex
gains (MacKay & Murphy, 1979). From a control perspective, this
striking fact begs the question of what makes this control architecture
superior to other methods of disturbance rejection. At this point based
on our models, we can make some speculations. First, it is clear
that when the sensory signal 𝑦 does not contain a full measurement
of the disturbance acting on a particular sub-system being regulated
(e.g. the oculomotor system), then the cerebellum is needed as a backup
disturbance rejection module to cancel the residual disturbance (28).
But if the cerebellum is available to perform disturbance rejection, why
would reflexes be needed? The first argument is that adaptive internal
models are unable to handle rapid, burst-like disturbances (such as the
effect of footfalls on eye position), whereas they deal effectively with
persistent disturbances. The second argument for retaining reflexes is
that they offload the steady-state work of the cerebellum, which likely
has a high biological cost of operation.

It becomes clear that an architecture that includes both the cere-
bellum containing adaptive internal models for rejecting persistent
disturbances and reflexes for rejecting brief disturbances has benefits.
But why are the adaptation processes in the cerebellum and of the
reflex acting on two timescales? This issue is more subtle, and it has
been more deeply explored in our companion paper (Mejia Uzeda
& Broucke, 2023). In a nutshell, the reflex gains capture unmodeled
physical pathways in the body whose values should remain close to
ideal physical constants for proper function of the reflexes. Allowing
these reflex gains to be modified on a short timescale can be shown to
result in poor performance of the reflexes. ⊲

3.2. Two timescale dynamics

The two timescale system is obtained by combining the (𝑧, 𝑧𝑐 )
dynamics, naturally assuming 𝛼̂ is no longer constant, with the 𝛼̂
dynamics. We define

𝜒 ∶=
[

𝑧
𝑧𝑐

]

, 𝛼̃ ∶= 𝛼̂ − 𝛼 , 𝑣(𝑡) ∶= 𝑣(𝜁 (𝑡), 𝜁𝑦(𝑡)),

where (𝑧, 𝑧𝑐 ) is defined in Section 3.1. Notice from (25b) that at
equilibrium we have

𝑓𝑐 (𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂), 𝜋(𝜁 ), 𝜁 , 𝜁𝑦) =
[

𝜕𝜁𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂) 𝜕𝜁𝑦𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂)
]

[

𝑠(𝜁 )
𝑠𝑦(𝜁𝑦)

]

.

Invoking (25), (31), and the previous statement, we derive the closed-
loop dynamics which take the form (16) with

𝐹 (𝑡, 𝜒, 𝛼̃) ∶=
[

𝑓◦(𝑥, 𝜁, 𝑢) − 𝑓◦(𝜋(𝜁 ), 𝜁 , 𝛾(𝜁 ))
𝑓𝑐 (𝑥𝑐 , 𝑥, 𝜁 , 𝜁𝑦) − 𝑓𝑐 (𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂), 𝜋(𝜁 ), 𝜁 , 𝜁𝑦)

]

𝑔(𝑡, 𝜒, 𝛼̃) ∶=
[

0
−𝜕𝛼̂𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂)𝑓 (𝑡, 𝜒, 𝛼̃)

]

𝑓 (𝑡, 𝜒, 𝛼̃) ∶= −𝑢𝑖𝑚(𝑥, 𝑥𝑐 , 𝜁 , 𝜁𝑦)
[

𝑦(𝜁, 𝜁𝑦)
−𝑥

]

with 𝑢 given in (22). Notice that the time 𝑡 argument arises from the
exogenous signals (𝜁, 𝜁𝑦)(𝑡). Indeed, we obtain a family of time-varying
systems, one for each (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦. The following is the main
result of this section, proved in Section 3.3.

Theorem 6. Consider the system (19)–(20) with the regulator (22), (31)
satisfying Assumptions 3–5. Also, suppose that 𝑣(𝑡) is uniformly PE in
(𝜁, 𝜁𝑦)(𝑡0) ∈ ×𝑦 and suppose 𝛼 ∈ int((𝛿𝛼)). Let (16) denote the resulting
closed-loop dynamics. Then Assumption 2 holds uniformly in (𝜁, 𝜁𝑦)(𝑡0) ∈
 × 𝑦 and for each residual 𝜖 > 0 the conclusions of Theorems 4–5 hold.
In particular, the result holds for (𝑥, 𝑥𝑐 )(𝑡0) ∈ (𝛿), 𝛼̂(𝑡0) ∈ 𝛼 + (𝛿𝑠), and
(𝜁, 𝜁 )(𝑡 ) ∈  × .
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𝑦 0 𝑦
From Theorem 6 we may conclude the output regulation problem
is solved since 𝜒 → 0 implies 𝑒 → 0.

Remark 10. The additional statement, found in Theorems 4–5, that
𝛿𝑠 → ∞ as 𝛿𝛼 → ∞ regardless of the regulator is meant to highlight
a (theoretical) design methodology. First, for a collection of nominal
, 𝑦 one selects a desired set of initial conditions for the slow state:
̂ (𝑡0) ∈ (𝛿𝑠). This selection of 𝛿𝑠 in turn determines 𝛿𝛼 characterizing
the ball over which the slow averaged states evolve. Next, one con-
structs a regulator satisfying Assumption 4 assuming a constant 𝛼̂ lying
in the 𝛿𝛼 ball. ⊲

Remark 11. To obtain a global version of Theorem 6 all functions
should be globally Lipschitz uniformly in (𝜁, 𝜁𝑦) over compact sets,
and the regulator (22) should achieve global exponential stability in
(R5). Also we note that continuous differentiability requirements can
be relaxed but we do not do so for simplicity and because all considered
regulator designs are sufficiently smooth. ⊲

3.3. Proof of Theorem 6

Theorem 6 basically follows from Theorems 4–5, so we carry out
the necessary set up. First we show that our regulator with reflex
adaptation satisfies Assumption 2.

Proposition 3. If 𝑣(𝑡) is uniformly PE in (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦 and we
have 𝛼 ∈ int((𝛿𝛼)), then the resulting closed-loop system (16) satisfies
Assumption 2 uniformly in (𝜁, 𝜁𝑦)(𝑡0) ∈  ×𝑦.

Proof. We verify each condition holds uniformly for (𝜁, 𝜁𝑦)(𝑡0) ∈ ×𝑦.

(C1): Continuous differentiability follows from (R1) and (R4), and
piecewise continuity as well as uniformity with respect to 𝑡 ≥ 0
follows from the fact that (𝜁, 𝜁𝑦)(𝑡) is generated by an ODE and
, 𝑦 in (R3) are compact and invariant;

(C2): It follows from (R5) and (R8) (implying (29)) that (𝜒, 𝛼̃) = (0, 0)
is an equilibrium of the considered closed-loop system cast as
(16) for all 𝜀 > 0, implying that 𝐹 (⋅), 𝑔(⋅), and 𝑓 (⋅) vanish at
(𝜒, 𝛼̃) = (0, 0);

(C3): Convergence of the averages follows from the existence of the
autocovariance matrix in (R9) and linearity of the function
𝑓 (𝑡, 0, 𝛼̃) = −𝑣(𝑡)𝑣⊺(𝑡)𝛼̃ in 𝛼̃;

(C4): Since 𝛼 ∈ int((𝛿𝛼)), let 𝛿′𝛼(𝛿𝛼) > 0 define the largest ball such that
the shifted ball 𝛼+(𝛿′𝛼) ⊆ (𝛿𝛼). Then 𝛼̃ ∈ (𝛿′𝛼) and the relevant
stability requirement for the 𝜒 dynamics holds for 𝛿𝑓 , 𝛿′𝛼 > 0 by
(R5);

(C5): Given that 𝑣(𝑡) is uniformly PE for (𝜁, 𝜁𝑦)(𝑡0) ∈ ×𝑦 and that the
autocovariance matrix 𝑅𝑣(0) exists by (R9), we can use Lemma 1
to conclude 𝑅𝑣(0) is uniformly positive definite and bounded.
Then −𝑅𝑣(0) is uniformly Hurwitz and thus the relevant stability
requirement holds because 𝑓𝑎𝑣(𝛼̃𝑎𝑣) = −𝑅𝑣(0)𝛼̃𝑎𝑣. □

Immediately applying Theorem 5 for each time-varying system
obtained by substituting (𝜁, 𝜁𝑦) ↦ (𝜁, 𝜁𝑦)(𝑡), for each initial condi-
tion (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦 we have that there exists 𝛿𝑠(𝛿′𝛼 , 𝜁(𝑡0), 𝜁𝑦(𝑡0)),
𝜀⋆(𝛿, 𝛿′𝛼 , 𝜁(𝑡0), 𝜁𝑦(𝑡0)) > 0 such that for any fixed 𝜀 ∈ (0, 𝜀⋆) the
equilibrium (𝜒, 𝛼̃) = (0, 0) is ES over (𝜒, 𝛼̃)(𝑡0) ∈ (𝛿𝑓 ) × (𝛿𝑠). But
since Assumption 2 holds true uniformly in (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦 by
Proposition 3, all constants obtained can be selected independent of
(𝜁, 𝜁𝑦)(𝑡0). That is, for the family of time-varying two timescale sys-
tems (16) obtained by substituting (𝜁, 𝜁𝑦) ↦ (𝜁, 𝜁𝑦)(𝑡), there exists
𝛿𝑠(𝛿′𝛼 ,,𝑦), 𝜀⋆(𝛿, 𝛿′𝛼 ,,𝑦) > 0 such that the conclusions of Theorem 5
hold true uniformly for any of the time-varying systems associated to
some (𝜁, 𝜁𝑦)(𝑡0) ∈ ×𝑦. An identical reasoning is used when applying
Theorem 4.

Returning to Theorem 6, we need to show that if (𝑥, 𝑥𝑐 )(𝑡0) ∈ (𝛿)
and 𝛼̂(𝑡 ) ∈ 𝛼+(𝛿 ), where 𝛿 is provided by (R6), then the exponential
0 𝑠
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stability results above for (𝜒, 𝛼̃) are valid. To this end, it suffices to show
that if we take (𝑥, 𝑥𝑐 )(𝑡0) ∈ (𝛿), (𝜁, 𝜁𝑦)(𝑡0) ∈ ×𝑦, and 𝛼̂(𝑡0) ∈ 𝛼+(𝛿𝑠),
hen 𝜒(𝑡0) ∈ (𝛿𝑓 ) and 𝛼̃(𝑡0) ∈ (𝛿𝑠). First, note that 𝛿𝑠 < 𝛿′𝛼 by the proof

of Theorem 4. Therefore

̂ (𝑡0) ∈ 𝛼 + (𝛿𝑠) ⊆ 𝛼 + (𝛿′𝛼) ⊆ (𝛿𝛼).

Then 𝜒(𝑡0) ∈ (𝛿𝑓 ) follows by (R6), and 𝛼̃(𝑡0) ∈ (𝛿𝑠) is immediate. At
last, we point out that if 𝛿𝛼 → ∞, then 𝛿′𝛼 → ∞ and so 𝛿𝑠 → ∞, as
desired. Note that this property is independent of the regulator used
because the family of 𝑓𝑎𝑣(⋅) considered depends solely on  and 𝑦;
that is, each 𝑓𝑎𝑣(⋅) is fully characterized by its associated regressor 𝑣(𝑡)
which only depends on 𝜋(⋅) given by the regulator equations for the
open-loop system in (R3) and (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦. This concludes the
proof.

4. Training reflexes in the LTI case

In this section we illustrate the ideas of Section 3 by invoking the
regulator design reviewed in Section 2.4. Consider the SISO LTI system
(6). Suppose we have a partial disturbance measurement 𝑦(𝑡) ∈ R𝑝

whose components are generated by the LTI exosystems

𝜁̇𝑖 = 𝑆𝑖𝜁𝑖 (32a)

𝑦𝑖 = 𝛤𝑖𝜁𝑖 (32b)

where 𝜁𝑖(𝑡) ∈ R𝑞 wlog. To relate (32) with (20), we define 𝜁𝑦 ∶=
(𝜁1,… , 𝜁𝑝) and identify 𝑠𝑦(⋅) with the matrix diag(𝑆𝑖). Using a similar
coordinate transformation as for (12) we may write

𝑤̇𝑖 = 𝐹𝑤𝑖 + 𝐺𝑦𝑖
𝑦𝑖 = 𝜓⊺

𝑖 𝑤𝑖

for appropriate 𝜓𝑖 ∈ R𝑞 .

Assumption 6. The open-loop system (6) satisfies Assumption 1.
Additionally, it and the measurement (32) satisfy:

(A7) the matrices 𝑆𝑖 only have simple eigenvalues on the 𝑗𝜔-axis;
(A8) the dimension 𝑞 is interpreted as a known upper bound on the

order of each exosystem needed to generate 𝑦𝑖;
(A9) the measurements are 𝑒, 𝑥, and 𝑦.

The next assumption for the LTI case is analogous to (R8) in the
nonlinear setting.

Assumption 7. There exists 𝛼 = (𝛼𝑟, 𝛼𝑥) such that

𝑑 = 𝛼⊺𝑥𝛱𝜁 − 𝛼
⊺
𝑟 𝑦.

We utilize a controller of the form (22f), where 𝑢𝑠 is given by (10)
or (11). Define 𝑣 ∶= (𝑦,−𝛱𝜁 ). From (27) we know that 𝑢𝑖𝑚 is tasked
with rejecting the residual disturbance given by (28). For the LTI case
considered here, the residual disturbance is given by

𝑑 + 𝛼̂⊺𝑣 = 𝛼̃⊺𝑣 = (𝛼̂𝑟 − 𝛼𝑟)⊺𝑦 − (𝛼̂𝑥 − 𝛼𝑥)⊺𝛱𝜁

= 𝛼̃⊺
[

0 diag(𝜓⊺
1 ,… , 𝜓⊺

𝑝 )
−𝛱𝑀−1 0

]

𝑤

=∶ 𝜓⊺(𝛼̃)𝑤 , (33)

where 𝑤(𝑡) ∶= (𝑤0,… , 𝑤𝑝)(𝑡) ∈ R𝑞(𝑝+1). As a result, we choose the
adaptive internal model to be

̇̂𝑤0 = 𝐹𝑤̂0 + 𝐺𝑢 (34a)
̇̂𝑤𝑖 = 𝐹𝑤̂𝑖 + 𝐺𝑦𝑖 (34b)

𝑤̂ ∶= (𝑤̂0,… , 𝑤̂𝑝) (34c)
̇̂𝜓 = − sgn(𝑏)𝛾𝑒0𝑤̂ (34d)

⊺ ̂
10

𝑢𝑖𝑚 = 𝜓̂ 𝑤 (34e)
where 𝜓̂(𝑡) ∈ R𝑞(𝑝+1) and 𝛾 > 0. Finally, in accordance with the
requirement that the reflex adaptation law is agnostic to the choice of
regulator, the reflex adaptation law for 𝛼̂ remains the one given in (31).

Remark 12. We have elected to use the same filters for 𝑤̂0 and 𝑤̂𝑖
to keep the notation simple. More generally, the pair (𝐹𝑖, 𝐺𝑖) could be
different for each filter, modulo the controllability and stability require-
ments discussed for (12). It may seem curious that we include the filters
(34b), in the style of Kreisselmeier filters, since afterall the signals 𝑦𝑖
are directly available. The key architectural issue at play is that the
adaptive internal model should only process persistent components of
disturbances measurable through 𝑦. In the same vein, only the reflexes
should react to brief impulsive disturbances, because only they have the
properly adapted reflex gains to respond appropriately. For this reason,
we include extra filtering on 𝑦 before it can be utilized by the adaptive
internal model. ⊲

4.1. Stability with persistent excitation

The goal of this section is to show that the regulator defined in
the previous section with 𝛼̂ constant satisfies the exponential stability
requirement of Assumption 4. First we write the closed-loop dynamics.
Define the observer errors 𝑤̃0 ∶= 𝑤̂0 − 𝑤0 − 𝑏−1𝐺𝑒0, 𝑤̃𝑖 ∶= 𝑤̂𝑖 − 𝑤𝑖 for
𝑖 ∈ { 1,… , 𝑝 }, 𝑤̃ = (𝑤̃0,… , 𝑤̃𝑝), and 𝜉 ∶= 𝜅𝑟𝐷−1

𝜅 (𝜉 − 𝜉). Also define
the parameter error 𝜓̃ ∶= 𝜓̂ − 𝜓(𝛼̃), and note that 𝜓(𝛼̃) = 𝛹𝛼̃ for an
appropriate matrix 𝛹 . Fix 𝛼̃ to be constant and let 𝑥◦ ∶= (𝑧0, 𝜉◦, 𝑤̃, 𝑒0).
Then using (9), (11), (22d)–(22f), (33), and (34), we can derive the
closed-loop dynamics
[

𝑥̇◦
̇̃𝜓

]

=
[

𝐴(𝐾, 𝛼̃) 𝑏𝐵◦𝑤̂⊺

− sgn(𝑏)𝛾𝑤̂𝐵⊺
◦ 0

] [

𝑥◦
𝜓̃

]

+ 𝐵1(𝐾, 𝜅, 𝑤̂)𝜉 (35a)

̇̃𝜉 = 𝜅(𝐴◦ − 𝐿𝐶◦)𝜉 + 𝐵2(𝐾, 𝛼̃, 𝑤̂)
[

𝑥◦
𝜓̃

]

+ 𝐵3(𝐾, 𝜅)𝜉 (35b)

where (for some appropriate 𝑎̄𝑟0(𝛼), 𝑎̄𝑟𝑟(𝛼), 𝑇0, 𝑇𝑟, 𝑀𝑤)

𝐴(𝐾, 𝛼̃) ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

[

𝐴00 𝐴′
01

0 𝐴◦ − 𝐵◦𝑎⊺

]

0 𝐵0𝑟
[

−𝑏−1𝐺𝑎⊺𝑟0
0

]

diag(𝐹 )
[

𝑏−1(𝐹𝐺 − 𝐺𝑎𝑟𝑟)
0

]

𝑎̄⊺𝑟0 + 𝛼̃
⊺𝑇0 𝑏𝛼̃⊺𝛹 ⊺ 𝑎̄𝑟𝑟 + 𝛼̃⊺𝑇𝑟 − |𝑏|𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

nd

1(𝐾, 𝜅, 𝑤̂) ∶= −
[

|𝑏|𝐵◦𝐾
sgn(𝑏)𝛾𝑤̂

]

[

𝑎⊺ 1
]

𝜅−𝑟𝐷𝜅

𝐵3(𝐾, 𝜅) ∶= |𝑏|𝐵◦𝐾
[

𝑎⊺ 1
]

𝜅−𝑟𝐷𝜅

𝑤̂ = 𝑤(𝑡) +𝑀𝑤𝑥◦ ,

and 𝐵2(𝐾, 𝛼̃, 𝑤̂) is continuous uniformly in 𝑡 ≥ 𝑡0 ≥ 0. We proceed by
fixing some (𝜁, 𝜁𝑦)(𝑡0) (implying a fixed 𝑤(𝑡0)) and assuming that the
associated exogenous regressor 𝑤(𝑡) is PE.

The next result, related to Lemma 4, shows that the system (35a)
without the high-gain observer is exponentially stable in every closed
ball of initial conditions; see Proposition 1.

Lemma 5. Consider system (35a) with 𝜉 = 0. Also, suppose 𝑤(𝑡) is PE and
𝛼̃ ∈ (𝛿𝛼) for some 𝛿𝛼 > 0. There exists 𝐾⋆(𝛿𝛼) > 0 such that for every
𝐾 ≥ 𝐾⋆, the equilibrium (𝑥◦, 𝜓̃) = (0, 0) is GUAS and LES uniformly in 𝛼̃.

Proof. The proof is a minor variation of that of Lemma 4; see Section 9
. We select 𝐾⋆(𝛿𝛼) according to Lemma 3 such that for all 𝐾 ≥ 𝐾⋆,
the matrix 𝐴(𝐾, 𝛼̃) is Hurwitz uniformly in 𝛼̃. Using the same stability
argument, one deduces that (𝑥◦, 𝜓̃) = (0, 0) is GUAS uniformly in 𝛼̃. For
the exponential stability argument, we notice that the linearization is
GES uniformly in 𝛼̃ because 𝑃 and 𝜌 in Lemma 3 are independent of

𝛼̃. □
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The main result on stability of (35) is an extension of Theorem 3
stating that for any initial conditions, one can build an observer with
sufficiently high gain.

Theorem 7. Consider system (35). Also, suppose 𝑤(𝑡) is PE and 𝛼̃ ∈ (𝛿𝛼)
or some 𝛿𝛼 > 0. For each 𝛿1 > 0 there exists 𝐾⋆(𝛿𝛼) > 0 and 𝜅⋆(𝐾, 𝛿1, 𝛿𝛼) ≥
such that for any fixed 𝐾 ≥ 𝐾⋆ and 𝜅 ≥ 𝜅⋆ the equilibrium (𝑥◦, 𝜓̃ , 𝜉) =

0, 0, 0) is ES over (𝑥◦, 𝜓̃)(𝑡0) ∈ (𝛿1) and 𝜉(𝑡0) ∈ (𝛿1𝜅𝑟−1) uniformly in 𝛼̃.

roof. The proof of Theorem 3 in Section 9 may be applied, with a few
dded notes. First, when applying Teel and Praly (1995, Lemma 2.4),
he uniform Lyapunov property (Teel & Praly, 1995, Assumption ULP)
s satisfied by 𝑉1(𝑥◦, 𝜓̃) (Lin, Sontag, & Wang, 1996, Theorem 2.9)
ecause the equilibrium (𝑥◦, 𝜓̃) = (0, 0) is GUAS uniformly in 𝛼̃ by
emma 5 and since the dynamics (35a) with 𝜉 = 0 are locally Lipschitz
n (𝑥◦, 𝜓̃) uniformly in (𝑤, 𝛼̃) ∈  × (𝛿𝛼).

