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Abstract— We investigate synthesis of piecewise affine feed-
back controllers to achieve an aggressive maneuver for a gantry
crane operating in a cluttered environment. The methodology is
based on formulating the problem as a reach control problem
on a polytopic state space. The boundaries of this polytope arise
from the safety constraints imposed by the environment. We
show that these theoretical tools can be merged with an iterative
control synthesis method to obtain an aggressive, albeit safe and
robust, maneuver without the need for a predefined open-loop
trajectory.

I. INTRODUCTION

This paper proposes a novel framework for heuristic-

based iterative synthesis of feedback controllers on a re-

duced dimensional system for aggressive maneuvering of

mechanical systems. It is demonstrated via a benchmark

example, a gantry crane system, that by using basic intuition

about the physics of the system, a feedback controller can

be iteratively constructed to achieve an aggressive collision

avoidance maneuver. The significance of the method is the

ability to produce a feedback controller, rather than an open-

loop control, with the concomitant benefits of robustness and

operation over a wider range of initial conditions. In contrast

to most literature, we do not compute or learn an open-loop

reference trajectory [4], [8], [10], [16], [17]. Our controller

has as its foremost objective to avoid safety violations. That

the resulting maneuver is “aggressive” is not because of the

choice of the open-loop trajectory, but because the safety

requirements push the system to react decisively to obstacles

in its environment.

A significant effort in recent years has been devoted

to aggressive manuevering, particularly of aerial vehicles.

The authors of [8], [12], [13], [16] attempt precise trajec-

tory tracking, flips, and balancing inverted pendulums using

quadrocopters. In [8], [16] a predefined trajectory is tracked,

achieved via a learning strategy employed over multiple ex-

perimental runs to modify the input to non-causally compen-

sate for disturbances, whereas in [12], [13] a parameterized

open-loop control input is determined. Similarities can be

drawn to our approach in the sense that intuition is used

to subdivide the maneuver into phases, but in our approach

we use event-based switching criteria rather than time-based.

Furthermore, in our approach we completely avoid using

predefined trajectories and instead use an iterative learning

method to determine only the feedback controller parameters.
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Fig. 1. The crane model.

In [10] the focus is on a two stage process to first compute

a geometrically valid trajectory, and then a refined dynam-

ically feasible trajectory for manuevering UCAV’s through

complex 3D city-like environments. Our example imposes

tighter geometrical constraints on the states compared to city

navigation in order to highlight our approach better. A related

example is found in [14], where a rotary pendulum must

perform a rotational motion to bypass an obstacle. However,

in [10], [14] it was necessary to determine a predefined safe

path to track, which is often difficult to compute, whereas in

our approach we do not require a predefined path.

To solve the crane-obstacle problem, we formulate it as a

Reach Control Problem (RCP) on a polytope [1]–[3], [6], [7],

[15]. The reach control problem is for the trajectories of a

dynamical system to reach a predefined facet of a polytope in

finite time without first exiting the polytope. The boundaries

of this polytope are determined by safety constraints imposed

on the state variables in the transient mode. The control of

transient behavior and the guidance of the system states to

a desirable range of values are naturally accommodated in

the RCP framework. However, in this paper we relax the

requirement to solve RCP exactly, for reasons to be explained

below. This relaxation of the RCP problem statement is new

and evocative for the further development of the theory, as

our future work will show.

Our method is comparable to the approaches in [5] and [9]

in the sense that the problem is formulated as a reach control

problem. In [9], given a polytope, a set of predicates, and

a linear temporal logic (LTL) formula, a fully automated

framework is provided to construct affine feedbacks that

lead trajectories from initial states to target states in order

to satisfy the LTL formula. In [5] a nonlinear system is

approximated by an affine system on each simplex of a

triangulation of the polytope. Similar to [9], an algorithm

is given to construct affine feedbacks following the method

of [6], resulting in a sequence of simplices that corresponds



to trajectories executing the desired behaviour.

The authors of [5] and [9] acknowledge that their methods

are conservative, but clever subdivisions of the polytope were

not a focus of either [5] or [9], nor our approach. Moreover,

these methods require designs on the full dimensional space;

however, both only illustrated convincing results on 2D

examples. In contrast, we aim to solve a 4D problem with an

aggressive control specification. While the design methods in

[5] and [9] are applicable, solving our problem with those

methods would result in a very complex design, with possibly

tens of thousands of different affine feedbacks as suggested

in [9]. As such, we explore a novel approach where we do not

perform the design on the full dimensional space, as required

by the existing theory of RCP, but instead work in a more

wieldy 2D output space to reduce the controller complexity.