Second, because of Lemma 5, we can invoke a converse Lyapunov
unction 𝑉2(𝑡, 𝑥◦, 𝜓̃ ; 𝛼̃) ∶ [0,∞) × (𝛿2) × (𝛿𝛼) → R+ satisfying the
onclusions of Khalil (2002, Theorem 4.14) with constants 𝑐𝑖 > 0 that
old uniformly for all 𝛼̃ ∈ (𝛿𝛼). As such, the remaining arguments are
ndependent of 𝛼̃ ∈ (𝛿𝛼). □

.2. Proof of correctness

We can finally show that our LTI design solves the reflex adaptation
roblem (23) of offloading the internal model through appropriate
daptation of the reflex gain 𝛼̂. The main work, in addition to verifying
ssumptions 3 and 5, is to show that the internal model design (34)
s well as the stabilizer (11) satisfy all the conditions of Assump-
ion 4. Then we invoke Theorem 6 to conclude the result. Note that
n the following statement we take the sets  and 𝑦 to be orbits of
he exosystems (19b) and (20a) in order to guarantee a uniform PE
ssumption.

heorem 8. Consider system (6) with the regulator (11) (or (10)), (22d)–
(22f), (31), (34) satisfying Assumption 1, 6–7. Also, fix orbits , 𝑦 of
the exosystems and suppose that 𝑤(𝑡) and 𝑣(𝑡) are each PE. Define 𝑥𝑐 ∶=
(𝑤̂, 𝜉, 𝜓̂). Then for each 𝛿 > 0 one may instantiate one such regulator so
that Assumptions 3–5 hold and the coordinate transformation (24) yields a
closed-loop system of the form (16). Therefore, for each regulator built the
conclusions of Theorem 6 hold.

Proof. The result essentially follows from Theorem 6, so we need to
verify the relevant assumptions hold. We begin with Assumption 3.

(R1): Continuous differentiability follows from linearity of the plant
and exosystems;

(R2): Neutral stability follows from the fact that 𝑆 and each 𝑆𝑖 only
have simple eigenvalues on the 𝑗𝜔-axis by (A2), (A7);

(R3): Uniqueness of 𝜋(𝜁 ) ∶= 𝛱𝜁 and 𝛾(𝜁 ) ∶= 𝛤𝜁 (defined for all 𝜁 ∈ R𝑞)
follows from the non-resonance List (A3) (Saberi, Stoorvogel, &
Sannuti, 2000, Ch. 2.5). Note that since  and 𝑦 are orbits of a
neutrally stable exosystem, they are compact and invariant.

Next we verify Assumption 5.

(R8): Equivalent to Assumption 7;
(R9): Since the output of an LTI exosystem is almost periodic in 𝑡, Hale

(1980, Appendix, Theorem 6) gives us that the autocovariance
matrix of 𝑣(𝑡) exists with convergence uniform 𝑡0 ∈ R. Uniform
convergence with respect to (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦 follows from
the fact that  and 𝑦 are orbits and our exosystems are time-
invariant. That is, any two trajectories of, e.g., (19b) in  must
be related by a time shift, which is dealt with by uniformity
with respect to 𝑡0 ∈ R of the convergence of the autocovariance
11

matrix.
Before verifying Assumption 4, for a fixed  × 𝑦 and 𝛿 > 0, we need
to construct a regulator with sufficiently high gains 𝐾 and 𝜅. To this
end, we must first determine sufficiently large constants 𝛿𝑓 , 𝛿𝛼 > 0 such
that (R6) holds. To begin, note that 𝑣(𝑡) is uniformly PE with respect
to (𝜁, 𝜁𝑦)(𝑡0) ∈  × 𝑦 because the PE property is time shift invariant
and we have selected , 𝑦 to be orbits. Additionally, 𝑣(𝑡) is uniformly
bounded by compactness of  and 𝑦. As a result, using the final part
of Theorem 6 which is independent of the regulator 𝑢𝑠 + 𝑢𝑖𝑚 we are to
build, there exists 𝛿𝑠(⋅) such that

lim
𝛿𝛼→∞

𝛿𝑠(𝛿𝛼 ,,𝑦) = ∞.

Next, remark that our initial conditions satisfy

(𝑥, 𝑥𝑐 , 𝛼̂)(𝑡0) ∈ (𝛿) ⟹ (𝑥, 𝑥𝑐 )(𝑡0) ∈ (𝛿) , 𝛼̂(𝑡0) ∈ (𝛿).

As such, we pick 𝛿𝛼(𝛿,,𝑦) > 0 sufficiently large such that

(𝛿) ⊆ 𝛼 + (𝛿𝑠) , 𝛼 ∈ int((𝛿𝛼)).

Given that (R6) uses the (𝑧, 𝑧𝑐 ) error states, we need to construct
the continuously differentiable function 𝜋𝑐 (⋅) capturing the steady-
state behavior of the regulator for any constant 𝛼̂. As suggested by
Theorem 7, if 𝛼̃ is constant then we could design a regulator such that
(𝑥◦, 𝜓̃ , 𝜉) → (0, 0, 0). It is quite direct to see that this implies

𝜉 → 0 ⟹ 𝜉 → 𝜉

𝜓̃ → 0 ⟹ 𝜓̂ → 𝜓(𝛼̃)

𝑥◦ → 0 ⟹ 𝜉◦ → 0 and 𝑒0 → 0 ⟹ 𝜉 → 0 .

Furthermore, we have that

𝑥◦ → 0 ⟹ 𝑤̃→ 0 and 𝑒0 → 0 ⟹ 𝑤̂→ 𝑤 = 𝑀̄
[

𝜁
𝜁𝑦

]

for some invertible 𝑀̄ . Therefore, we define

𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼̂) = (𝑀̄
[

𝜁
𝜁𝑦

]

, 0, 𝜓(𝛼̃)).

Since , 𝑦 are compact and 𝜋𝑐 (⋅) is (at least) continuous, we conclude
that there exists 𝛿𝑓 (𝛿, 𝛿𝛼 ,,𝑦) > 0 such that (R6) holds, where 𝑧𝑐 ∶=
𝑥𝑐 − 𝜋𝑐 (𝜁, 𝜁𝑦, 𝛼).

To satisfy (R5), for which we have already determined 𝛿𝑓 , 𝛿𝛼 , and
𝜋𝑐 (⋅), we need to build a regulator whose basin of attraction (with
exponential stability) contains (𝑧, 𝑧𝑐 )(𝑡0) ∈ (𝛿𝑓 + 1). For this, note that
the change of coordinates

(𝑧, 𝑧𝑐 , 𝜁 , 𝜁𝑦, 𝛼̂) ↦ (𝑥◦, 𝜓̃ , 𝜉, 𝜁 , 𝜁𝑦, 𝛼̂)

is in fact a diffeomorphism. As such, and because ‖𝜅𝑟𝐷−1
𝜅 ‖ ≤ 𝜅𝑟−1,

there exists a 𝛿1(𝛿𝑓 , 𝛿𝛼 ,,𝑦) > 0 such that if (𝑧, 𝑧𝑐 )(𝑡0) ∈ (𝛿𝑓 + 1),
(𝜁, 𝜁𝑦)(𝑡0) ∈  ×𝑦, and 𝛼̂ ∈ (𝛿𝛼), then

(𝑥◦, 𝜓̃)(𝑡0) ∈ (𝛿1) , 𝜉(𝑡0) ∈ (𝛿1𝜅𝑟−1)

for all 𝜅 ≥ 1. We are now in a position to apply Theorem 7. Similar to
the reasoning presented for 𝑣(𝑡) earlier, we have that 𝑤(𝑡) is uniformly
PE and uniformly bounded. Therefore, the proof of Theorem 7 proceeds
as before with the addition that all relevant properties are uniform in
𝛼̃ and (𝜁, 𝜁𝑦)(𝑡0) ∈  ×𝑦. Hence there exists

𝐾⋆(𝛿,,𝑦) ∶= 𝐾⋆(𝛿𝛼) > 0

𝜅⋆(𝐾, 𝛿,,𝑦) ∶= 𝜅⋆(𝐾, 𝛿1, 𝛿𝛼) ≥ 1

such that (R5) is met for any 𝐾 ≥ 𝐾⋆ and 𝜅 ≥ 𝜅⋆. Then for any
appropriate fixed 𝐾, 𝜅 we verify Assumption 4.

(R4): Clearly the controller consisting of (11) (or (10)), (22f), and (34)

is continuously differentiable;
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(R5): Since 𝜓(𝛼̃) is a linear function of 𝛼̃, it is easy to see that 𝜋𝑐 (⋅) is
continuously differentiable. With a bit of algebra, one can show
that there exists an invertible matrix 𝑀𝜅 such that

[

𝑧
𝑧𝑐

]

=𝑀𝜅

⎡

⎢

⎢

⎣

𝑥◦
𝜉
𝜓̃

⎤

⎥

⎥

⎦

.

Therefore the required exponential stability follows from the
particular choices we made for 𝛿𝛼 , 𝛿𝑓 , and 𝛿1 in conjunction with
Theorem 7;

R6): The fact that 𝛿 satisfies the desired property is due to the choice
of 𝛿𝑓 ;

R7): Again by the steady-state analysis used to construct 𝜋𝑐 (⋅), we have
𝜉 → 0 and so 𝑢𝑠 → 0.

ith all the assumptions met, we invoke Theorem 6 to conclude that
or each 𝐾 ≥ 𝐾⋆ and 𝜅 ≥ 𝜅⋆ (which characterize the regulator being

employed) the result holds. □

Remark 13. Since 𝑧 is a component of 𝜒 , one deduces that 𝑒 = 𝐶𝑧→ 0.
herefore, we have error regulation. ⊲

In the previous two sections we developed a two timescale con-
rol architecture in which an adaptive internal model trains feed-
orward and state feedback reflex gains in a process of long-term
daptation. Whenever needed, we assumed regressors appearing in
arameter adaptation laws are PE. This unrealistic assumption is ar-
uably the most egregious departure from a real biological setting. The
ext section develops biologically inspired methods to remove the PE
ssumption, yet still retain robustness of the adaptation laws.

. The value of forgetting: A robustness mechanism

The idea that forgetting can be used as a means for robustness is
ot new. This can be seen in the literature through the use of the 𝜎-
odification in adaptive control and leaky integrators for PID control.
hat has eluded researchers for quite some time is the possibility of

sing forgetting to introduce robustness without hindering the learning
rocess, at least without introducing additional assumptions. In our
ecent works (Uzeda & Broucke, 2022, 2023), we emphasized that if
ne adopts the Use it or Lose it Principle from neuroplasticity (Kleim &
ones, 2008), then one may obtain robustness without sacrificing error
egulation via a suitable forgetting term. Intuitively, the principle states
hat:

‘‘Adaptation dynamics not excited by the regressor driving the learn-
ing process should be gradually forgotten, as they are ultimately not
needed’’.

n the upcoming developments, we demonstrate how one goes about
ystematically accounting for the lack of persistent excitation of regres-
ors. The proposed method is called the 𝜇-modification, and it does
ot require a priori information about unknown parameters nor does it
esort to weaker notions of excitation.

emark 14. While our developments will focus on persistent exci-
ation, the ideas to be presented can be adapted to work with other
otions of excitation, such as initial excitation (Roy & Bhasin, 2019).
ince we are primarily interested in learning from the environment
sing exogenous signals, the PE condition is suitable for our purposes.
or tasks such as adaptive stabilization, where the regressor is a state
eing driven to the origin, initial excitation appears to be the more
ppropriate notion of excitation to leverage. This is because persistent
xcitation of the state would be in direct conflict with the control
12

bjective of stabilizing the origin. ⊲ 𝜓
.1. Illustrative example

To put our ideas into context, consider the simple example of linear
egression. Suppose we have a measurement 𝑟(𝑡) = 𝑤⊺(𝑡)𝜓 where 𝑤(𝑡)
s a measured regressor and 𝜓 is the unknown parameter we would
ike to identify. A common approach to identify 𝜓 , prototypical of the
yriad adaptive algorithms in the literature (Ioannou & Sun, 2012), is

o employ the standard gradient algorithm

̇̂ = −𝛾𝑒𝑤(𝑡) , (36)

here 𝜓̂(𝑡) is the parameter estimate, 𝑒 = 𝑤⊺(𝑡)𝜓̂ − 𝑟(𝑡) is an error signal
hat needs to be regulated to zero, and 𝛾 > 0 is the adaptation gain.

hen 𝑤(𝑡) is PE, Theorem 1 tells us that the equilibrium 𝜓̂ = 𝜓 of
36) is GES. In turn, this implies that we have robustness with respect
o additive disturbances (Khalil, 2002, Lemma 4.6); namely, bounded
oise does not cause unbounded growth of 𝜓̂ .

More often than not, the regressor 𝑤(𝑡) will not be PE. This issue
s further exacerbated by the fact that the PE condition is difficult
o verify given that it must hold for the entire time horizon. When
ne does not have persistent excitation, even small disturbances can
ause unbounded growth of 𝜓̂ . To see this, suppose we have a non-PE
egressor

(𝑡) = sin(𝑡)
[

1
1

]

∈  ∶= Im
[

1
1

]

nd consider the coordinate transformation
[

𝜓̂𝑝𝑒
𝜓̂⟂

]

= 1
√

2

[

1 1
1 −1

]

𝜓̂ , (37)

with an analogous coordinate transformation for the unknown parame-
ter 𝜓 . Observe that we have selected (37) such that the first component
̂ 𝑝𝑒 is the projection of 𝜓̂ along the subspace  spanned (or excited)
by the regressor 𝑤(𝑡), and 𝜓̂⟂ is the (unexcited) component along its
orthogonal complement ⟂. As a result, (36) becomes

̇̂
𝑝𝑒 = −𝛾𝑒𝑤𝑝𝑒(𝑡) (38a)
̇̂𝜓⟂ = 0 (38b)

where 𝑤𝑝𝑒(𝑡) =
√

2 sin(𝑡) is PE and

𝑒 = 𝑤⊺(𝑡)(𝜓̂ − 𝜓) = 𝑤⊺
𝑝𝑒(𝑡)(𝜓̂𝑝𝑒 − 𝜓𝑝𝑒),

here 𝜓𝑝𝑒 =
1
√

2

[

1 1
]

𝜓 . Again by Theorem 1, the equilibrium 𝜓̂𝑝𝑒 =

𝑝𝑒 of (38a) is GES and so 𝑒 → 0. In contrast, the 𝜓̂⟂ dynamics are
table but not asymptotically stable. To emphasize the resulting lack of
obustness, note that if we introduce a bounded disturbance 𝑛(𝑡) then
38b) becomes the open-loop integrator dynamics

̇̂
⟂ = 𝑛(𝑡),

hich can cause unbounded growth of 𝜓̂ . For example, picking 𝑛(𝑡) =
0 > 0 implies that

lim
→∞

𝜓̂⟂(𝑡) = 𝜓̂⟂(𝑡0) + lim
𝑡→∞

𝑛0(𝑡 − 𝑡0) = ∞.

The form of (38) and the error signal 𝑒 indicates rather clearly what
hould be done for robustness. Referring back to the Use it or Lose it
rinciple: only the PE dynamics 𝜓̂𝑝𝑒 are used by the learning process,
mplying that the non-PE dynamics 𝜓̂⟂ should be gradually forgotten. In
articular, forgetting 𝜓̂⟂ can be accomplished through the introduction
f a leakage term in (38b). Let 𝛺𝛺⊺ be the orthogonal projection matrix
nto ⟂, given by

𝛺⊺ = 1
2

[

1 −1
−1 1

]

.

We modify (36) along the subspace ⟂ to obtain

̇̂ = −𝛾𝑒𝑤(𝑡) − 𝜇𝛺𝛺⊺𝜓̂ , (39)
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with 𝜇 > 0. Applying the coordinate transformation (38), the system
ecomes

̇̂
𝑝𝑒 = −𝛾𝑒𝑤𝑝𝑒(𝑡) (40a)
̇̂𝜓⟂ = −𝜇𝜓̂⟂ (40b)

Since the 𝜓̂𝑝𝑒 and 𝜓̂⟂ dynamics are decoupled, we see that the equi-
librium (𝜓̂𝑝𝑒, 𝜓̂⟂) = (𝜓𝑝𝑒, 0) of (40) is GES and moreover 𝑒 → 0. Hence

e have managed to render the adaptation scheme (36) robust through
targeted forgetting mechanism so that bounded disturbances do not

nduce unbounded growth of the state 𝜓̂ .
Suppose we did not already have in hand the orthogonal projection

atrix 𝛺𝛺⊺, but rather some arbitrary matrix 𝛺◦ with the property that
m(𝛺◦) = ⟂. Then one can construct the orthogonal projection onto
⟂ using the following known property of the Moore–Penrose inverse

matrix pseudoinverse), denoted †.

roposition 4. Let 𝛺◦ be a matrix. Then 𝛺◦𝛺
†
◦ is the orthogonal

projection matrix onto Im(𝛺◦).

Finally, there is the more realistic case when only an estimate
of 𝛺◦ is available. Since the pseudoinverse does not play well with
vanishing perturbations, it is unfortunately not adequate to compute
the orthogonal projection. To illustrate, consider the example

lim
𝑡→∞

(

[

1 0
0 𝑡−1

] [

1 0
0 𝑡−1

]†)

=
[

1 0
0 1

]

where the limit of the pseudoinverse does not coincide with the pseu-
doinverse of the limit
(

lim
𝑡→∞

[

1 0
0 𝑡−1

])(

lim
𝑡→∞

[

1 0
0 𝑡−1

])†

=
[

1 0
0 0

]

.

In the sequel, we present a more in-depth treatment providing the
relevant tools allowing one to extend these ideas to more sophisticated
adaptive systems, such as those presented in the prior section.

5.2. PE decomposition

In Section 5.1 the coordinate transformation (37) enabled a clear
interpretation of how the Use it or Lose it Principle could be applied
to obtain robust parameter adaptation via the 𝜇-modification. This
coordinate transformation was based on explicit and geometric exci-
tation properties of the regressor 𝑤(𝑡). The first order of business of
this section will be to extract an analogous geometric characterization
for an arbitrary regressor, resulting in a classification of regressor
excitation that goes beyond simply PE or not.

Assumption 8. The regressor 𝑤(𝑡) ∈ R𝑞 is bounded, piecewise continu-
ous, and its autocovariance matrix (2) exists with convergence uniform
in 𝑡0 ≥ 0.

Definition 3. The PE subspace  of the regressor 𝑤(𝑡) is

 ∶= Im(𝑅𝑤(0))

and its non-PE subspace ⟂ is

⟂ ∶= Ker(𝑅⊺
𝑤(0)) = Ker(𝑅𝑤(0)).

We denote 𝑞𝑝𝑒 ∶= dim() as its degree of persistent excitation.

When 𝑞𝑝𝑒 = 𝑞, 𝑤(𝑡) is PE by Lemma 1. When 𝑞𝑝𝑒 = 0, we say 𝑤(𝑡)
has no persistent excitation. In the general case, we can perform a PE
decomposition of the regressor into a PE component and a component
13

with no persistent excitation. 𝑒
Proposition 5. Suppose Assumption 8 holds. If 1 ≤ 𝑞𝑝𝑒 < 𝑞, let
[

𝑊 𝑊⟂
]

∈ R𝑞×𝑞 be any orthogonal matrix such that

 = Im(𝑊 ) , ⟂ = Im(𝑊⟂).

Then the PE decomposition

𝑤 = 𝑊𝑊 ⊺𝑤 +𝑊⟂𝑊
⊺
⟂𝑤 =∶ 𝑊𝑤𝑝𝑒 +𝑊⟂𝑤⟂

exists, where 𝑤𝑝𝑒(𝑡) ∈ R𝑞𝑝𝑒 is PE and 𝑤⟂(𝑡) ∈ R𝑞−𝑞𝑝𝑒 has no persistent
excitation. Moreover, we can select 𝑊 = 𝐼 and 𝑊⟂ = 0 if 𝑤(𝑡) is PE
(𝑞𝑝𝑒 = 𝑞), and 𝑊 = 0 and 𝑊⟂ = 𝐼 if 𝑤(𝑡) has no persistent excitation
(𝑞𝑝𝑒 = 0).

Proof. By orthogonality, we have 𝐼 = 𝑊𝑊 ⊺ +𝑊⟂𝑊
⊺
⟂ and so we let

𝑝𝑒 ∶= 𝑊 ⊺𝑤 and 𝑤⟂ ∶= 𝑊 ⊺
⟂𝑤. Computing the autocovariance matrices,

e have

𝑤𝑝𝑒 (0) = lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑤𝑝𝑒(𝜏)𝑤

⊺
𝑝𝑒(𝜏) 𝑑𝜏 = 𝑊 ⊺𝑅𝑤(0)𝑊

𝑅𝑤⟂
(0) = lim

𝑇→∞
1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑤⟂(𝜏)𝑤

⊺
⟂(𝜏) 𝑑𝜏 = 𝑊 ⊺

⟂𝑅𝑤(0)𝑊⟂

where convergence of the averages is uniform in 𝑡0 ≥ 0. Since
Ker(𝑅𝑤(0)) = ⟂ = Im(𝑊⟂) by definition, it is immediate that 𝑅𝑤⟂

(0) =
0. Therefore, 𝑤⟂(𝑡) has no persistent excitation.

To show that 𝑤𝑝𝑒(𝑡) is PE, by Sastry and Bodson (1989, Propo-
sition 2.7.1) it suffices to show 𝑅𝑤𝑝𝑒 (0) ≻ 0. Given that 𝑅𝑤𝑝𝑒 (0) is
lways positive semi-definite, we only need to show it has full rank.
y symmetry of 𝑅𝑤(0), we have that

𝑅𝑤(0) = 𝐼𝑅𝑤(0)𝐼 = 𝑊𝑊 ⊺𝑅𝑤(0)𝑊𝑊 ⊺ = 𝑊𝑅𝑤𝑝𝑒 (0)𝑊
⊺.

As a result, we obtain the inequality

𝑞𝑝𝑒 = rank(𝑅𝑤(0)) ≤ min{ rank(𝑊 ), rank(𝑅𝑤𝑝𝑒 (0)), rank(𝑊
⊺) }

= min{ 𝑞𝑝𝑒, rank(𝑅𝑤𝑝𝑒 (0)) } .

ence 𝑅𝑤𝑝𝑒 (0) ∈ R𝑞𝑝𝑒×𝑞𝑝𝑒 must satisfy rank(𝑅𝑤𝑝𝑒 (0)) ≥ 𝑞𝑝𝑒, implying that
t is full rank and so 𝑤𝑝𝑒(𝑡) is PE. □

In general, the component 𝑤⟂ does not vanish. A more in depth
iscussion is found in Uzeda and Broucke (2022, Section II). To keep
ur developments concise, we introduce the following regularity as-
umption, which holds for many classes of signals of interest to control
heorists and neuroscientists.

ssumption 9. The component 𝑤⟂ of the regressor 𝑤(𝑡) along its
on-PE subspace satisfies 𝑤⟂ = 0.

.3. Error model

We are ready to set up the 𝜇-modification based on the PE decom-
osition of the previous section. However, we want to consider a more
eneral error model than the simple linear regression in Section 5.1.
o that end, we must identify an error model that captures salient
eatures of those in the adaptive control literature (Narendra & An-
aswamy, 1989). There are two key observations. First, we consider the
lassical case when the dynamics can be parameterized linearly in the
nknown parameters (Annaswamy & Fradkov, 2021). Second, despite
any different methods to implement adaptive controllers, ultimately,

he form of the closed-loop system determines the structure of interest.
n example of the latter point is that the open-loop plant may be
resented with the unknown parameters in matched or unmatched
orm. After applying a suitable control technique, say backstepping, one
rrives at a closed-loop error model in which the parameter estimate
s matched with the unknown parameter (Krstic, Kanellakopoulos, &
okotovic, 1995).

Based on our two key observations, we consider an error model
enoted
= E [𝜓̂ , 𝑤(𝑡), 𝜈]
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𝑤
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where 𝑤(𝑡) is an exogenous regressor and 𝜈 is a vanishing pertur-
bation. The closed-loop system with adaptation can be written as a
time-varying system with error dynamics

𝜉̇ = 𝐴(𝑡, 𝜉) + 𝐵(𝑡)(𝑤̂⊺𝜓̂ −𝑤⊺𝜓) (41a)

𝑒 = 𝐶(𝑡, 𝜉) +𝐷(𝑡)(𝑤̂⊺𝜓̂ −𝑤⊺𝜓) (41b)

using the adaptation law

̇̂𝜓 = −𝛾𝑒𝑤̂ (42)

and regressor estimate

𝜈̇ = 𝛥(𝑡, 𝜈) (43a)

̂ = 𝑤(𝑡) + 𝑤̃(𝑡, 𝜈) (43b)

here 𝜉(𝑡) ∈ R𝑛 is the error state, 𝑒(𝑡) ∈ R is a scalar error signal,
𝜓̂(𝑡) ∈ R𝑞 is an estimate of the true parameter 𝜓 , and 𝜈(𝑡) ∈ R𝑣 is
the perturbation state. The main structural feature of the error model
is how the parameters always appear multiplied with a regressor.
As we will see shortly, in conjunction with the PE decomposition,
this will enable a partition between excited and non-robust dynamics
reminiscent of (38).

Remark 15. In scenarios when adaptive backstepping is used or in
robotics applications, the regressor 𝑤 is generally a matrix rather than
a vector. Consequently, the associated error signal for adaptation is
generally a vector rather than a scalar. We do not consider this scenario
because special care is needed when associating the excitation of matrix
regressors with non-robust adaptation, which is the subject of future
work. ⊲

Remark 16. We will restrict our attention to scalar adaptation gains
𝛾 > 0. Positive definite time-varying gain matrices could equally be
considered, but we do not do so to keep the exposition direct. ⊲

Remark 17. A more general error model is considered in Uzeda and
Broucke (2022) which replaces 𝑤 with a new regressor 𝑤◦ in the 𝜉
dynamics. The new regressor 𝑤◦ is meant to capture the fact that the re-
gressor interacting with 𝜓 in the 𝜉 dynamics may not coincide with the
regressor 𝑤 used for adaptation. One example is the adaptation of LTI
systems using output feedback without the SPR condition, also known
as error model 4 in Narendra and Annaswamy (1989, Ch. 7.5). ⊲

Next we state technical assumptions on the model to appropriately
constrain its structure and nominal stability properties.

Assumption 10. The system (41)–(43) satisfies:

(E1) the regressor 𝑤(𝑡) satisfies Assumptions 8–9;
(E2) the functions 𝐴(⋅), 𝐵(⋅), 𝐶(⋅), and 𝐷(⋅) are piecewise continuous

in 𝑡 and continuously differentiable in 𝜉 uniformly in 𝑡 ≥ 𝑡0 ≥ 0.
Moreover, 𝐴(⋅) and 𝐶(⋅) are globally Lipschitz in 𝜉 uniformly in
𝑡 ≥ 𝑡0 ≥ 0, and 𝐵(⋅) and 𝐷(⋅) are bounded;

(E3) the functions 𝛥(⋅) and 𝑤̃(⋅) are piecewise continuous in 𝑡 and
continuously differentiable in 𝜈 uniformly in 𝑡 ≥ 𝑡0 ≥ 0.

(E4) the functions satisfy 𝐴(𝑡, 0) = 0, 𝐶(𝑡, 0) = 0, 𝛥(𝑡, 0) = 0, and
𝑤̃(𝑡, 0) = 0 for all 𝑡 ≥ 𝑡0 ≥ 0;

(E5) the equilibrium 𝜈 = 0 of (43a) is GUAS and LES;
(E6) the equilibrium 𝜉 = 0 of 𝜉̇ = 𝐴(𝑡, 𝜉) is GES;
(E7) given any dimension 𝑞 ∈ N, if 𝑤(𝑡) ∈ R𝑞 is PE and 𝜈 = 0 then the

equilibrium (𝜉, 𝜓̂) = (0, 𝜓) of

𝜉̇ = 𝐴(𝑡, 𝜉) + 𝐵(𝑡)𝑤⊺(𝑡)(𝜓̂ − 𝜓)

𝑒 = 𝐶(𝑡, 𝜉) +𝐷(𝑡)𝑤⊺(𝑡)(𝜓̂ − 𝜓)
̇̂𝜓 = −𝛾𝑒𝑤(𝑡)
14

is GES.
An important feature of Assumption 10 is that the only stability
properties we ask for in (E6)–(E7) deal with the two extreme cases
most amenable to analysis: the unforced closed-loop system and a PE
regressor. To see how the main ideas from the 𝜇-modification presented
in Section 5.1 carry over to the proposed error model, consider the
unperturbed case when 𝜈 = 0, and suppose 𝑤(𝑡) has a non-zero degree
of persistent excitation. By (E1) we can invoke the PE decomposition
to obtain

𝑤 = 𝑊𝑤𝑝𝑒 ,  = Im(𝑊 ).

Applying the coordinate transformation
[

𝜓̂𝑝𝑒
𝜓̂⟂

]

=
[

𝑊 ⊺

𝑊 ⊺
⟂

]

𝜓̂

to (41)–(42), one has the error dynamics

𝜉̇ = 𝐴(𝑡, 𝜉) + 𝐵(𝑡)𝑤⊺
𝑝𝑒(𝑡)(𝜓̂𝑝𝑒 −𝑊 ⊺𝜓)

𝑒 = 𝐶(𝑡, 𝜉) +𝐷(𝑡)𝑤⊺
𝑝𝑒(𝑡)(𝜓̂𝑝𝑒 −𝑊 ⊺𝜓)

and adaptation dynamics

̇̂𝜓𝑝𝑒 = −𝛾𝑒𝑤𝑝𝑒(𝑡)
̇̂𝜓⟂ = 0 .

By (E7) we have that the equilibrium (𝜉, 𝜓̂𝑝𝑒) = (0,𝑊 ⊺𝜓) is GES. Similar
to (38), we also have that the 𝜓̂⟂ dynamics are decoupled from the
learning process and must be gradually forgotten if one is to achieve
robust adaptation. According to the 𝜇-modification, we will accomplish
this through the construction of a subspace estimator for the non-PE
subspace ⟂ and an appropriate leakage term.

5.4. Subspace estimation

We have seen in Section 5.1 that to apply the 𝜇-modification to
achieve robust parameter adaptation, we require information about the
non-PE subspace ⟂, particularly its orthogonal projection matrix. In
Section 5.2 we saw that this subspace is defined in terms of the auto-
covariance of the regressor; namely ⟂ = Ker(𝑅𝑤(0)). In this section
we address the fact that 𝑅𝑤(0) is not known and must be estimated.
Further, the regressor 𝑤(𝑡) is generally not directly measurable. Thus,
we suppose we have a regressor estimate

𝑤̂ = 𝑤(𝑡) + 𝑤̃ , 𝑤(𝑡) ∈ R𝑞

satisfying the following.

Assumption 11. The transient satisfies lim𝑡→∞ 𝑤̃(𝑡) = 0.

To obtain an estimate of 𝑅𝑤(0) and ultimately ⟂, it makes sense
from an averaging perspective (see Section 2.5) to consider the filter
̇̂𝛴 = −𝜀𝛴̂ + 𝜀𝑤̂𝑤̂⊺ (44)

with 𝜀 > 0. The motivation for this choice of filter is that the averaged
dynamics of (44) are

𝛴̇𝑎𝑣 = −𝜀𝛴𝑎𝑣 + 𝜀𝑅𝑤(0) . (45)

The filter (44) has also be utilized in Kreisselmeier (1977) and Tomei
and Marino (2022) with slightly different motivations. We want to get
an estimate of the mismatch between 𝛴̂ and 𝛴𝑎𝑣. First we notice that
the equilibrium 𝛴𝑎𝑣 = 𝑅𝑤(0) of (45) is GES. However, 𝛴̂ = 𝑅𝑤(0)
is generally not an equilibrium of (44) since 𝑤(𝑡) is time-varying.
Therefore, (44) will at best provide an approximation of 𝑅𝑤(0). To gain
some insight about the quality of that approximation, we compare 𝛴̂
to the following exogenous system

𝛴̇ = −𝜀𝛴 + 𝜀𝑤(𝑡)𝑤⊺(𝑡) , 𝛴(𝑡0) = 𝑅𝑤(0) . (46)
First, we establish the main properties of 𝛴.
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Lemma 6. Consider system (46) satisfying Assumptions 8–9. Let 𝑞𝑝𝑒 =
dim() ≥ 1, 𝑤𝑝𝑒(𝑡) and  = Im(𝑊 ) result from the PE decomposition of
(𝑡), and let 𝛽0 > 0 be the lower PE bound in Definition 2 for 𝑤𝑝𝑒(𝑡). Then

there exists a bounded symmetric matrix 𝛬𝑝𝑒(𝑡) ∈ R𝑞𝑝𝑒×𝑞𝑝𝑒 such that

𝛴(𝑡) = 𝑊𝛬𝑝𝑒(𝑡)𝑊 ⊺.

Moreover, there exists a class- function 𝛿(⋅) and a constant 𝜀⋆ > 0 such
hat

𝛴(𝑡) − 𝑅𝑤(0)‖ ≤ 𝛿(𝜀) , 𝛬𝑝𝑒(𝑡) ⪰
(

𝛽0 − 𝛿(𝜀)
)

𝐼

for all 𝜀 ∈ (0, 𝜀⋆] and 𝑡 ≥ 𝑡0 ≥ 0. Otherwise, if 𝑞𝑝𝑒 = 0 then 𝑅𝑤(0) = 𝛴 = 0.

roof. The case when 𝑞𝑝𝑒 = 0 is trivial and thus omitted. Let 𝑊 and 𝑊⟂
esult from the PE decomposition of 𝑤(𝑡). By pre- and post-multiplying
46) by 𝑊⟂, we have

⊺
⟂ 𝛴̇ = −𝜀𝑊 ⊺

⟂𝛴 , 𝑊 ⊺
⟂𝛴(𝑡0) = 0

𝛴̇𝑊⟂ = −𝜀𝛴𝑊⟂ , 𝛴(𝑡0)𝑊⟂ = 0

since 𝑤⟂ = 0 by Assumption 9 and Im(𝑊⟂) = Ker(𝑅𝑤(0)) = Ker(𝑅⊺
𝑤(0)).

Recalling that 𝐼 = 𝑊𝑊 ⊺ +𝑊⟂𝑊
⊺
⟂ , it follows that

𝛴(𝑡) = 𝑊𝑊 ⊺𝛴(𝑡)𝑊𝑊 ⊺.

Then 𝛬𝑝𝑒 ∶= 𝑊 ⊺𝛴𝑊 is bounded because 𝜀 > 0 and 𝑤(𝑡) is bounded by
Assumption 8. Note that 𝛬𝑝𝑒 is symmetric given that 𝛴(𝑡0) is symmetric.

Next, consider the GES averaged dynamics (45) with initial condi-
tion 𝛴𝑎𝑣(𝑡0) = 𝑅𝑤(0). By the Hovering Theorem (Sanders, Verhulst, &
Murdock, 2007, Theorem 5.5.1), there exists a class- function 𝛿(⋅) and
a constant 𝜀⋆ > 0 such that

𝛿(𝜀) ≥ ‖𝛴(𝑡) − 𝛴𝑎𝑣(𝑡)‖∞
= ‖𝛴(𝑡) − 𝑅𝑤(0)‖∞

for all 𝜀 ∈ (0, 𝜀⋆]. As a result, we have

𝛬𝑝𝑒(𝑡) = 𝑊 ⊺𝑅𝑤(0)𝑊 +𝑊 ⊺ (𝛴(𝑡) − 𝑅𝑤(0)
)

𝑊

⪰ 𝑅𝑤𝑝𝑒 (0) − ‖𝛴(𝑡) − 𝑅𝑤(0)‖∞
𝐼

⪰
(

𝛽0 − 𝛿(𝜀)
)

𝐼

for all 𝑡 ≥ 𝑡0 ≥ 0. □

Remark 18. We would like to emphasize that restricting 𝜀 > 0 small
is not needed in any part of the proposed subspace estimator design.
That being said, it enables the intuitive interpretation of the filter
matrix 𝛴̂ as an approximation of 𝑅𝑤(0). When 𝜀 is not small, one loses
the ability to approximate 𝑅𝑤(0) but retains the ability to recover 
asymptotically. We defer the details to our paper (Uzeda & Broucke,
2022, Section III). ⊲

Returning to the filter (44), we want to show that 𝛴̂ well approxi-
mates 𝛴. To that end, consider the estimation error 𝛴̃ ∶= 𝛴̂ − 𝛴 with
dynamics
̇̃𝛴 = −𝜀𝛴̃ + 𝜀(𝑤̃𝑤⊺(𝑡) +𝑤(𝑡)𝑤̃⊺ + 𝑤̃𝑤̃⊺).

By Assumption 11, the above is a stable LTI system forced by a
vanishing term, implying that 𝛴̃ → 0 and so

lim
𝑡→∞

‖𝛴̂(𝑡) −𝑊𝛬𝑝𝑒(𝑡)𝑊 ⊺
‖ = 0

lim sup
𝑡→∞

‖𝛴̂(𝑡) − 𝑅𝑤(0)‖ ≤ 𝛿(𝜀) .

Therefore 𝛴̂ is an approximation of 𝑅𝑤(0) that recovers the PE subspace
 of 𝑤(𝑡) asymptotically. In principle, if we had 𝛴̂ = 𝛴, then using
Proposition 4 one could recover the orthogonal projection onto ⟂ by
the formula 𝛺 = 𝐼 − 𝛴̂𝛴̂†. Unfortunately, the pseudoinverse operation
is not robust, as discussed in Section 5.1, and so the above fact does
not hold (not even asymptotically). Instead we choose

̂ ̂
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𝛺 = 𝐼 − 𝛴 pinv(𝛴; 𝜎𝑡𝑜𝑙) , (47)
where pinv(⋅; 𝜎𝑡𝑜𝑙) denotes the robust pseudoinverse for some tolerance
𝜎𝑡𝑜𝑙 ≥ 0. That is, pinv(𝛴̂; 𝜎𝑡𝑜𝑙) performs the pseudoinverse of 𝛴̂ by
treating all of its singular values less than 𝜎𝑡𝑜𝑙 as zero. To analyze the
correctness of (47), we must characterize how the difference 𝛴̂ −𝛴 re-
lates to the orthogonal projection matrices recovered by 𝛴̂ (thresholded
by 𝜎𝑡𝑜𝑙) and 𝛴. First we need a result concerning the singular values of
𝛴̂.

Lemma 7. Consider system (46) satisfying Assumptions 8–9. Let 𝑞𝑝𝑒 ≥ 1
be the degree of persistent excitation of 𝑤(𝑡), let 𝛽0 > 0 be as defined in
Lemma 6, and let 𝜎𝑖(⋅) denote the 𝑖th largest singular value. Then there exists
a constant 𝜀⋆ > 0 such that

𝜎𝑞𝑝𝑒 (𝛴̂) ≥ 𝛽0 − 𝛿(𝜀) − ‖𝛴̂ − 𝛴‖ , 𝜎𝑞𝑝𝑒+1(𝛴̂) ≤ ‖𝛴̂ − 𝛴‖

for each 𝜀 ∈ (0, 𝜀⋆], where 𝜎𝑞𝑝𝑒+1(𝛴̂) ∶= 0 if 𝑞𝑝𝑒 = 𝑞.

Proof. Writing 𝛴̂ = 𝛴 + 𝛴̃, one can apply Weyl’s Theorem (Weyl’s
Inequality) to conclude

|𝜎𝑞𝑝𝑒 (𝛴̂) − 𝜎𝑞𝑝𝑒 (𝛴)| ≤ ‖𝛴̃‖ (48a)

|𝜎𝑞𝑝𝑒+1(𝛴̂) − 𝜎𝑞𝑝𝑒+1(𝛴)| ≤ ‖𝛴̃‖ . (48b)

By Lemma 6, we know that rank(𝛴) = 𝑞𝑝𝑒 and so 𝜎𝑞𝑝𝑒+1(𝛴) = 0. Thus
(48b) becomes 𝜎𝑞𝑝𝑒+1(𝛴̂) ≤ ‖𝛴̃‖. To show the first inequality, we use
the fact that the columns of 𝑊 ∈ R𝑞×𝑞𝑝𝑒 are orthonormal to obtain

𝜎𝑞𝑝𝑒 (𝛴) = 𝜎𝑞𝑝𝑒 (𝑊𝛬𝑝𝑒𝑊
⊺) = 𝜎𝑞𝑝𝑒 (𝛬𝑝𝑒) ≥ 𝛽0 − 𝛿(𝜀)

for 𝜀 ∈ (0, 𝜀⋆], where 𝜀⋆ > 0 is given by Lemma 6. The reverse triangle
inequality applied to (48a) proves the result. □

Next, we establish the desired error bound and a range of admissible
values for the tolerance 𝜎𝑡𝑜𝑙. The proof is in Section 9.

Lemma 8. Consider system (46) satisfying Assumptions 8–9. Let  =
Im(𝑊 ) result from the PE decomposition of 𝑤(𝑡), and let 𝛽0 > 0 be as
defined in Lemma 6. If 𝑞𝑝𝑒 = dim() = 0, set 𝛽0 = ∞. Then for every
𝜎𝑡𝑜𝑙 ∈ (0, 𝛽0) there exists constants 𝜀⋆(𝜎𝑡𝑜𝑙), 𝑐◦(𝜎𝑡𝑜𝑙) > 0 such that

‖𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) −𝑊𝑊 ⊺
‖ ≤ min{ 𝑐◦‖𝛴̂ − 𝛴‖, 1 }

for each 𝜀 ∈ (0, 𝜀⋆].

From the proof of Lemma 8 we saw that 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) is an orthog-
onal projection matrix. By symmetry and idempotence of orthogonal
projections, it immediately follows that

𝛺𝛺⊺ =
(

𝐼 − 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙)
) (

𝐼 − 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙)
)⊺

= 𝐼 − 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) = 𝛺 .

Then using the fact 𝐼 = 𝑊𝑊 ⊺ +𝑊⟂𝑊
⊺
⟂ , we have

𝛺𝛺⊺ −𝑊⟂𝑊
⊺
⟂ = 𝐼 − 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) − 𝐼 +𝑊𝑊 ⊺

= 𝑊𝑊 ⊺ − 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) .

This formula allows us to relate closeness of 𝛺𝛺⊺ and 𝑊⟂𝑊
⊺
⟂ to close-

ness of 𝑊𝑊 ⊺ and 𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙). But the latter can be made arbitrarily
close by way of Lemma 8. As such, we arrive at our final statement
concerning the correctness of the subspace estimator 𝛺.

Theorem 9. Consider the system (46), (47) satisfying Assumptions 8–
9. Let 𝑤𝑝𝑒(𝑡) and ⟂ = Im(𝑊⟂) result from the PE decomposition of
𝑤(𝑡), and let 𝛽0 > 0 be the lower PE bound in Definition 2 for 𝑤𝑝𝑒(𝑡). If
𝑞𝑝𝑒 = dim() = 0, set 𝛽0 = ∞. Then for every 𝜎𝑡𝑜𝑙 ∈ (0, 𝛽0) there exists
constants 𝜀⋆(𝜎𝑡𝑜𝑙), 𝑐◦(𝜎𝑡𝑜𝑙) > 0 such that

‖𝛺𝛺⊺ −𝑊⟂𝑊
⊺
⟂‖ ≤ min{ 𝑐◦‖𝛴̂ − 𝛴‖, 1 }

for each 𝜀 ∈ (0, 𝜀⋆]. Moreover, if 𝛴̂ evolves according to (44) and also
satisfies Assumption 11, then

lim
𝑡→∞

‖𝛺(𝑡)𝛺⊺(𝑡) −𝑊⟂𝑊
⊺
⟂‖ = 0
for each 𝜀 ∈ (0, 𝜀⋆].
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Proof. The first inequality follows from Lemma 8. The limit is ob-
tained from the fact that Assumption 11 (with boundedness of 𝑤(𝑡) in

ssumption 8) implies 𝛴̂ − 𝛴 → 0. □

emark 19. To build the subspace estimator (44), (47) one needs to
now of some 𝜎𝑡𝑜𝑙 ∈ (0, 𝛽0). This requirement can be viewed as the
ssumption of knowing a strict lower bound on the excitation of the
egressor 𝑤(𝑡). A more meaningful perspective is to view 𝜎𝑡𝑜𝑙 > 0 as a
esign tolerance that a control designer can set. To elaborate on this
dea, recall that 𝑅𝑤(0) = 𝑊𝑅𝑤𝑝𝑒 (0)𝑊

⊺ with 𝜎min(𝑅𝑤𝑝𝑒 (0)) ≥ 𝛽0. There-
ore, 𝛽0 is a lower bound on the average excitation expected of the PE
omponent 𝑤𝑝𝑒(𝑡). Since 𝛴̂ is an approximation of 𝑅𝑤(0), we can view
he computation pinv(𝛴̂; 𝜎𝑡𝑜𝑙) as a mechanism to discard components
f 𝑤(𝑡) that have an excitation level lower than 𝜎𝑡𝑜𝑙. In other words,
𝑡𝑜𝑙 > 0 sets a soft excitation threshold for 𝑤(𝑡). Consequently, any
omponent of 𝑤(𝑡) whose excitation is less than 𝜎𝑡𝑜𝑙 will be discarded

for the recovery of  and treated as noise irrelevant to the adaptation
process. ⊲

5.5. The 𝜇-modification

We are now in a position to combine all our prior developments to-
ether to see the Use it or Lose it Principle in action. The 𝜇-modification

aims to render adaptation (i.e., the learning process) robust by modi-
fying the gradient law (42) to

̇̂𝜓 = −𝛾𝑒𝑤̂ − 𝜇𝛺𝛺⊺𝜓̂ (49)

where 𝜇 > 0 and 𝛺 is the output of an appropriate subspace esti-
mator. Below is our main result on using forgetting as a mechanism
for robustness through the 𝜇-modification. In particular, robustness is
synonymous to exponential stability.

Theorem 10. Consider the error model with adaptation law (41)–(43)
satisfying Assumption 10. Let 𝛴(𝑡) ∈ R𝑞×𝑞 denote the exogenous matrix
generated by

𝛴̇ = −𝜀𝛴 + 𝜀𝑤(𝑡)𝑤⊺(𝑡) , 𝛴(𝑡0) = 𝑅𝑤(0).

Also, let 𝑤𝑝𝑒(𝑡) ∈ R𝑞𝑝𝑒 and  = Im(𝑊 ) result from the PE decomposition
of 𝑤(𝑡), and let 𝛽0 > 0 be the lower PE bound in Definition 2 for 𝑤𝑝𝑒(𝑡).
f 𝑞𝑝𝑒 = dim() = 0, set 𝛽0 = ∞. Then for every 𝜎𝑡𝑜𝑙 ∈ (0, 𝛽0) there exists

a constant 𝜀⋆(𝜎𝑡𝑜𝑙) > 0 such that for each 𝜀 ∈ (0, 𝜀⋆] the 𝜇-modification,
which replaces (42) with (44), (47), and (49), guarantees:

1. if 𝑞𝑝𝑒 = 0, then (𝜉, 𝜓̂ , 𝜈, 𝛴̃) = (0, 0, 0, 0) is GUAS and LES;
2. if 𝑞𝑝𝑒 = 𝑞, then (𝜉, 𝜓̂ , 𝜈, 𝛴̃) = (0, 𝜓, 0, 0) is GUAS and LES;
3. otherwise (𝜉, 𝜓̂ , 𝜈, 𝛴̃) = (0,𝑊 𝑊 ⊺𝜓, 0, 0) is GUAS and LES;

where we have defined 𝛴̃ ∶= 𝛴̂ − 𝛴.

Proof. We only prove the third case, as the other cases follow by
specialization of the proof. Let 𝜀⋆(𝜎𝑡𝑜𝑙) > 0 be given by Theorem 9 due
to (E1). Also by (E1) we have the PE decomposition

𝑤 = 𝑊𝑤𝑝𝑒 ,  = Im(𝑊 ),

so that we may define the coordinate transformation
[

𝜓̃𝑝𝑒
𝜓̂⟂

]

=
[

𝑊 ⊺

𝑊 ⊺
⟂

]

(

𝜓̂ −𝑊𝑊 ⊺𝜓
)

.

As a result, we may write

𝑤̂⊺𝜓̂ −𝑤⊺𝜓 = 𝑤⊺
𝑝𝑒𝜓̃𝑝𝑒 + 𝑤̃⊺(𝑊 𝜓̃𝑝𝑒 +𝑊⟂𝜓̂⟂ +𝑊𝑊 ⊺𝜓)

resulting in an error signal of the form

𝑒 = 𝑒◦ +𝐷(𝑡)𝑤̃⊺(𝑊 𝜓̃𝑝𝑒 +𝑊⟂𝜓̂⟂ +𝑊𝑊 ⊺𝜓)

𝑒◦ = 𝐶(𝑡, 𝜉) +𝐷(𝑡)𝑤⊺
𝑝𝑒𝜓̃𝑝𝑒 .
16
Next define the error variable 𝛴̃ ∶= 𝛴̂ − 𝛴, yielding the dynamics
̇̃𝛴 = −𝜀𝛴̃ + 𝜀(𝑤̃𝑤⊺ +𝑤𝑤̃⊺ + 𝑤̃𝑤̃⊺).

Then we have 𝛺𝛺⊺ = 𝑊⟂𝑊
⊺
⟂ + 𝛺̃, where

𝛺̃(𝑡, 𝛴̃; 𝜎𝑡𝑜𝑙) = 𝑊𝑊 ⊺ − (𝛴(𝑡) + 𝛴̃) pinv(𝛴(𝑡) + 𝛴̃; 𝜎𝑡𝑜𝑙).

By Lemma 8 we have 𝛺̃(𝑡, 0; 𝜎𝑡𝑜𝑙) = 0. Altogether, we obtain the
closed-loop dynamics

𝜉̇ = 𝐴(𝑡, 𝜉) + 𝐵(𝑡)𝑤⊺
𝑝𝑒(𝑡)𝜓̃𝑝𝑒 (50a)

+𝐵(𝑡)𝑤̃⊺(𝑊 𝜓̃𝑝𝑒 +𝑊⟂𝜓̂⟂ +𝑊𝑊 ⊺𝜓)

̇̃𝜓𝑝𝑒 = −𝛾𝑒◦𝑤𝑝𝑒(𝑡) − 𝜇𝑊 ⊺𝛺̃(𝑊 𝜓̃𝑝𝑒 +𝑊⟂𝜓̂⟂ +𝑊𝑊 ⊺𝜓) (50b)

−𝛾𝑒𝑊 ⊺𝑤̃ − 𝛾𝐷(𝑡)𝑤̃⊺(𝑊 𝜓̃𝑝𝑒 +𝑊⟂𝜓̂⟂ +𝑊𝑊 ⊺𝜓)𝑤𝑝𝑒(𝑡)

̇̂𝜓⟂ = −𝜇𝜓̂⟂ − 𝜇𝑊 ⊺
⟂ 𝛺̃(𝑊 𝜓̃𝑝𝑒 +𝑊⟂𝜓̂⟂ +𝑊𝑊 ⊺𝜓) (50c)

−𝛾𝑒𝑊 ⊺
⟂ 𝑤̃

𝜈̇ = 𝛥(𝑡, 𝜈) (50d)
̇̃𝛴 = −𝜀𝛴̃ + 𝜀(𝑤̃𝑤⊺(𝑡) +𝑤(𝑡)𝑤̃⊺ + 𝑤̃𝑤̃⊺) (50e)

which has the equilibrium (𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂, 𝜈, 𝛴̃) = (0, 0, 0, 0, 0). To conclude
the result, we need to show that the origin is a GUAS and LES equi-
librium of (50). The ensuing stability analysis will proceed in three
stages. The first two steps consist of constructing appropriate Lyapunov
functions for specific subsystems, and the last step combines them to
prove stability.

First, consider the nominal unperturbed dynamics obtained by set-
ting (𝜈, 𝛴̃) = (0, 0):

𝜉̇ = 𝐴(𝑡, 𝜉) + 𝐵(𝑡)𝑤⊺
𝑝𝑒(𝑡)𝜓̃𝑝𝑒 (51a)

̇̃𝜓𝑝𝑒 = −𝛾𝑒◦𝑤𝑝𝑒(𝑡) (51b)
̇̂𝜓⟂ = −𝜇𝜓̂⟂ . (51c)

By (E7) and the fact that 𝜇 > 0 we have that the equilibrium
(𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂) = (0, 0, 0) of (51) is GES. Note that if 𝑞𝑝𝑒 = 0, then we
use (E6) rather than (E7). As a result, in conjunction with (E2), there
exists a converse Lyapunov function 𝑉𝑛(𝑡, 𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂) for (51) satisfying
the conclusions of Khalil (2002, Theorem 4.14) globally with constants
𝑎𝑖 > 0.

Second, notice that the perturbation dynamics

𝜈̇ = 𝛥(𝑡, 𝜈) (52a)
̇̃𝛴 = −𝜀𝛴̃ + 𝜀(𝑤̃𝑤⊺(𝑡) +𝑤(𝑡)𝑤̃⊺ + 𝑤̃𝑤̃⊺) (52b)

are decoupled from the (𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂) dynamics of (50). By (E4) we know
that (𝜈, 𝛴̃) = (0, 0) is the equilibrium of (52), which we want to show
is GUAS and LES. By Proposition 1, it suffices to show that for every
𝛿 > 0, we have ES over (𝜈, 𝛴̃)(𝑡0) ∈ (𝛿). Suppose (𝜈, 𝛴̃)(𝑡0) ∈ (𝛿),
then 𝜈(𝑡0) ∈ (𝛿) and by (E5) there exists an 𝛿𝜈 (𝛿) > 0 such that
𝜈(𝑡) ∈ (𝛿𝜈 ) for all 𝑡 ≥ 𝑡0 ≥ 0 since the 𝜈 dynamics are decoupled from
all the rest. In conjunction with (E3), there exists a converse Lyapunov
function 𝑉1(𝑡, 𝜈) for (52a) satisfying the conclusions of Khalil (2002,
Theorem 4.14) over R+ ×(𝛿𝜈) with constants 𝑏𝑖 > 0. Let ‖ ⋅ ‖𝐹 denote
the Frobenius norm and consider the candidate Lyapunov function

𝑉2(𝑡, 𝜈, 𝛴̃) = 𝑉1(𝑡, 𝜈) + 𝛾1‖𝛴̃‖

2
𝐹

for some 𝛾1 > 0 to be selected shortly. Taking its time derivative with
respect to trajectories of (52) for 𝜈(𝑡0) ∈ (𝛿), we have

𝑉̇2(𝑡, 𝜈, 𝛴̃) = 𝜕𝑡𝑉1(𝑡, 𝜈) + 𝜕𝜈𝑉1(𝑡, 𝜈)𝛥(𝑡, 𝜈) + 2𝛾1 trace(𝛴̃⊺ ̇̃𝛴)

≤ −𝑏 ‖𝜈‖2 − 𝛾 𝜀‖𝛴̃‖

2

3 1 𝐹
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𝑒

𝛼

+ 𝛾1𝜀
(

2‖𝑤(𝑡)‖∞
+ ‖𝑤̃(𝑡, 𝜈(𝑡))‖∞

)2
‖𝑤̃‖2 ,

where the time argument 𝑡 has been omitted in some places for clarity.
By (E3), (E4), and since 𝜈(𝑡) ∈ (𝛿𝜈 ), there exists a constant 𝑤◦(𝛿𝜈) > 0
such that

‖𝑤̃(𝑡, 𝜈(𝑡))‖ ≤ 𝑤◦‖𝜈(𝑡)‖.

This implies that for some 𝛾1 > 0 sufficiently small, we can obtain the
bound

𝑉̇2(𝑡, 𝜈(𝑡), 𝛴̃(𝑡)) ≤ −𝛾2𝑉2(𝑡, 𝜈(𝑡), 𝛴̃(𝑡))

for some 𝛾2 > 0 and all 𝑡 ≥ 𝑡0 ≥ 0. The Comparison Lemma and
the bounds 𝑏1‖𝜈‖2 ≤ 𝑉1(𝑡, 𝜈) ≤ 𝑏2‖𝜈‖2 gives us ES over (𝜈, 𝛴̃)(𝑡0) ∈
(𝛿). Consequently for every 𝛿 > 0 there exists a converse Lyapunov
function 𝑉𝑝(𝑡, 𝜈, 𝛴̃) for (52) satisfying the conclusions of Khalil (2002,
Theorem 4.14) over R+ × (𝛿) with constants 𝑐𝑖 > 0.

At last, we return to the study of (50). Again by Proposition 1 we
will show ES over every ball. Let 𝛿 > 0 and suppose (𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂, 𝜈, 𝛴̃)
(𝑡0) ∈ (𝛿). Since we have shown (𝜈, 𝛴̃) = (0, 0) is GUAS, there
exists 𝛿𝑝(𝛿) > 0 such that (𝜈, 𝛴̃)(𝑡) ∈ (𝛿𝑝) for all 𝑡 ≥ 𝑡0 ≥ 0. Now
let 𝑉𝑛(⋅) defined globally and 𝑉𝑝(⋅) defined over R+ × (𝛿𝑝) be the
converse Lyapunov functions constructed earlier in the proof. Consider
the candidate Lyapunov function

𝑉 (𝑡, 𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂, 𝜈, 𝛴̃) = 𝑉𝑛(𝑡, 𝜉, 𝜓̃𝑝𝑒, 𝜓̂⟂) + 𝛾𝑝𝑉𝑝(𝑡, 𝜈, 𝛴̃)

where 𝛾𝑝 > 0 is to be selected sufficiently large. To keep our devel-
opments concise, we will skip most of the verbose algebra involved in
computing the time derivative of 𝑉 (⋅) with respect to the trajectories of
(50) since they follow standard arguments (see Young’s inequality and
the Peter–Paul inequality). Instead, we remind the reader that since
𝜈(𝑡) ∈ (𝛿𝑝), there exists 𝑤◦(𝛿𝑝) > 0 such that

‖𝑤̃(𝑡, 𝜈(𝑡))‖ ≤ 𝑤◦‖𝜈(𝑡)‖ ≤ 𝑤◦‖(𝜈, 𝛴̃)(𝑡)‖

for all 𝑡 ≥ 𝑡0 ≥ 0. Similarly, if we let 𝜀⋆(𝜎𝑡𝑜𝑙), 𝑐◦(𝜎𝑡𝑜𝑙) > 0 be the constants
obtained from Theorem 9, then for each 𝜀 ∈ (0, 𝜀⋆] we have

‖𝛺̃(𝑡, 𝛴̃; 𝜎𝑡𝑜𝑙)‖ ≤ 𝑐◦‖𝛴̃‖ ≤ 𝑐◦‖(𝜈, 𝛴̃)‖.

Letting 𝑉 (𝑡) denote a shorthand for 𝑉 (⋅) with the time-varying trajec-
tories of (50) substituted in, one can show

𝑉̇ (𝑡) ≤ −
(

𝛾3 − 𝛾4‖(𝜈, 𝛴̃)(𝑡)‖
)

𝑉 (𝑡)

for some constants 𝛾3(𝛿, 𝜎𝑡𝑜𝑙), 𝛾4(𝛿, 𝜎𝑡𝑜𝑙) > 0. Given that we know (𝜈, 𝛴̃) =
(0, 0) is GUAS, we have that ‖(𝜈, 𝛴̃)‖ → 0 uniformly in (𝜈, 𝛴̃)(𝑡0) ∈ (𝛿).
Hence we have an asymptotically stable almost time-invariant linear
system for 𝑉 (𝑡) (Narendra & Annaswamy, 1989, Section 2.3.2) and the
Comparison Lemma proves the result. □

Remark 20. If we let 𝑊 = 0 when 𝑞𝑝𝑒 = 0 and 𝑊 = 𝐼 when 𝑞𝑝𝑒 = 𝑞,
as suggested by the PE decomposition (see Proposition 5), then the
conclusions 1, 2, and 3 of Theorem 10 can be succinctly replaced by the
statement that the equilibrium (𝜉, 𝜓̂ , 𝜈, 𝛴̃) = (0,𝑊 𝑊 ⊺𝜓, 0, 0) is GUAS
and LES. That is, conclusion 3 summarizes Theorem 10. ⊲

Remark 21. The one technicality not addressed in the proof of
Theorem 10 is whether or not there exists (unique) solutions to the
closed-loop system with the 𝜇-modification. This is a valid question
since it is known that the pseudoinverse is not a continuous operation.
Yet we opt to ignore such details since one generally implements 𝛺
by performing the pseudoinverse at discrete times instead of continu-
ously. That is, given an increasing sequence of times { 𝑡𝑖 }∞𝑖=0 satisfying
lim𝑖→∞ 𝑡𝑖 = ∞, one builds

𝛺(𝑡, 𝛴̂(⋅); 𝜎𝑡𝑜𝑙) =

{

𝐼 − 𝛴̂(𝑡) pinv(𝛴̂(𝑡); 𝜎𝑡𝑜𝑙) , 𝑡 = 𝑡𝑖
𝛺(𝑡𝑖) , 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1)

which is guaranteed to be piecewise continuous in time. ⊲
17
Remark 22. Sometimes we would like our parameter estimate to
default to a known nominal value 𝜓⋆. In this case, one can update the
𝜇-modification to
̇̂𝜓 = −𝛾𝑒𝑤̂ − 𝜇𝛺𝛺⊺(𝜓̂ − 𝜓⋆).

The analysis for such a variation is analogous to the presented devel-
opments, with a suitable modification to the coordinate transformation
for the non-PE dynamics considered. ⊲

6. Learning and forgetting

In Section 3, we showed that learning through the training of re-
flexes serves as a mechanism employed by biological systems to reduce
the work done by internal models, housed in energy hungry modules
of the brain. The analysis proceeded for the case when associated
regressors are PE. When regressors are not PE, a PE decomposition can
be employed to highlight the lack of robustness of adaptive schemes.
In fact, Section 5 demonstrates that exponential stability (and thus
robustness) can be restored for an adaptive system through the use of
forgetting. Here we extend the results of Section 4 for LTI systems by
combining both the learning and forgetting techniques presented. The
appealing property of our methods is that the forgetting mechanism,
the 𝜇-modification, does not interfere with the learning process, but
only enhances it.

6.1. Final design and architecture

We begin by reiterating the full design presented in Section 4 with
the addition of the 𝜇-modification. For the regulator tasked with per-
forming error regulation, we have: the high-gain observer and stabilizer

̇̂𝜉 = 𝐴◦𝜉 +𝐷𝜅𝐿(𝑒 − 𝐶◦𝜉) (53a)

̂0 =
[

𝑎⊺ 1
]

𝜉 (53b)

𝑢𝑠 = − sgn(𝑏)𝐾𝑒0 , (53c)

where 𝐾, 𝜅 > 0 are to be selected sufficiently large, 𝑟 is the relative
degree, 𝐷𝜅 ∶= diag(𝜅, 𝜅2,… , 𝜅𝑟), 𝐿 ∈ R𝑟 is selected so that 𝐴◦ − 𝐿𝐶◦ is
Hurwitz, and 𝑎 ∈ R𝑟−1 is selected so that 𝐴◦ −𝐵◦𝑎⊺ is Hurwitz; and the
adaptive internal model
̇̂𝑤0 = 𝐹𝑤̂0 + 𝐺𝑢 (54a)
̇̂𝑤𝑖 = 𝐹𝑤̂𝑖 + 𝐺𝑦𝑖 (54b)

𝑤̂ = (𝑤̂0,… , 𝑤̂𝑝) (54c)
̇̂𝛴𝑤 = −𝜀𝑤𝛴̂𝑤 + 𝜀𝑤𝑤̂𝑤̂⊺ (54d)

𝛺𝑤 = 𝐼 − 𝛴̂𝑤 pinv(𝛴̂𝑤; 𝜎𝑤) (54e)
̇̂𝜓 = − sgn(𝑏)𝛾𝑒0𝑤̂ − 𝜇𝑤𝛺𝑤𝛺

⊺
𝑤𝜓̂ (54f)

𝑢𝑖𝑚 = 𝜓̂⊺𝑤̂ (54g)

where 𝛾, 𝜇𝑤 > 0, 𝜀𝑤, 𝜎𝑤 > 0 are to be selected sufficiently small, and
(𝐹 ,𝐺) is controllable with 𝐹 ∈ R𝑞×𝑞 Hurwitz. Tasked with offloading
the steady-state work of the internal model, we have the reflexes

̇̂𝛴𝑣 = −𝜀𝑣𝛴̂𝑣 + 𝜀𝑣𝑣̂𝑣̂⊺ (55a)

𝛺𝑣 = 𝐼 − 𝛴̂𝑣 pinv(𝛴̂𝑣; 𝜎𝑣) (55b)
̇̂𝛼 = −𝜀𝑢𝑖𝑚𝑣̂ − 𝜀𝜇𝑣𝛺𝑣𝛺

⊺
𝑣𝛼̂ (55c)

𝑢𝑟 + 𝑢𝑥 = −𝛼̂⊺𝑣̂ (55d)

where 𝜇𝑣 > 0, 𝜀, 𝜀𝑣, 𝜎𝑣 > 0 are to be selected sufficiently small,
̂ ∶= (𝛼̂𝑟, 𝛼̂𝑥), and 𝑣̂ ∶= (𝑦,−𝑥). Altogether, the controller is

𝑢 = 𝑢𝑠 + 𝑢𝑖𝑚 + 𝑢𝑟 + 𝑢𝑥 . (56)

A block diagram of the overall controller architecture is given in Fig. 2.
The reader may compare this architecture with the neural architecture
we set out to model in Fig. 1.
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Fig. 2. Block diagram of the regulator with reflexes.

.2. Stability without persistent excitation

We begin by once again showing that the regulator (53)–(54) with
̂ constant satisfies the exponential stability requirements of Assump-
tion 4. From the statement of Lemmas 5 and 7, it is clear that our prior
results need to be revisited when the exogenous regressor 𝑤(𝑡) is not
E. Considering the same coordinates defined in Section 4.1 with 𝛼̃

constant, we let 𝑧◦ ∶= (𝑧0, 𝜉◦, 𝑒0). Also, define the exogenous matrix
𝛴𝑤(𝑡) generated by

𝛴̇𝑤 = −𝜀𝑤𝛴𝑤 + 𝜀𝑤𝑤(𝑡)𝑤⊺(𝑡) , 𝛴𝑤(𝑡0) = 𝑅𝑤(0).

herefore, letting 𝛴̃𝑤 ∶= 𝛴̂𝑤 − 𝛴𝑤, we can express the closed-loop
dynamics as

𝑧̇◦ = 𝐴◦(𝐾, 𝛼̃)𝑧◦ + 𝑏𝐵◦(𝑤̂⊺𝜓̂ −𝑤⊺𝜓) + 𝐵11(𝐾, 𝜅, 𝑤̂)𝜉 (57a)
̇̂𝜓 = − sgn(𝑏)𝛾(𝐵⊺

◦𝑧◦)𝑤̂ − 𝜇𝑤𝛺𝑤𝛺
⊺
𝑤𝜓̂ + 𝐵12(𝐾, 𝜅, 𝑤̂)𝜉 (57b)

̇̃𝛴𝑤 = −𝜀𝑤𝛴̃𝑤 + 𝜀𝑤(𝑤̃𝑤⊺ +𝑤𝑤̃⊺ + 𝑤̃𝑤̃⊺) (57c)

with disturbance observer estimation dynamics

̇̃𝑤 = diag(𝐹 )𝑤̃ + 𝑏−1
[

𝐼
0

]

[

−𝐺𝑎⊺𝑟0 (𝐹𝐺 − 𝐺𝑎𝑟𝑟)
]

𝑧◦ (58)

and state observer estimation dynamics
̇̃𝜉 = 𝜅(𝐴◦ − 𝐿𝐶◦)𝜉 + 𝐵2(𝐾, 𝛼̃)𝑧◦ − 𝑏𝐵◦(𝑤̂⊺𝜓̂ −𝑤⊺𝜓) (59)

+ 𝐵3(𝐾, 𝜅)𝜉 .

In particular, we have the quantities

𝐴◦(𝐾, 𝛼̃) ∶=
⎡

⎢

⎢

⎣

[

𝐴00 𝐴′
01

0 𝐴◦ − 𝐵◦𝑎⊺

]

𝐵0𝑟

𝑎̄⊺𝑟0 + 𝛼̃
⊺𝑇0 𝑎̄𝑟𝑟 + 𝛼̃⊺𝑇𝑟 − |𝑏|𝐾

⎤

⎥

⎥

⎦

𝐵1(𝐾, 𝜅, 𝑤̂) =∶
[

𝐵11
𝐵12

]

(𝐾, 𝜅, 𝑤̂)

where the expressions for 𝐵1(⋅) and 𝐵3(⋅) are given in Section 4.1 and
𝐵2(⋅) is continuous in 𝛼̃. To formally apply our results from Section 5
concerning the 𝜇-modification, we need to make a simplifying assump-
tion that removes the coupling between 𝑤̃ and 𝑧◦ in (58). We show
later in simulation that indeed the 𝜇-modification can be applied with
the coupling present.

Assumption 12. The transient 𝑤̃ = 𝑤̂ − 𝑤(𝑡) evolves according to the
decoupled dynamics ̇̃𝑤 = diag(𝐹 )𝑤̃.

Lemma 9. Consider system (57)–(58) with 𝜉 = 0 satisfying Assumption 12.
Let 𝑤𝑝𝑒(𝑡) ∈ R𝑞𝑝𝑒 and  = Im(𝑊 ) result from the PE decomposition of
𝑤(𝑡), and let 𝛽𝑤 > 0 be the lower PE bound in Definition 2 for 𝑤 (𝑡). If
18

0 𝑝𝑒
𝑞𝑝𝑒 = dim() = 0, set 𝛽𝑤0 = ∞. Also, define 𝜓̃ ∶= 𝜓̂ − 𝑊𝑊 ⊺𝜓 . Then
for every 𝜎𝑤 ∈ (0, 𝛽𝑤0 ) and 𝛿𝛼 > 0 there exists constants 𝜀⋆𝑤(𝜎𝑤) > 0 and
𝐾⋆(𝛿𝛼) > 0 such that for each 𝜀𝑤 ∈ (0, 𝜀⋆𝑤] and 𝐾 ≥ 𝐾⋆ the equilibrium
(𝑧◦, 𝜓̃ , 𝑤̃, 𝛴̃𝑤) = (0, 0, 0, 0) is GUAS and LES uniformly in 𝛼̃ ∈ (𝛿𝛼).

Proof. The result follows from Theorem 10, so we need to show that
the system considered matches the error model of Section 5.3. First,
by setting 𝜇𝑤 = 0, 𝜉 = 0, and invoking Assumption 12, the dynamics
(57)–(58) become

𝑧̇◦ = 𝐴◦(𝐾, 𝛼̃)𝑧◦ + 𝑏𝐵◦(𝑤̂⊺𝜓̂ −𝑤⊺𝜓)
𝑒◦ ∶= 𝑏𝐵⊺

◦𝑧◦

matching (41),
̇̂𝜓 = −|𝑏|−1𝛾𝑒◦𝑤̂

matching (42), and
̇̃𝑤 = diag(𝐹 )𝑤̃
𝑤̂ = 𝑤(𝑡) + 𝑤̃

matching (43). Therefore, we verify Assumption 10 is satisfied.

(E1): Given that 𝑤(𝑡) is the output of an LTI exosystem, it is an almost
periodic signal. Then Assumptions 8–9 follow from Uzeda and
Broucke (2022, Prop 4);

(E2): The appropriate continuity properties are immediate;
(E3): The appropriate continuity properties are immediate;
(E4): The appropriate functions vanish at the origin since they are

linear in the states;
(E5): The equilibrium 𝑤̃ = 0, whose dynamics are independent of 𝛼̃, is

GES uniformly in 𝛼̃ ∈ (𝛿𝛼) since 𝐹 is Hurwitz;
(E6): By the same proof technique as in Lemma 3, there exists 𝐾⋆(𝛿𝛼) >

0, 𝑃0 ≻ 0, and 𝜌 > 0 such that 𝑃 ∶= diag(𝑃0, 1) satisfies the
Lyapunov LMI

𝐴⊺
◦(𝐾, 𝛼̃)𝑃 + 𝑃𝐴◦(𝐾, 𝛼̃) ⪯ −𝜌𝐼

for all 𝐾 ≥ 𝐾⋆ and 𝛼̃ ∈ (𝛿𝛼). Hence, for each 𝐾 ≥ 𝐾⋆,
the equilibrium 𝑧◦ = 0 of 𝑧̇◦ = 𝐴◦(𝐾, 𝛼̃)𝑧◦ is GES uniformly in
𝛼̃ ∈ (𝛿𝛼);

(E7): Let 𝑃 ≻ 0 be defined as above. Setting 𝑤̃ = 0, we have the
nominal system (without the 𝜇-modification)

𝑧̇◦ = 𝐴◦(𝐾, 𝛼̃)𝑧◦ + 𝑏𝐵◦𝑤
⊺(𝑡)(𝜓̂ − 𝜓)

̇̂𝜓 = −|𝑏|−1𝛾(𝑏𝐵⊺
◦𝑃𝑧◦)𝑤(𝑡)

which matches the dynamic error model in Section 2.3. Theo-
rem 2 then implies that the equilibrium (𝑧◦, 𝜓̂) = (0, 𝜓) is GES
uniformly in 𝛼̃ ∈ (𝛿𝛼) when 𝑤(𝑡) is PE. Note that 𝑤 and 𝑤̇ are
bounded because they are generated by an LTI exosystem.

Since the system (57)–(58) with 𝜉 = 0 satisfying Assumption 12 is the
result of applying the 𝜇-modification to the error model of Section 5.3,
Theorem 10 proves the result. Note the fact that 𝜓 is bounded for
̃ ∈ (𝛿𝛼) by continuity of 𝜓 = 𝜓(𝛼̃) is used in the associated Lyapunov
argument. □

Theorem 11. Consider system (57)–(59) satisfying Assumption 12. Let
𝑤𝑝𝑒(𝑡) ∈ R𝑞𝑝𝑒 and  = Im(𝑊 ) result from the PE decomposition of
𝑤(𝑡), and let 𝛽𝑤0 > 0 be the lower PE bound in Definition 2 for 𝑤𝑝𝑒(𝑡).
If 𝑞𝑝𝑒 = dim() = 0, set 𝛽𝑤0 = ∞. Also, define 𝜓̃ ∶= 𝜓̂ −𝑊𝑊 ⊺𝜓 . Then for
every 𝜎𝑤 ∈ (0, 𝛽𝑤0 ), 𝛿𝛼 > 0, and 𝛿1 > 0 there exists constants 𝜀⋆𝑤(𝜎𝑤) > 0,
𝐾⋆(𝛿𝛼) > 0, and 𝜅⋆(𝐾, 𝜀𝑤, 𝛿1, 𝛿𝛼 , 𝜎𝑤) ≥ 1 such that for each 𝜀𝑤 ∈ (0, 𝜀⋆𝑤],
𝐾 ≥ 𝐾⋆, and 𝜅 ≥ 𝜅⋆ the equilibrium (𝑧◦, 𝜓̃ , 𝜉, 𝑤̃, 𝛴̃𝑤) = (0, 0, 0, 0, 0) is
ES over (𝑧◦, 𝜓̃ , 𝑤̃, 𝛴̃𝑤)(𝑡0) ∈ (𝛿1) and 𝜉(𝑡0) ∈ (𝛿1𝜅𝑟−1) uniformly in
𝛼̃ ∈ (𝛿𝛼).

roof. If we ignore the lack of continuous differentiability of 𝛺𝑤 with
espect to the relevant states, then the result follows from the proof
f Theorem 7. In particular, we have augmented the state (𝑥◦, 𝜓̃) to
𝑧 , 𝜓̃, 𝑤̃, 𝛴̃ ) and replaced the use of Lemma 5 with Lemma 9. □
◦ 𝑤
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6.3. Reflexes without persistent excitation

The developments in this section can be equally applied to the
nonlinear reflex adaptation problem in Section 3, so we opt to use its
notation. In Theorem 6 we showed that the proposed reflex adaptation
scheme is correct when the exogenous regressor 𝑣(𝑡) = (𝑦,−𝜋)(𝑡) ∈ R𝑘
(for an appropriate 𝑘 ∈ N) is PE. The key property required from reflex
adaptation is that its averaged dynamics be GES, which requires 𝑣(𝑡) to
e PE. Here we show that GES can be recovered for the non-PE case
ith the help of the 𝜇-modification. Similar to Section 6.2, define the
xogenous matrix 𝛴𝑣(𝑡) generated by

̇ 𝑣 = −𝜀𝑣𝛴𝑣 + 𝜀𝑣𝑣(𝑡)𝑣⊺(𝑡) , 𝛴𝑣(𝑡0) = 𝑅𝑣(0),

esulting in the error dynamics
̇̃
𝑣 = −𝜀𝑣𝛴̃𝑣 + 𝜀𝑣(𝑣̃𝑣⊺ + 𝑣𝑣̃⊺ + 𝑣̃𝑣̃⊺) (60)

here 𝛴̃𝑣 ∶= 𝛴̂𝑣 −𝛴𝑣 and 𝑣̃ ∶= (0,−𝑧) with 𝑧 = 𝑥− 𝜋(𝜁 ) being the error
oordinate obtained from the regulator equations. Given that the state
̃𝑣 does not appear in (57)–(59), the following is immediate.

orollary 1. Let 𝑣𝑝𝑒(𝑡) ∈ R𝑘𝑝𝑒 and  = Im(𝑉 ) result from the PE
ecomposition of 𝑣(𝑡), and let 𝛽𝑣0 > 0 be the lower PE bound in Definition 2
or 𝑣𝑝𝑒(𝑡). If 𝑘𝑝𝑒 = dim() = 0, set 𝛽𝑣0 = ∞. Then, in addition to the results of
heorem 11, for every 𝜎𝑣 ∈ (0, 𝛽𝑣0 ) there exists a constant 𝜀⋆𝑣 > 0 such that
or each 𝜀𝑣 ∈ (0, 𝜀⋆𝑣 ] the equilibrium (𝑧◦, 𝜓̃ , 𝜉, 𝑤̃, 𝛴̃𝑤, 𝛴̃𝑣) = (0, 0, 0, 0, 0, 0)

is ES over (𝑧◦, 𝜓̃ , 𝑤̃, 𝛴̃𝑤, 𝛴̃𝑣)(𝑡0) ∈ (𝛿1) and 𝜉(𝑡0) ∈ (𝛿1𝜅𝑟−1) uniformly
in 𝛼̃ ∈ (𝛿𝛼).

Proof. The choice of 𝜀⋆𝑣 (𝜎𝑣) > 0 follows from Theorem 9. The combined
system is a cascade interconnection from (57)–(59), which is GUAS and
LES by Theorem 7 (ignoring the lack of continuous differentiability of
𝛺𝑤), to (60). The system (60) is input-to-state stable with respect to 𝑣̃,
and its unforced dynamics ̇̃𝛴𝑣 = −𝜀𝑣𝛴̃𝑣 is GES. Therefore, the combined
system is GUAS and LES by a standard Lyapunov argument. □

Letting 𝜒 ∶= (𝑧◦, 𝜓̃ , 𝜉, 𝑤̃, 𝛴̃𝑤, 𝛴̃𝑣), we note that 𝜒 = 0 implies 𝛺𝑣 =
𝑉⟂𝑉

⊺
⟂ by Lemma 6. Therefore, the averaged dynamics become

̇̂𝛼𝑎𝑣 = −𝜀𝑅𝑣(0)(𝛼̂𝑎𝑣 − 𝛼) − 𝜀𝜇𝑣𝑉⟂𝑉
⊺
⟂ 𝛼̂𝑎𝑣 (61)

by (R8).

Theorem 12. The equilibrium 𝛼̂𝑎𝑣 = 𝑉 𝑉 ⊺𝛼 of (61) is GES.

Proof. Since 𝑉 ⊺𝑉⟂ = 0 and 𝑅𝑣(0) = 𝑉 𝑅𝑣𝑝𝑒 (0)𝑉
⊺, we have

̇̂𝛼𝑎𝑣 = −𝜀
(

𝑉 𝑅𝑣𝑝𝑒 (0)𝑉
⊺ + 𝜇𝑣𝑉⟂𝑉

⊺
⟂

)

(𝛼̂𝑎𝑣 − 𝑉 𝑉 ⊺𝛼).

Therefore 𝛼̂𝑎𝑣 = 𝑉 𝑉 ⊺𝛼 is an equilibrium of (61). Given that 𝑅𝑣𝑝𝑒 (0) ≻ 0,
𝜇𝑣 > 0, and 𝐼 = 𝑉 𝑉 ⊺ + 𝑉⟂𝑉

⊺
⟂ , it is clear that 𝑉 𝑅𝑣𝑝𝑒 (0)𝑉

⊺ + 𝜇𝑣𝑉⟂𝑉
⊺
⟂ ≻

0. Hence (61) is a linear ODE with a Hurwitz state matrix and one
concludes GES. □

6.4. Proof of correctness

We may now state our final result, which extends Theorem 8 to the
case of non-PE regressors.

Theorem 13. Consider system (6) with the regulator (53)–(55) satisfying
Assumptions 1, 6–7, 12. Also, fix orbits , 𝑦 of the exosystems. Define
𝑥𝑐 ∶= (𝑤̂, 𝜓̂ , 𝜉, 𝛴̃𝑤, 𝛴̃𝑣). Then for each 𝛿 > 0 one may instantiate one such
regulator so that Assumptions 3–51 hold and the coordinate transformation
(24) yields a closed-loop system of the form (16). Therefore, for each
regulator built the conclusions of Theorem 6 hold.

1 The assumption of continuous differentiability of 𝛺𝑤 and 𝛺𝑣 must be
elaxed, since they are generally not continuously differentiable.
19
Proof. If we ignore the lack of continuous differentiability of 𝛺𝑤 and
𝛺𝑣 with respect to the relevant states, then the result follows from the
proof of Theorem 8. Useful facts needed to account for the additional
states are that (𝛴̃𝑤, 𝛴̃𝑣) → (0, 0) and that for every 𝛿 > 0 the regulator is
constructed using Corollary 1 rather than Theorem 7. Moreover, since
the PE condition is time shift invariant there exists uniform PE lower
bounds 𝛽𝑤0 , 𝛽

𝑣
0 > 0 and unique PE subspaces  ,  that apply for all

(𝜁, 𝜁𝑦)(𝑡0) ∈  ×𝑦. □

Remark 23. The choice of (𝛴̃𝑤, 𝛴̃𝑣) instead of (𝛴̂𝑤, 𝛴̂𝑣) as components
of 𝑥𝑐 is to circumvent any discussion about the exogenous filters
(𝛴𝑤, 𝛴𝑣)(𝑡) and their unique initial conditions (𝑅𝑤(0), 𝑅𝑣(0)) in the
statement of Theorem 11. Furthermore, this enables the construction
of a steady-state map 𝜋𝑐 (⋅) that is once again solely dependent on 𝜁 , 𝜁𝑦,
and 𝛼̂. ⊲

Remark 24. To aid the reader on the ordering on how to select all
constants involved, first one picks appropriate excitation tolerances
𝜎𝑤, 𝜎𝑣 > 0. Then sufficiently small gains 𝜀𝑤, 𝜀𝑣 > 0 for subspace
estimation can be selected. In parallel, one may choose the high gain
𝐾 > 0 for stability. Once the aforementioned constants have been
selected, a sufficiently large high gain 𝜅 ≥ 1 for the observer can be
chosen. At last, the slow rate 𝜀 > 0 must be selected sufficiently small.
All other constants not mentioned can be selected a priori without any
regard for the above constants. ⊲

6.5. Biological plausibility

Our proposed model of long-term adaptation of reflexes by the
cerebellum starts from a hypothesis that the cerebellum regulates cer-
tain error signals of the body. For several modules of the cerebellum,
the error signals have been identified with reasonable confidence,
particularly the flocculus which regulates the retinal error, and the
nodulus/uvula, which regulates the retinal slip velocity with respect
to the visual field.

Associated to each error signal regulated by the cerebellum we
assume there is a linear plant model (6) or a nonlinear plant model
(19). For the flocculus and nodulus/uvula, the first and second order
linear oculomotor plant models are well known (Robinson, 1981). For
the collic reflexes, plant models are also available (Peng, 1996; Peng,
Hain, & Peterson, 1996). For regulation of the arm, the Euler–Lagrange
framework can be used to model the arm, so long as one carefully
models the actuation of the arm by the muscles. A limitation of the
presented framework is the restriction to continuous-time plant models.
We have overlooked reflexes that appear to operate in discrete-time
such as the eyeblink reflex. More generally, we have not captured
the role of timing in reflexes. A broader class of plant models will be
necessary to achieve a comprehensive, biologically accurate framework
of reflex adaptation.

Once an error signal to be regulated and a continuous-time plant
model are identified, then the cerebellum is modeled as the adap-
tive internal model given in (54). Our prior work has discussed the
plausibility of this internal model design in terms of the high-level
neural architecture of the cerebellum (Broucke, 2021a, 2022). The
input signals to the filters (54a)–(54b) correspond to the mossy fiber
inputs of the cerebellum; the fast adaptation process (54f) takes place
at the synapses between parallel fibers and Purkinje cells. The error
signal appearing in (54f) is intended to represent the climbing fiber
input arriving from the inferior olive. The Purkinje cell output of the
cerebellum is modeled by 𝑢𝑖𝑚 in (54g). The appearance of 𝑢𝑖𝑚 as a mossy
fiber input in (54a) corresponds to the nucleo-cortical pathway (Houck
& Person, 2014, 2015), essential to ensure that excitation due to distur-
bances can be sustained by the purely feedforward neural architecture
of the cerebellum. We note that the placement of the filters in (54b) is
debatable; here they have been incorporated with the cerebellum.
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The stabilizer (53c) using a high gain observer in (53a) is driven by
the requirements of the internal model design in Serrani et al. (2001),
and is not tied to any biological imperative. We consider this part of
the model to be the least biologically plausible. On the other hand, the
brain likely does handle higher relative degree systems in some form.
For example, the oculomotor plant is often modeled as a first order
system for simplicity, but a more detailed model includes a second pole,
making it second-order and relative degree 2. The brain is believed to
utilize observers (called forward models in the neuroscience literature);
for instance the oculomotor system utilizes a brainstem neural integrator,
as we will see in Section 7. The motor systems for the limbs also likely
utilize observers, possibly housed in the motor cortex M1 and com-
municating with the cerebellum through the cerebello-thalamo-cortical
pathway and the cortico-ponto-cerebellar pathway.

Generally, there is little neuroscience research on dedicated mech-
anisms of stabilization in the brain (aside from the reflexes them-
selves). Some clues on the possibility of high-gain error feedback in the
cerebral cortex for stabilization of the oculomotor system is reported
in Lee, Yang, and Lisberger (2013), Nuding et al. (2009). Recent results
in Tomei and Marino (2023) on stabilization of uncertain minimum
phase systems are promising for removing the high-gain observer in
order to simplify our design.

Regarding the 𝜇-modification, we hypothesize that the filtering
in (54d) and (55a) takes place at the neuronal level at the site of
plasticity. Evidence that neurons act as principal component analyzers
is discussed in Oja (1982). Nevertheless, further investigation is need to
understand how Hebbian learning can be modified to perform SVD-like
computations as would be required for the 𝜇-modification.

7. Simulations

This section presents simulations for a pedagogical example and
for a systems neuroscience application. Unless otherwise specified, the
update time of subspace estimators is every 2 seconds and all initial
conditions for the simulations are zero.

7.1. Pedagogical example

We apply our design to a second-order unstable minimum phase LTI
plant of relative degree 2 with an exosystem that generates a biased
sinusoid. Consider the LTI plant model (6) with plant parameters

𝐴 =
[

0 1
1 2

]

, 𝐵 =
[

0
1

]

, 𝐶 =
[

1 0
]

.

The disturbance measurement is 𝑦(𝑡) =
[

10 10 sin(2𝑡)
]⊺, and the

exosystem parameters are

𝑆 =
⎡

⎢

⎢

⎣

0 0 0
0 0 2
0 −2 0

⎤

⎥

⎥

⎦

, 𝐸 =
[

1 0 −3
1 3 0

]

, 𝐷 = 0,

with 𝜁 (0) =
[

5 0 5
]⊺. One may verify with some algebra that the

solution of the regulator Eqs. (7), the exosystem state 𝜁 (𝑡), and the
disturbance measurement 𝑦(𝑡) satisfy Assumption 7; namely

𝛤𝜁 (𝑡) = 𝛼⊺𝑥𝛱𝜁 (𝑡) − 𝛼
⊺
𝑟 𝑦(𝑡),

with 𝛼𝑟 =
[

0.5 4.5
]⊺ , 𝛼𝑥 =

[

𝛼𝑥,1 −2
]⊺ , 𝛼𝑥,1 ∈ R. We note that 𝛼𝑥,1

does not have a unique solution, corresponding to the fact it is the
non-PE component of 𝛼𝑥.

Next we apply the regulator (53)–(55) with parameters selected as
𝐾 = 50, 𝐿 =

[

1 2
]⊺, 𝑎 = 2, 𝜅 = 100, 𝛾 = 𝜇𝑤 = 𝜀𝑤 = 𝜀𝑣 = 𝜎𝑤 = 𝜎𝑣 = 1,

𝜇𝑣 = 20, 𝜀 = 1 × 10−5, and

𝐹 =
⎡

⎢

⎢

0 1 0
0 0 1

⎤

⎥

⎥

, 𝐺 =
⎡

⎢

⎢

0
0
⎤

⎥

⎥

.

20

⎣−1 −3 −3⎦ ⎣1⎦
The simulation results are illustrated in Fig. 3. The initial conditions
of the reflex gains are 𝛼̂𝑟(0) = 𝛼̂𝑥(0) =

[

1 1
]⊺. Fig. 3(a) shows that

the error is regulated to zero on a short timescale. Figs. 3(b)–(c) show
that the reflex gains 𝛼̂𝑟 and 𝛼̂𝑥 converge on a long timescale. Fig. 3(c)
shows that because of the 𝜇-modification, 𝛼̂𝑥,1 goes to zero since it
is not excited by the regressor 𝑣 = (𝑦,−𝛱𝜁 ). Fig. 3(d) shows that
the reflexes are able to fully offload the work of disturbance rejection
by the adaptive internal model on a long timescale. Moreover, the
𝜇-modification ensures that 𝜓̂ tends to zero, as seen in Fig. 3(e).

7.2. Oculomotor system

The oculomotor system is widely regarded by neuroscientists as
the blueprint for all other motor systems of the body (Leigh & Zee,
2015). It well exemplifies the fact that control theory requires further
development to address modeling problems of systems neuroscience.
Here we apply our two timescale regulator design to realize a model of
long-term adaptation of the brainstem neural integrator motor command
and the VOR gain.

The model of the oculomotor system, taken from Broucke (2021a),
is given by

𝑥̇ = −𝐴𝑥 + 𝑢 (62a)
̇̂𝑥 = −𝐴̂𝑥̂ + 𝑢 (62b)

𝑢𝑏 = 𝛼̂𝑥𝑥̂ − 𝛼̂𝑟𝑥̇ℎ (62c)

𝑢 = 𝑢𝑠 + 𝑢𝑖𝑚 + 𝑢𝑏 . (62d)

Eq. (62a) is a first-order model of the horizontal movement of a single
human eye, where 𝑥(𝑡) ∈ R is the horizontal eye angle in a head-fixed
frame, 𝑢(𝑡) ∈ R is the net horizontal torque on the eyeball, and 𝐴 > 0
is a parameter that determines the time constant of the eye (Leigh &
Zee, 2015; Robinson, 1981). The oculomotor system is supported by a
brainstem neural integrator (62b), which is an adaptive observer of the
oculomotor plant, where 𝑥̂(𝑡) ∈ R is an estimate of the eye position
and 𝐴̂(𝑡) ∈ R is an estimate of 𝐴. The signal 𝑢𝑏 is generated in the
brainstem and includes two reflex signals, the state feedback 𝑢𝑥 = 𝛼̂𝑥𝑥̂
generated by the brainstem neural integrator, and the vestibuloocular
reflex (VOR) 𝑢𝑟 = −𝛼̂𝑟𝑥̇ℎ, where 𝑥ℎ is the horizontal angular position of
the head in a world-fixed frame. The reflex gains are 𝛼̂𝑥 and 𝛼̂𝑟.

Despite the fact that the plant is a trivial first-order LTI system,
regulation of eye position cannot be solved by standard methods of
adaptive control. There are already three parameters in (62) to be
adapted, those with ‘‘hats’’, but the oculomotor system by design must
maintain the eye position in a highly regulated state such as gaze
holding or tracking constant speed targets. Such reference signals do
not provide enough excitation to adapt the parameters in the model
and reflexes, not to mention the adaptive parameters needed by an
adaptive internal model. The fundamental modeling issue is the need
for more sophisticated methods to manage excitation while achieving
near perfect regulation. Our hypothesis is that the adaptation of 𝐴̂
is an independent process, so it will be treated in a separate paper.
We assume 𝐴̂(𝑡) ≡ 𝐴. Notice that since 𝐴 > 0, 𝑥̂(𝑡) converges to 𝑥(𝑡)
asymptotically.

We consider an oculomotor task to track a target in the visual
field while the subject wears magnifying lenses. Thus, we define the
(horizontal) retinal error

𝑒 ∶= 𝛼𝑚(𝑟 − 𝑥ℎ) − 𝑥,

where 𝑟(𝑡) ∈ R is the horizontal angular position of a target, and 𝛼𝑚 is
the magnification factor. The goal of the oculomotor system is to drive
𝑒 to zero. The cerebellum provides the top up signal 𝑢𝑖𝑚 generated by
an adaptive internal model to ensure complete regulation of the retinal
error. The overall motor command is (62d), where 𝑢𝑠(𝑡) ∈ R represents
a signal that carries visual information only and improves closed-loop
stability of the system. We select 𝑢 = 𝐾𝑒.
𝑠
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Fig. 3. Simulation results for a second-order pedagogical example.
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We apply our design (53)–(55) with parameter values are 𝐴 = 5,
𝑚 = 2, 𝐾 = 5, 𝛾 = 𝜇𝑤 = 𝜀𝑤 = 𝜀𝑣 = 1, 𝜇𝑣 = 50, 𝜎𝑤 = 𝜎𝑣 = 0.1,
𝜀 = 1 × 10−5 and

𝐹 =
[

0 1
−1 −1

]

, 𝐺 =
[

0
1

]

.

First, we consider the case of a constant reference (𝑟 = 5) and a
sinusoidal head velocity (𝑥̇ℎ = 15 cos(0.2𝜋𝑡)). The results are illustrated
in Fig. 4. Fig. 4(a) shows that the retinal error is regulated to zero
21

t

on a short timescale. Fig. 4(b) shows that when the reflex gains are
not adapted (𝜀 = 0), then the output of the cerebellum 𝑢𝑖𝑚 is not
educed over a long timescale. Fig. 4(c)–(d) show the effect of including
daptation on the reflex gains. The retinal error is regulated to zero on
short timescale, as seen in Fig. 4(c), whereas in Fig. 4(d) we see that
n a long timescale the reflexes are able to fully offload the work of
he cerebellum. Figs. 4(e)–(f) show the adaptation of the reflex gains
o their ideal values.
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Fig. 4. Oculomotor system without reflex adaptation (a,b) and with reflex adaptation (c,d,e,f).
In the second scenario, we consider a case when List (R8) does not
hold, yet the model still produces the correct behavior. The reference
signal is 𝑟 = 10 cos(0.2𝜋𝑡), and the head is fixed 𝑥̇ℎ = 0. In this case
the cerebellum and the reflexes must share the work of disturbance
rejection at steady state. The results are illustrated in Fig. 5. Figs. 5(a),
22
(c) again show that the retinal error is regulated to zero on a short
timescale, whether or not reflex gains are adapted. Fig. 5(b) shows that
when the reflex gains are not adapted (𝜀 = 0), then the output of the
cerebellum 𝑢𝑖𝑚 is not reduced. Fig. 4(d) shows the reduction in work by
the cerebellum when the reflex gains are adapted, although we do not
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Fig. 5. Oculomotor system without reflex adaptation (a,b) and with reflex adaptation (c,d,e,f).
have 𝑢𝑖𝑚 → 0 in this case. Figs. 5(e)–(f) show the adaptation of the reflex
gains. The VOR gain 𝛼̂𝑟 tends to zero since it receives no excitation from
its regressor 𝑥̇ℎ, so it is forgotten due to 𝜇-modification.

8. Open problems

There are several open theoretical problems encountered in the
paper. First, we made an assumption in (R8) and Assumption 7 that
23
the reflexes can perfectly cancel disturbances acting on the plant.
While this assumption is valid for certain reflexes such as the stretch
reflexes, it does not hold more generally, the prime example being
the reflexes of the oculomotor system. We will develop the more
general result without the assumption in a forthcoming paper using
the same methods shown here. Second, we assumed in Assumption 12
that 𝑤̃ → 0 exponentially, independently of other states in the model.

Of course such an assumption does not hold in practice, though we
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have noted in Section 7 that the proposed model behaves correctly in
simulation. This theoretical gap must be addressed in our future work.
Third, there are technicalities associated with constructing converse
Lyapunov functions and establishing existence of solutions due to the
non differentiability of the subspace estimator. As we proceed with
continuous and discrete time designs, such questions will resurface.

A number of open problems in the area of adaptive regulator theory
are independent of the reflex architecture presented here. Currently
there is a thrust to remove the standard assumptions of adaptive
control: the assumption of an upper bound on the relative degree of the
plant (Marino & Tomei, 2021; Tomei & Marino, 2023); the assumption
of a minimum phase plant (Bin, Marconi, & Teel, 2019); and the
assumption of an upper bound on the order of the exosystem (Marino &
Tomei, 2007, 2011). We have already mentioned the interesting results
in Tomei and Marino (2023) on stabilization of minimum phase systems
without the use of a high-gain observer.

On the systems neuroscience side, the most important open problem
in the area of reflex adaptation is to understand how the cerebellum
trains reflexes (both in the short-term and long-term) that apparently
operate in discrete-time, such as the eyeblink reflex.

9. Supporting proofs

9.1. Proof of Proposition 1

The implication that ES over every ball implies GUAS and LES is
mmediate from the definitions, so we focus on the reverse implication.
ix 𝛿 > 0. By LES, there exist 𝛿0, 𝑐0, 𝜆0 > 0 such that

‖𝑥(𝑡)‖ ≤ 𝑐0‖𝑥(𝑡0)‖e−𝜆0(𝑡−𝑡0) , ∀𝑡 ≥ 𝑡0, ∀‖𝑥(𝑡0)‖ < 𝛿0.

By GUAS, there exists 𝑇 (𝛿) > 0 such that if ‖𝑥(𝑡0)‖ < 𝛿, then ‖𝑥(𝑡)‖ < 𝛿0
or all 𝑡 ≥ 𝑡0 + 𝑇 (𝛿). Therefore,

𝑥(𝑡)‖ ≤ 𝑐0‖𝑥(𝑡0 + 𝑇 (𝛿))‖e−𝜆0(𝑡−𝑡0−𝑇 (𝛿))

≤ 𝑐1(𝛿)‖𝑥(𝑡0)‖e−𝜆0(𝑡−𝑡0−𝑇 (𝛿)) , ∀𝑡 ≥ 𝑡0 + 𝑇 (𝛿)

and for some 𝑐1(𝛿) > 0. For the time period [𝑡0, 𝑡0 + 𝑇 (𝛿)], by GUAS
(see Khalil (2002, Lemma 4.5)) there exists 𝑐2(𝛿) > 0 such that

‖𝑥(𝑡)‖ ≤ 𝑐2(𝛿)‖𝑥(𝑡0)‖ , ∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 (𝛿)].

Combining our two bounds, we have

‖𝑥(𝑡)‖ ≤ max
{

𝑐1(𝛿), 𝑐2(𝛿)
}

‖𝑥(𝑡0)‖e−𝜆0(𝑡−𝑡0−𝑇 (𝛿))

= max
{

𝑐1(𝛿), 𝑐2(𝛿)
}

e𝑇 (𝛿)‖𝑥(𝑡0)‖e−𝜆0(𝑡−𝑡0) , ∀𝑡 ≥ 𝑡0 .

This proves the equilibrium 𝑥 = 0 of (1) is ES over a ball of radius 𝛿.
Since 𝛿 > 0 is arbitrary, the result follows. Finally, we note that the
exponential rate 𝜆0 does not depend on 𝛿.

9.2. Proof of Lemma 4

The proof here is similar to that of Serrani et al. (2001, Sec-
tion VI.B), with the LES proof being slightly more concise by writing
the linearization with respect to 𝑤(𝑡) rather than 𝑤̂(𝑡).

The system (15) can be cast as an autonomous system because
𝑤̂0 = 𝑤0 +𝑀𝑥𝑥◦ where 𝑤 is generated by the LTI exosystem

𝜁̇𝑤 = 𝑆𝑤𝜁𝑤 (63a)

𝑤0 = 𝛤𝑤𝜁𝑤 (63b)

for an appropriate (𝛤𝑤, 𝑆𝑤) and 𝜁𝑤(𝑡) ∈ R𝑞𝑤 . In particular, since 𝑆𝑤
can be selected to have simple eigenvalues on the 𝑗𝜔-axis, there exist
𝑃𝑤 ≻ 0 such that 𝑆⊺

𝑤𝑃𝑤 + 𝑃𝑤𝑆𝑤 = 0.
Now consider the Lyapunov function

⊺ −1 2 ⊺
24

𝑉 (𝑥◦, 𝜓̃0, 𝜁𝑤) ∶= 𝑥◦𝑃𝑥◦ + |𝑏|𝛾 ‖𝜓̃0‖ + 𝜁𝑤𝑃𝑤𝜁𝑤,
where 𝑃 ≻ 0 is provided by Lemma 3. One can verify that its Lie
derivative with respect to (15), (63) is

𝑉̇ (𝑥◦, 𝜓̃0, 𝜁𝑤) ≤ −𝜌‖𝑥◦‖2.

We deduce the equilibrium (𝑥◦, 𝜓̃0, 𝜁𝑤) = (0, 0, 0) is stable. Next we
apply a LaSalle argument. Let

 ∶= { (𝑥◦, 𝜓̃0, 𝜁𝑤) ∶ 𝜌‖𝑥◦‖
2 = 0 }.

We claim the largest positively invariant set in  is { (0, 0) } × R𝑞𝑤 . To
ee this, note that 𝑥◦(𝑡) = 0 for all 𝑡 ≥ 𝑡0 ≥ 0 implies

0 = 𝐴(𝐾)0 + 𝑏𝐵◦𝑤̂
⊺
0𝜓̃ ⟹ 0 = 𝑤̂⊺

0𝜓̃0 = (𝑤0(𝑡) +𝑀𝑤0)⊺𝜓̃0.

Because 𝑤0 is PE, we can apply Lemma 2 to find

̇̃𝜓0 = 0 and 𝑤⊺
0(𝑡)𝜓̃0 = 0 ⟹ 𝜓̃0 = 0.

Since 𝑉 (⋅) is radially unbounded, we may apply LaSalle’s Theorem
(Khalil, 2002, Corollary 4.2) to conclude (𝑥◦, 𝜓̃0) → 0 for every initial
ondition. Thus, the equilibrium (𝑥◦, 𝜓̃0) = (0, 0) is GAS. Moreover, we
an follow up with Serrani et al. (2001, Lemma III.1) to conclude GUAS.

To show LES, consider the linearization of (15) resulting in the LTV
ystem

𝑥̇◦
̇̃𝜓0

]

=
[

𝐴(𝐾) 𝑏𝐵◦𝑤
⊺
0(𝑡)

− sgn(𝑏)𝛾𝑤0(𝑡)𝐵
⊺
◦ 0

] [

𝑥◦
𝜓̃0

]

.

ince 𝑤0 is PE and 𝑤0, 𝑤̇0 are bounded, by Theorem 2 the equilibrium
𝑥◦, 𝜓̃0) = (0, 0) of the linearization is GES. Finally, since the dynamics
15) are locally Lipschitz in (𝑥◦, 𝜓̃0) uniformly in 𝑡 ≥ 0, we can
pply (Khalil, 2002, Theorem 4.13) to deduce LES.

.3. Proof of Theorem 3

The proof is adapted from Serrani et al. (2001) with minor varia-
ions. Let 𝐾⋆ be defined as in Lemma 3 and fix any 𝐾 ≥ 𝐾⋆ and 𝛿1 > 0.

e begin by showing uniform boundedness of (𝑥◦, 𝜓̃ , 𝜉) using Teel and
raly (1995, Lemma 2.4), with appropriate modifications. To this end
e verify:

• the system (14) is clearly continuously differentiable;
• there exists a compact set  such that 𝑤0(𝑡) ∈  for all 𝑡 ≥ 0 by

boundedness of 𝑤0(𝑡);
• a time-varying form of the uniform Lyapunov property (Teel &

Praly, 1995, Assumption ULP) is satisfied by the continuously
differentiable (uniformly in 𝑡 ≥ 𝑡0 ≥ 0) converse Lyapunov func-
tion 𝑉1(𝑡, 𝑥◦, 𝜓̃) provided by Massera (1956, Theorem 23) because
the equilibrium (𝑥◦, 𝜓̃0) = (0, 0) is GUAS by Lemma 4 and since
the dynamics (14) are locally Lipschitz in (𝑥◦, 𝜓̃0) uniformly in
𝑤0 ∈  (see Proposition 2 to conclude the Lipschitz property over
compact sets in (𝑥◦, 𝜓̃0)). That is, there exists class-∞ functions
𝛼𝑖(⋅) such that

𝛼1(‖(𝑥◦, 𝜓̃0)‖) ≤ 𝑉1(𝑡, 𝑥◦, 𝜓̃0) ≤ 𝛼2(‖(𝑥◦, 𝜓̃0)‖)

𝑉̇1(𝑡, 𝑥◦, 𝜓̃0) ≤ −𝛼3(‖(𝑥◦, 𝜓̃0)‖)

for all (𝑥◦, 𝜓̃0);
• every sublevel set  𝑡𝑐+1 ∶= { (𝑥◦, 𝜓̃0) ∶ 𝑉1(𝑡, 𝑥◦, 𝜓̃0) ≤ 𝑐 + 1 } is

compact because 𝑉1(𝑡, ⋅) is continuous and radially unbounded.
Moreover,

𝑐+1 ∶= { (𝑥◦, 𝜓̃0) ∶ 𝛼2(‖(𝑥◦, 𝜓̃0)‖) ≤ 𝑐 + 1 }

◦
𝑐+1 ∶= { (𝑥◦, 𝜓̃0) ∶ 𝛼1(‖(𝑥◦, 𝜓̃0)‖) ≤ 𝑐 + 1 }

are compact and 𝑐+1 ⊆  𝑡𝑐+1 ⊆ ◦
𝑐+1 for all 𝑡 ≥ 𝑡0 ≥ 0;

• 𝐴 − 𝐿𝐶 is Hurwitz by design;
◦ ◦
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• for any fixed 𝑐 > 1 and all 𝜅 ≥ 1 we have

𝑏1‖𝜉‖ ≥ ‖𝐵1(𝐾, 𝜅, 𝑤̂0)𝜉‖

𝑏2 + 𝑏3‖𝜉‖ ≥ ‖𝐵2(𝐾, 𝑤̂0)
[

𝑥◦
𝜓̃0

]

‖ + ‖𝐵3(𝐾, 𝜅)𝜉‖

for some 𝑏𝑖(𝐾, 𝑐) > 0 provided (𝑥◦, 𝜓̃0) ∈ ◦
𝑐+1 and 𝜉 ∈ R𝑟 because

𝑤0 ∈  .

Given that 𝐴◦ − 𝐿𝐶◦ is Hurwitz, let 𝑃𝐿 ≻ 0 solve the Lyapunov
equation (𝐴◦ − 𝐿𝐶◦)⊺𝑃𝐿 + 𝑃𝐿(𝐴◦ − 𝐿𝐶◦) = −𝐼 and define

𝜇(𝜅) ∶= ln
(

1 + 𝜆max(𝑃𝐿)𝛿21𝜅
2(𝑟−1)) (64)

so that Teel and Praly (1995, Eq. (70)) is satisfied. Since 𝛼2(⋅) is radially
unbounded, we can always find a 𝑐(𝛿1) > 1 such that (𝛿1) ⊆ 𝑐 . Define
the set

𝑡 ∶= int( 𝑡𝑐+1) × { 𝜉 ∶ 𝑈 (𝜉) < 𝜇(𝜅) + 1 }

𝑈 (𝜉) = ln(1 + 𝜉⊺𝑃𝐿𝜉) .

Following the proof of Teel and Praly (1995, Lemma 2.4), there exists
a continuously differentiable function

𝑊 (𝑡, 𝑥◦, 𝜓̃0, 𝜉) =
𝑐𝑉1(𝑡, 𝑥◦, 𝜓̃0)

𝑐 + 1 − 𝑉1(𝑡, 𝑥◦, 𝜓̃0)
+

𝜇(𝜅)𝑈 (𝜉)
𝜇(𝜅) + 1 − 𝑈 (𝜉)

(65)

defined over (𝑥◦, 𝜓̃0, 𝜉) ∈ 𝑡 for each 𝑡 ≥ 𝑡0 ≥ 0, and a constant
⋆(𝐾, 𝛿1) ≥ 1 such that for any 𝜅 ≥ 𝜅⋆ the Lie derivative of (the
ime-varying) 𝑊 (⋅) with respect to (14) satisfies

̇ (𝑡, 𝑥◦, 𝜓̃0, 𝜉) ≤ 0

ver (𝑥◦, 𝜓̃0, 𝜉) ∈ ′
𝑡 for each 𝑡 ≥ 𝑡0 ≥ 0 where

′
𝑡 ∶= { (𝑥◦, 𝜓̃0, 𝜉) ∈ 𝑡 ∶ 1 ≤ 𝑊 (𝑡, 𝑥◦, 𝜓̃0, 𝜉) ≤ 𝑐2 + 𝜇2(𝜅) + 1 }.

imilarly, define the (strict) sublevel sets

𝑡 ∶= { (𝑥◦, 𝜓̃0, 𝜉) ∈ 𝑡 ∶ 𝑊 (𝑡, 𝑥◦, 𝜓̃0, 𝜉) < 𝑐2 + 𝜇2(𝜅) + 1 }

and let (𝑥◦, 𝜓̃0, 𝜉)(𝑡) denote solutions of the system (14). In order to show
uniform boundedness of states, we need to establish positive invariance
of a collection of time-varying sets.

Claim. If (𝑥◦, 𝜓̃0, 𝜉)(𝑡0) ∈ 𝑡0 , then (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 for all 𝑡 ≥ 𝑡0 ≥ 0.

Proof of Claim. Suppose not and define

 ∶= { 𝑡 ∈ [𝑡0,∞) ∶ (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∉ 𝑡 }.

By assumption  is non-empty and bounded below, so its infimum
𝑡⋆ ∶= inf  exists. First, we show that (𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∉ 𝑡⋆ . Define the
continuous functions

𝑊 (𝑡) ∶= 𝑊 (𝑡, 𝑥◦(𝑡), 𝜓̃0(𝑡), 𝜉(𝑡))

𝑉1(𝑡) ∶= 𝑉1(𝑡, 𝑥◦(𝑡), 𝜓̃0(𝑡))

𝑈 (𝑡) ∶= 𝑈 (𝜉(𝑡)) .

For the sake of contradiction, suppose that (𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈ 𝑡⋆ so that

𝑊 (𝑡⋆) < 𝑐2 + 𝜇2(𝜅) + 1 , 𝑉1(𝑡⋆) < 𝑐 + 1 , 𝑈 (𝑡⋆) < 𝜇(𝜅) + 1.

By continuity, there exists a 𝛥𝑡 > 0 such that the above inequalities hold
for 𝑡 ∈ [𝑡⋆, 𝑡⋆ +𝛥𝑡). Equivalently, (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 for all 𝑡 ∈ [𝑡⋆, 𝑡⋆ +𝛥𝑡)
and so 𝑡⋆ < inf  , which is a contradiction. An immediate consequence
is that 𝑡⋆ > 𝑡0, otherwise (𝑥◦, 𝜓̃0, 𝜉)(𝑡0) ∈ 𝑡0 and (𝑥◦, 𝜓̃0, 𝜉)(𝑡0) ∉ 𝑡0 .

Next, by continuity of 𝑊 (𝑡) and since (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 for all
𝑡 ∈ [𝑡0, 𝑡⋆), we have that 𝑊 (𝑡⋆) ≤ 𝑐2 + 𝜇2(𝜅) + 1. Additionally, there
exists a 𝑡1 < 𝑡⋆ such that 𝑊 (𝑡) ≥ 1 for all 𝑡 ∈ [𝑡1, 𝑡⋆). Equivalently
(𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ ′

𝑡 and so its time derivative satisfies 𝑊̇ (𝑡) ≤ 0 for
𝑡 ∈ [𝑡1, 𝑡⋆). By the Fundamental Theorem of Calculus and the fact
(𝑥◦, 𝜓̃0, 𝜉)(𝑡1) ∈ 𝑡1 since 𝑡1 < 𝑡⋆, we compute

𝑊 (𝑡⋆) = 𝑊 (𝑡1) +
𝑡⋆
𝑊̇ (𝜏) 𝑑𝜏 ≤ 𝑊 (𝑡1) < 𝑐2 + 𝜇2(𝜅) + 1.
25

∫𝑡1
Lastly, we claim that (𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈ 𝑡⋆ . Again by continuity of
𝑉1(𝑡) and 𝑈 (𝑡), it must be that

(𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈  𝑡⋆𝑐+1 × { 𝜉 ∶ 𝑈 (𝜉) ≤ 𝜇(𝜅) + 1 } =∶ ̄𝑡⋆ .

For the sake of contradiction, suppose (𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈ 𝜕̄𝑡⋆ . Then it
must be that at least one of

𝑉1(𝑡⋆, 𝑥◦(𝑡⋆), 𝜓̃0(𝑡⋆)) = 𝑐 + 1 , 𝑈 (𝜉(𝑡⋆)) = 𝜇(𝜅) + 1

hold. By the form of (65) and since (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 for 𝑡 ∈ [𝑡0, 𝑡⋆), it is
lear that

lim
→𝑡−⋆

𝑊 (𝑡) = +∞,

mplying there exists 𝑡2 < 𝑡⋆ such that𝑊 (𝑡) ≥ 𝑐2+𝜇2(𝜅)+1 for 𝑡 ∈ [𝑡2, 𝑡⋆).
his contradicts (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 for 𝑡 ∈ [𝑡2, 𝑡⋆) and so it must be that
𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈ int(̄𝑡⋆ ) = 𝑡⋆ .

Altogether, we have shown 𝑊 (𝑡⋆) < 𝑐2+𝜇2(𝜅)+1 and (𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈
𝑡⋆ . This is equivalent to (𝑥◦, 𝜓̃0, 𝜉)(𝑡⋆) ∈ 𝑡⋆ . Given that we have

already showed this is a contradiction, it must be that such a 𝑡⋆ does
not exist and so (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 for all 𝑡 ≥ 𝑡0 ≥ 0. □

From the definition of 𝑐 and 𝜇(𝜅) in (64), we can see our set of
initial conditions satisfy

(𝛿1) × (𝛿1𝜅𝑟−1) ⊆ 𝑐 × (𝛿1𝜅𝑟−1) ⊆ 𝑡

for all 𝑡 ≥ 𝑡0 ≥ 0, then by our claim we have that

(𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ 𝑡 ⊆ 𝑡 ⊆ ◦
𝑐+1 × { 𝜉 ∶ 𝑈 (𝜉) ≤ 𝜇(𝜅) + 1 }

for all 𝑡 ≥ 𝑡0 ≥ 0. By our choice of 𝑉1(⋅) and 𝑈 (⋅), it is clear that both
◦
𝑐+1 and { 𝜉 ∶ 𝑈 (𝜉) ≤ 𝜇(𝜅)+1 } are compact, meaning that all our states

(𝑥◦, 𝜓̃0, 𝜉) are uniformly bounded provided our initial conditions satisfy
(𝑥◦, 𝜓̃0, 𝜉)(𝑡0) ∈ (𝛿1)×(𝛿1𝜅𝑟−1). Remark that the trajectories (𝑥◦, 𝜓̃0)(𝑡)
in fact remain in ◦

𝑐+1 (which is independent of 𝜅) regardless of how
large 𝜅 is selected.

Finally we show ES over (𝑥◦, 𝜓̃0)(𝑡0) ∈ (𝛿1) and 𝜉(𝑡0) ∈ (𝛿1𝜅𝑟−1).
Since every sublevel set ◦

𝑐+1 is compact, there exists some 𝛿2(𝑐) > 0 so
that ◦

𝑐+1 ⊆ (𝛿2). By Proposition 1 and the fact that the equilibrium
(𝑥◦, 𝜓̃0) = (0, 0) of (15) is GUAS and LES from Lemma 4, there exists a
converse Lyapunov function

𝑉2(𝑡, 𝑥◦, 𝜓̃0) ∶ R+ × (𝛿2) → R+

for ES satisfying the conclusions of Khalil (2002, Theorem 4.14). Note
that such a 𝑉2(⋅) depends on the choice of 𝛿2. For the system (14),
consider the Lyapunov function

𝑉3(𝑡, 𝑥◦, 𝜓̃0) ∶= 𝑉2(𝑡, 𝑥◦, 𝜓̃0) + 𝜉⊺𝑃𝐿𝜉.

Recalling that we have previously shown (𝑥◦, 𝜓̃0, 𝜉)(𝑡) ∈ ◦
𝑐+1 × { 𝜉 ∶

𝑈 (𝜉) ≤ 𝜇(𝜅) + 1 }, this implies that (𝑥◦, 𝜓̃0)(𝑡) ∈ ◦
𝑐+1 ⊆ (𝛿2). Therefore,

our Lyapunov function 𝑉3(⋅) is valid for all the considered trajectories
and one can compute its time derivative (omitting the argument 𝑡) as

𝑉̇3(𝑡, 𝑥◦, 𝜓̃0, 𝜉) ≤ −𝑐3‖(𝑥◦, 𝜓̃0)‖2 −
(

𝜅 − 2𝜆max(𝑃𝐿)𝑏3
)

‖𝜉‖2

+
(

𝑐4𝑏1 + 2𝜆max(𝑃𝐿)𝑏2
)

‖(𝑥◦, 𝜓̃0)‖ ‖𝜉‖

≤ −𝛾3𝑉3(𝑡, 𝑥◦, 𝜓̃0, 𝜉)

or an appropriately redefined 𝑏2 > 0 and where the second inequality
olds for some 𝛾3 > 0 provided 𝜅 is selected sufficiently large. It is wlog

that we redefine 𝜅⋆(𝐾, 𝛿1) ≥ 1 to be possibly larger so that a unique
𝛾3 > 0 exists for all 𝜅 ≥ 𝜅⋆. At last, the Comparison Lemma then proves
the result.

9.4. Results for averaging analysis

This section provides supporting results that have been used to

obtain the averaging conditions in Assumption 2.
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Proposition 6. If 𝑓 (𝑡, 𝛼̃) is continuous or locally Lipschitz in 𝛼̃, both
niformly in 𝑡 ≥ 0, then so is 𝑓𝑎𝑣(𝛼̃).

roposition 7. Suppose 𝜕𝛼̃𝜌(𝑡, 𝛼̃) is continuous in 𝛼̃ uniformly in 𝑡 ≥ 0 and
(𝜕𝛼̃𝜌)𝑎𝑣(⋅) exists with convergence uniform in 𝛼̃ over compact sets. If 𝜌𝑎𝑣(⋅)
exists, then (𝜕𝛼̃𝜌)𝑎𝑣(⋅) = 𝜕𝛼̃𝜌𝑎𝑣(⋅).

Proof. Consider 𝜌𝑎𝑣(𝛼̃ + 𝜆𝑣) for all 𝜆 ∈ [0, 1] and ‖𝑣‖ = 1. Taking its
total derivative with respect to 𝜆 we have

𝑑𝜆𝜌𝑎𝑣(𝛼̃ + 𝜆𝑣) = 𝑑𝜆

[

lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜌(𝜏, 𝛼̃ + 𝜆𝑣) 𝑑𝜏

]

= lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑑𝜆𝜌(𝜏, 𝛼̃ + 𝜆𝑣) 𝑑𝜏

= lim
𝑇→∞

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜕𝛼̃𝜌(𝜏, 𝛼̃ + 𝜆𝑣)𝑣 𝑑𝜏

= (𝜕𝛼̃𝜌)𝑎𝑣(𝛼̃ + 𝜆𝑣)𝑣 ,

where we note that the average (which is a limit) and the derivative
with respect to 𝜆 can be swapped in the second equality by uniform
convergence in 𝛼̃ over compact sets of 𝜕𝛼̃𝜌(⋅) to (𝜕𝛼̃𝜌)𝑎𝑣(⋅) and by the
existence of 𝜌𝑎𝑣(⋅) (Rudin, 1976, Theorem 7.17). Applying the chain
rule to 𝑑𝜆𝜌𝑎𝑣(⋅) and then setting 𝜆 = 0, we conclude that

(𝜕𝛼̃𝜌)𝑎𝑣(𝛼̃)𝑣 = 𝜕𝛼̃𝜌𝑎𝑣(𝛼̃)𝑣

for all ‖𝑣‖ = 1, as desired. □

Proposition 8. Suppose 𝜌(𝑡, 𝛼̃) and 𝜕𝛼̃𝜌(𝑡, 𝛼̃) satisfy Proposition 7, 𝜌(𝑡, 0) =
0 for all 𝑡 ≥ 0, and for a compact set  there exists a function 𝛥(𝑇 ,)
satisfying

‖

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜕𝛼̃𝜌(𝜏, 𝛼̃) 𝑑𝜏‖ ≤ 𝛥(𝑇 ,)

or all 𝛼̃ ∈  and 𝑡0 ≥ 0. Then one has that

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜌(𝜏, 𝛼̃) 𝑑𝜏‖ ≤ 𝛥(𝑇 ,)‖𝛼̃‖

for all 𝛼̃ ∈  and 𝑡0 ≥ 0.

Proof. Recalling that 𝑑𝜆𝜌(𝑡, 𝜆𝛼̃) = 𝜕𝛼̃𝜌(𝑡, 𝜆𝛼̃)𝛼̃ by the chain rule, we have
that

‖

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜌(𝜏, 𝛼̃) 𝑑𝜏‖ = ‖

1
𝑇 ∫

𝑡0+𝑇

𝑡0
∫

1

0
𝜕𝛼̃𝜌(𝜏, 𝜆𝛼̃)𝛼̃ 𝑑𝜆 𝑑𝜏‖

= ‖∫

1

0

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜕𝛼̃𝜌(𝜏, 𝜆𝛼̃)𝛼̃ 𝑑𝜏 𝑑𝜆‖

≤ ∫

1

0
‖

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝜕𝛼̃𝜌(𝜏, 𝜆𝛼̃) 𝑑𝜏‖ 𝑑𝜆‖𝛼̃‖

≤ ∫

1

0
𝛥(𝑇 ,) 𝑑𝜆‖𝛼̃‖ = 𝛥(𝑇 ,)‖𝛼̃‖ ,

where the first equality follows from 𝜌(𝜏, 0) = 0, the second equality
follows from the Fubini–Tonelli Theorem, and finally the inequality on
the third line follows from the triangle inequality and the definition of
the induced matrix 2-norm. □

Proposition 9. Consider the system 𝜒̇𝑓 = 𝐹 (𝑡, 𝜒𝑓 , 𝛼̃) where 𝐹 (⋅) is
piecewise continuous in 𝑡 ≥ 0 and continuously differentiable in (𝜒𝑓 , 𝛼̃)
uniformly in 𝑡 ≥ 0. If the equilibrium 𝜒𝑓 = 0 is ES over 𝜒𝑓 (𝑡0) ∈ (𝛿𝑓 + 1)
uniformly in 𝛼̃ ∈ (𝛿𝛼), then the exists a converse Lyapunov function
𝑉 ∶ R+ × (𝛿𝑓 + 1) × (𝛿𝛼) → R+ such that

𝑐1‖𝜒𝑓‖
2 ≤ 𝑉 (𝑡, 𝜒𝑓 , 𝛼̃) ≤ 𝑐2‖𝜒𝑓‖

2

𝜕𝑡𝑉 (𝑡, 𝜒𝑓 , 𝛼̃) + 𝜕𝜒𝑓 𝑉 (𝑡, 𝜒𝑓 , 𝛼̃)𝐹 (𝑡, 𝜒𝑓 , 𝛼̃) ≤ −𝑐3‖𝜒𝑓‖2

‖𝜕 𝑉 (𝑡, 𝜒 , 𝛼̃)‖ ≤ 𝑐 ‖𝜒 ‖
26

𝜒𝑓 𝑓 4 𝑓
‖𝜕𝛼̃𝑉 (𝑡, 𝜒𝑓 , 𝛼̃)‖ ≤ 𝑐5‖𝜒𝑓‖

for some constants 𝑐𝑖(𝛿𝑓 , 𝛿𝛼) > 0.

Proof. The first three inequalities are obtained by applying (Khalil,
2002, Theorem 4.14), so we only need to show the last one. Let
𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) denote a trajectory starting at (𝑡, 𝜒𝑓 ) with fixed parameter
𝛼̃. Then by Khalil (2002, Theorem 4.14) we know

𝑉 (𝑡, 𝜒𝑓 , 𝛼̃) = ∫

𝑡+𝛿

𝑡
𝜙⊺(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) 𝑑𝜏

for some appropriate 𝛿 > 0. By the Leibniz integral rule followed by the
hain rule we have

𝛼̃𝑉 (𝑡, 𝜒𝑓 , 𝛼̃) = 2∫

𝑡+𝛿

𝑡
𝜙⊺(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)𝜕𝛼̃𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) 𝑑𝜏.

y ES uniformly in 𝛼̃ we have there exists constants 𝑐0(𝛿𝑓 , 𝛿𝛼), 𝜆(𝛿𝑓 , 𝛿𝛼)
0 such that

𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)‖ ≤ 𝑐0‖𝜒𝑓‖e−𝜆(𝜏−𝑡)

or all 𝜏 ≥ 𝑡 ≥ 0. Letting 𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) ∶= 𝜕𝛼̃𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃), one can show it
atisfies the variational equation

𝜏𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) = 𝜕𝜏𝜕𝛼̃𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) = 𝜕𝛼̃𝜕𝜏𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)

= 𝜕𝜏𝑓 (𝜏, 𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃), 𝛼̃)𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)

+ 𝜕𝛼̃𝑓 (𝜏, 𝜙(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃), 𝛼̃)

=∶ 𝐴(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃) + 𝐵(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)

or all 𝜏 ≥ 𝑡 ≥ 0. Again by ES uniformly in 𝛼̃ as well as continuous differ-
ntiability of 𝑓 (⋅) uniformly in 𝜏 ≥ 0, there exists 𝑠1(𝛿𝑓 , 𝛿𝛼), 𝑠2(𝛿𝑓 , 𝛿𝛼̃) >
such that ‖𝐴(⋅)‖ ≤ 𝑠1 and ‖𝐵(⋅)‖ ≤ 𝑠2. As such, one can show

𝜏
[

‖𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)‖2
]

≤ 2𝑠1‖𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)‖2 + 2𝑠2

or all 𝜏 ≥ 𝑡 ≥ 0. Applying the Comparison Lemma, we have

𝑠(𝜏; 𝑡, 𝜒𝑓 , 𝛼̃)‖ ≤
√

2𝑠2e𝑠1(𝜏−𝑡)

for all 𝜏 ≥ 𝑡 ≥ 0. Putting it all together, it is straightforward to show
here exists 𝑐5(𝛿𝑓 , 𝛿𝛼̃) > 0 such that

‖𝜕𝛼̃𝑉 (𝑡, 𝜒𝑓 , 𝛼̃)‖ ≤ 𝑐5‖𝜒𝑓‖

as desired. □

9.5. Proof of Theorem 4

By (C5) there exists 𝑐𝑠, 𝜆𝑠 > 0 dependent solely on 𝑓𝑎𝑣(⋅) such that

‖𝛼̃𝑎𝑣(𝑡)‖ ≤ 𝑐𝑠‖𝛼̃𝑎𝑣(𝑡0)‖e−𝜀𝜆𝑠(𝑡−𝑡0) (66)

or all 𝑡 ≥ 𝑡0 ≥ 0 and any 𝛼̃𝑎𝑣(𝑡0) ∈ R𝑛𝑠 . Define

𝑠(𝛿𝛼) ∶=
𝛿𝛼

𝑐𝑠 + 1
.

Clearly if 𝑓𝑎𝑣(⋅) is unchanged (even if 𝐹 (⋅) is different), then the choice
of 𝛿𝑠(⋅) remains the same and 𝛿𝑠 → ∞ as 𝛿𝛼 → ∞. At this point, the
result follows immediately from Teel et al. (2003, Theorem 1), so we
verify the relevant assumptions hold. In particular, we will state all
assumptions explicitly in a time-varying framework.

• Assumptions 1–2: Trivial as there are no ‘‘slow’’ or ‘‘fast’’ distur-
bances inducing a steady-state error on the states, and because
𝜀𝑓 (⋅) = 0 if 𝜀 = 0. In other words, we may take 𝑑𝑠 = 0 and 𝑑𝑓 = 0
in Teel et al. (2003).

• Assumption 3: By (C4) there exists 𝑐𝑓 (𝛿𝑓 , 𝛿𝛼), 𝜆𝑓 (𝛿𝑓 , 𝛿𝛼) > 0 such
that for the system (18a) we have

‖𝜒𝑓 (𝑡)‖ ≤ 𝑐𝑓‖𝜒𝑓 (𝑡0)‖e
−𝜆𝑓 (𝑡−𝑡0)
for all 𝑡 ≥ 𝑡0 ≥ 0 over 𝜒𝑓 (𝑡0) ∈ (𝛿𝑓 + 1) uniformly in 𝛼̃ ∈ (𝛿𝛼).
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• Assumption 4: As shown at the start of the proof, (C5) implies
(66) holds over any compact set of initial conditions. To show
we indeed have an admissible average (Teel et al., 2003, Defini-
tion 1), let 𝑠 ⊆ R𝑛𝑠 be any compact set. By (C1)–(C3), we can
apply Proposition 8 to obtain 𝛥(𝑇 ,𝑠) such that

‖

1
𝑇 ∫

𝑡0+𝑇

𝑡0
𝑓 (𝜏, 0, 𝛼̃) − 𝑓𝑎𝑣(𝛼̃) 𝑑𝜏‖ ≤ 𝛥(𝑇 ,𝑠)‖𝛼̃‖

for all 𝛼̃ ∈ 𝑠 and 𝑡0 ≥ 0. In particular, by (C3) we may take
𝛥(𝑇 ,𝑠) to be a convergence function for (𝜕𝛼̃𝑓 )𝑎𝑣(⋅); that is, 𝛥(⋅) is
continuous and decreasing in 𝑇 ≥ 0, and lim𝑇→∞ 𝛥(𝑇 ,𝑠) = 0.

Instead of directly checking Assumptions 5 and 6, we will use (Teel
et al., 2003, Proposition 2). To this end, we verify the following.

• Assumption 7: In the notation of Teel et al. (2003) we let 𝑠
and 𝑓 be sets of initial conditions we would like to consider,
and we let 𝑠 and 𝑓 be sets of initial conditions we want our
nominal stability bounds to hold. Since 𝑑𝑠 = 0, we can simplify
and take the elements of 𝑓 and 𝑓 to be tuples (𝜒𝑓 , 𝛼̃) rather
than (𝜒𝑓 , 𝛼̃, 𝑑𝑠). Below we verify:

1. 𝑠 ∶= (𝛿𝑠) ⊆ ((𝑐𝑠 + 1)𝛿𝑠) = (𝛿𝛼) =∶ 𝑠;
2. 𝑓 ∶= (𝛿𝑓 ) × (𝛿𝛼) ⊆ (𝛿𝑓 + 1) × (𝛿𝛼) =∶ 𝑓 ;
3. 𝑐𝑓,𝑜 ∶= sup(𝜒𝑓 ,𝛼̃)∈𝑓 ‖𝜒𝑓‖ = 𝛿𝑓 < ∞;
4. 𝑐𝑓,𝑖 = 0 < ∞ because 𝑑𝑓 = 0;
5. 𝑐𝑠,𝑜 ∶= sup𝛼̃𝑎𝑣∈𝑠 ‖𝛼̃𝑎𝑣‖ = 𝛿𝑠 < ∞;
6. 𝑐𝑠,𝑖 = 0 <∞ because (𝑑𝑠, 𝑑𝑓 ) = (0, 0);
7. for any 𝛿◦ ∈ (0,min{ 𝛿𝑓 , 𝛿𝑠 }] ≠ ∅, we have

𝑠 ⊇ { 𝛼̃𝑎𝑣 ∶ ‖𝛼̃𝑎𝑣‖ ≤ 𝑐𝑠,𝑖 + 𝛿◦ } = (𝛿◦)

𝑓 ⊇ { (𝜒𝑓 , 𝛼̃) ∶ ‖𝜒𝑓‖ ≤ 𝑐𝑓,𝑖 + 𝛿◦, ‖𝛼̃‖ ≤ max{ 𝑐𝑠𝑐𝑠,𝑜, 𝑐𝑠,𝑖 }

+ 𝛿◦ } = (𝛿◦) × (𝑐𝑠𝛿𝑠 + 𝛿◦) .

• Assumption 8: In the notation of Teel et al. (2003), define 𝑠 ∶=
(𝑐𝑠𝛿𝑠) and 𝑓 ∶= (𝑐𝑓 𝛿𝑓 ) × R𝑛𝑠 , where 𝑐𝑠, 𝑐𝑓 > 0 come from
Assumptions 3 and 4. Let 𝜎 > 0, then we can verify:

1. continuity of ‖𝛼̃𝑎𝑣‖ and compactness of 𝑠+(𝜎) = (𝑐𝑠𝛿𝑠+
𝜎) implies uniform continuity;

2. for any compact set 𝑠 ⊇ 𝑠 + (𝜎), which exists by
compactness of 𝑠 +𝜎(1), we have an admissible average
over 𝛼̃𝑎𝑣 ∈ 𝑠 by Assumption 4;

3. continuity of ‖𝜒𝑓‖ and compactness of  (𝜎) ∶= (𝑐𝑓 𝛿𝑓 +
𝜎) × (𝑐𝑠𝛿𝑠 + 𝜎) implies uniform continuity;

4. Fix any 𝜌 > 0, then

(a) for any 𝜀∗ ∈ (0, 𝜌] we have that for each 𝑐 ∈
[0, 𝑐𝑓,𝑖] = { 0 }, if ‖𝜒𝑓‖ ≤ 0 + 𝜀∗ then 0 is the only
element such that ‖0‖ ≤ 0 and ‖𝜒𝑓 − 0‖ ≤ 𝜌;

(b) there exists an 𝜀∗ > 0 sufficiently small such that
Teel et al. (2003, Eq. (65)-(69)) are satisfied by (C1)
and compactness of  (𝜎).

With all the assumptions verified and given that our initial conditions
(𝜒, 𝛼̃)(𝑡0) ∈ (𝛿𝑓 ) × (𝛿𝑠) are contained in 𝑠 and 𝑓 , the result then
follows.

9.6. Proof of Theorem 5

Fix some 𝜖 ∈ (0,min{ 𝛿𝛼 , 1 }). Our point of departure is Theorem 4,
where we redefine 𝜀⋆(𝛿𝑓 , 𝛿𝛼) ∶= 𝜀⋆(𝛿𝑓 , 𝛿𝛼 , 𝜖). As such, we have uniform
boundedness of trajectories of (16)

𝜒(𝑡) ∈ (𝑐 𝛿 + 𝜖), 𝛼̃(𝑡) ∈ (𝑐 𝛿 + 𝜖)
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𝑓 𝑓 𝑠 𝑠
for all 𝑡 ≥ 𝑡0 ≥ 0 and all 𝜀 ∈ (0, 𝜀⋆) over (𝜒, 𝛼̃)(𝑡0) ∈ (𝛿𝑓 ) × (𝛿𝑠).
Moreover, by our choice of 𝜖 there exists a (uniform) time 𝛥𝑡 ≥ 0 such
that for all 𝑡 ≥ 𝑡0 + 𝛥𝑡 ≥ 0 we have

𝜒(𝑡) ∈ (𝛿𝑓 + 1), 𝛼̃(𝑡) ∈ (𝛿𝛼).

By uniform boundedness, it suffices to show exponential stability of
trajectories for 𝑡 ≥ 𝑡0 + 𝛥𝑡 ≥ 0 rather than 𝑡 ≥ 𝑡0 ≥ 0; see the proof
of Proposition 1. Exponential stability can be established by a similar
two timescale Lyapunov argument as in Sastry and Bodson (1989,
Theorem 4.4.3) (see also Hafez et al. (2023, Theorem 10)). To this end,
we verify assumptions (B1)–(B5) of Sastry and Bodson (1989, p. 184)
hold for 𝜒 ∈ (𝛿𝑓 + 1) and 𝛼̃ ∈ (𝛿𝛼).

(B1): (C1) states the relevant continuity and differentiability properties
of 𝑓 (⋅) and 𝑔(⋅), whereas (C2) states that all functions vanish at
the origin;

B2): (C3) establishes the existence of the averages, whereas Proposi-
tions 6 and 7 propagate the continuity properties from (C1) to
the averages;

B3): (C1)–(C3) form the assumptions to apply both Propositions 7 and
8. They establish the zero average value and the convergence
function properties of 𝜌(𝑡, 𝛼̃) ∶= 𝑓 (𝑡, 0, 𝛼̃) − 𝑓𝑎𝑣(𝛼̃), respectively;

B4): (C1)–(C2), (C4) form the assumptions to apply Proposition 9,
which characterizes the ES of the fast system (18a) through an
appropriate Lyapunov function defined over (𝑡, 𝜒, 𝛼̃) ∈ R+×(𝛿𝑓+
1) × (𝛿𝛼);

B5): This technical assumption need not be verified since we know
a priori from Theorem 4 that the trajectories of the closed-loop
system (16) converge uniformly and in finite time to (𝛿𝑓 + 1) ×
(𝛿𝛼).

s a result, we conclude the equilibrium (𝜒, 𝛼̃) = (0, 0) of (16) is ES over
𝜒, 𝛼̃)(𝑡0) ∈ (𝛿𝑓 ) × (𝛿𝑠) for every 𝜀 ∈ (0, 𝜀⋆), where we have possibly
edefined 𝜀⋆ > 0 to be smaller.

.7. Proof of Lemma 8

The case when 𝑞𝑝𝑒 = 0 is trivial since 𝛴 = 0, and thus omitted. Let
he block partition

̂ =
[

𝑈1 𝑈2
]

[

𝐷1 0
0 𝐷2

] [

𝑉 ⊺
1
𝑉 ⊺
2

]

enote the SVD of 𝛴̂ where 𝜎min(𝐷1) ≥ 𝜎𝑡𝑜𝑙 and 𝜎max(𝐷2) < 𝜎𝑡𝑜𝑙. Then
he (⋅)𝑡𝑜𝑙 operator is defined as

̂𝑡𝑜𝑙 ∶=
[

𝑈1 𝑈2
]

[

𝐷1 0
0 0

] [

𝑉 ⊺
1
𝑉 ⊺
2

]

= 𝑈1𝐷1𝑉
⊺
1 ,

hich is the matrix 𝛴̂ but with its singular values less than 𝜎𝑡𝑜𝑙 treated
s zero. Note that when 𝐷1 is a matrix of dimension zero, we may
ake 𝑈1𝐷1𝑉

⊺
1 = 0 ∈ R𝑞×𝑞 . An analogous statement holds for 𝑈2𝐷2𝑉

⊺
2 .

onsequently, observe that

inv(𝛴̂; 𝜎𝑡𝑜𝑙) ∶=
[

𝑉1 𝑉2
]

[

𝐷−1
1 0
0 0

] [

𝑈 ⊺
1

𝑈 ⊺
2

]

= 𝛴̂†
𝑡𝑜𝑙 .

Now let 𝛴̂ = 𝛴+𝛴̃. Recalling that 𝛴(𝑡)𝛴†(𝑡) = 𝑊𝑊 ⊺ for all 𝑡 ≥ 𝑡0 ≥ 0
y Lemma 6, one has

𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) −𝑊𝑊 ⊺
‖

≤ ‖𝛴‖ ‖(𝛴 + 𝛴̃)†𝑡𝑜𝑙 − 𝛴
†
‖ + ‖𝛴̃‖ ‖(𝛴 + 𝛴̃)†𝑡𝑜𝑙‖

≤ ‖𝛴(𝑡)‖∞
‖(𝛴 + 𝛴̃)†𝑡𝑜𝑙 − 𝛴

†
‖ + 𝜎−1𝑡𝑜𝑙 ‖𝛴̃‖ .

o deal with the first term in the above inequality, we use a perturba-
ion bound on the pseudoinverse given by Stewart (1977, Theorem 3.3),
tating that

𝛴̂† − 𝛴†
‖ ≤

1 +
√

5
max

{

‖𝛴̂†
‖

2, ‖𝛴†
‖

2
}

‖𝛴̂ − 𝛴‖.
𝑡𝑜𝑙 2 𝑡𝑜𝑙 𝑡𝑜𝑙
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D

D

D

D

D

D

D

E

F

F

Given that the smallest non-zero singular value of 𝛴̂𝑡𝑜𝑙 is forced to be
greater than or equal to 𝜎𝑡𝑜𝑙, it must be that ‖𝛴̂†

𝑡𝑜𝑙‖ ≤ 𝜎−1𝑡𝑜𝑙 . Also, since 𝛿(⋅)
given by Lemma 6 is a class- function, it must satisfy lim𝜀→0+ 𝛿(𝜀) = 0.
Therefore, given that 𝜎𝑡𝑜𝑙 ∈ (0, 𝛽0), there exists an 𝜀⋆(𝜎𝑡𝑜𝑙) > 0 such
that 𝛽0 − 𝛿(𝜀) > 𝜎𝑡𝑜𝑙 > 0 for all 𝜀 ∈ (0, 𝜀⋆]. Note that 𝜀⋆ must be
selected sufficiently small to also satisfy Lemma 6. Then 𝜎min(𝛴) > 𝜎𝑡𝑜𝑙
for 𝜀 ∈ (0, 𝜀⋆], implying that ‖𝛴†

‖ ≤ 𝜎−1𝑡𝑜𝑙 . Altogether

‖𝛴̂†
𝑡𝑜𝑙 − 𝛴

†
‖ ≤

1 +
√

5
2𝜎2𝑡𝑜𝑙

‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − 𝛴‖

≤
1 +

√

5
2𝜎2𝑡𝑜𝑙

(

‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − (𝛴 + 𝛴̃)‖ + ‖𝛴̃‖

)

.

Once again, we need to develop an appropriate bound for the first term.
Let 𝛴̂ = 𝑢1𝜎1𝑣

⊺
1+⋯+𝑢𝑞𝜎𝑞𝑣

⊺
𝑞 denote its SVD with singular values ordered

as 𝜎1 ≥ ⋯ ≥ 𝜎𝑞 . Then for some subset  ⊆ { 1,… , 𝑞 } we have

‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − (𝛴 + 𝛴̃)‖ = ‖

∑

𝑖∈
𝑢𝑖𝜎𝑖𝑣

⊺
𝑖 ‖ = 𝜎(min)(𝛴 + 𝛴̃)

≤ ‖𝛴 + 𝛴̃‖ ≤ ‖𝛴(𝑡)‖∞
+ ‖𝛴̃‖ .

Note that if  = ∅, then ‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − (𝛴 + 𝛴̃)‖ = 0. To obtain a tighter
bound, recall Lemma 7 stating

𝜎𝑞𝑝𝑒 (𝛴 + 𝛴̃) ≥ 𝛽0 − 𝛿(𝜀) − ‖𝛴̃‖

𝜎𝑞𝑝𝑒+1(𝛴 + 𝛴̃) ≤ ‖𝛴̃‖ .

Since we have selected 𝜀 such that 𝛽0 − 𝛿(𝜀) > 𝜎𝑡𝑜𝑙 for 𝜀 ∈ (0, 𝜀⋆], there
exists a 𝛿◦(𝜎𝑡𝑜𝑙) > 0 such that

𝜎𝑞𝑝𝑒 (𝛴 + 𝛴̃) ≥ 𝜎𝑡𝑜𝑙 , 𝜎𝑞𝑝𝑒+1(𝛴 + 𝛴̃) < 𝜎𝑡𝑜𝑙

for all ‖𝛴̃‖ ∈ [0, 𝛿◦). Therefore, for ‖𝛴̃‖ ∈ [0, 𝛿◦) one concludes that
𝛴̂𝑡𝑜𝑙 = (𝛴 + 𝛴̃)𝑡𝑜𝑙 = 𝑢1𝜎1𝑣

⊺
1 +⋯ + 𝑢𝑞𝑝𝑒𝜎𝑞𝑝𝑒𝑣

⊺
𝑞𝑝𝑒 , implying that

‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − (𝛴 + 𝛴̃)‖ = ‖𝑢𝑞𝑝𝑒+1𝜎𝑞𝑝𝑒+1𝑣
⊺
𝑞𝑝𝑒+1

+⋯ + 𝑢𝑞𝜎𝑞𝑣
⊺
𝑞‖

= 𝜎𝑞𝑝𝑒+1(𝛴 + 𝛴̃) ≤ ‖𝛴̃‖ .

Notice that if 𝑞𝑝𝑒 = 𝑞, then ‖(𝛴+ 𝛴̃)𝑡𝑜𝑙−(𝛴+ 𝛴̃)‖ = 0 ≤ ‖𝛴̃‖. Altogether,
we have established

‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − (𝛴 + 𝛴̃)‖ ≤

{

‖𝛴̃‖ , ‖𝛴̃‖ ∈ [0, 𝛿◦)
‖𝛴(𝑡)‖∞

+ ‖𝛴̃‖ , ‖𝛴̃‖ ∈ [𝛿◦,∞)

≤ 𝑎◦‖𝛴̃‖

for some 𝑎◦(𝛿◦) ≥ 1 sufficiently large. Putting all our inequalities
together, we obtain the upper bound

‖𝛴̂†
𝑡𝑜𝑙 − 𝛴

†
‖ ≤

1 +
√

5
2𝜎2𝑡𝑜𝑙

(

‖(𝛴 + 𝛴̃)𝑡𝑜𝑙 − (𝛴 + 𝛴̃)‖ + ‖𝛴̃‖

)

≤
1 +

√

5
2𝜎2𝑡𝑜𝑙

(

𝑎◦ + 1
)

‖𝛴̃‖ =∶ 𝑏◦‖𝛴̃‖

resulting in

‖𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) −𝑊𝑊 ⊺
‖ ≤

(

‖𝛴(𝑡)‖∞
𝑏◦ + 𝜎−1𝑡𝑜𝑙

)

‖𝛴̃‖ =∶ 𝑐◦‖𝛴̃‖.

To conclude the proof, we note that for any two orthogonal projection
matrices 𝐴 and 𝐵, it must be ‖𝐴 − 𝐵‖ ≤ 1 (Stewart, 1977). The result
then follows because a bit of matrix multiplication shows

𝛴̂ pinv(𝛴̂; 𝜎𝑡𝑜𝑙) = 𝛴̂𝑡𝑜𝑙𝛴̂
†
𝑡𝑜𝑙

is an orthogonal projection matrix.
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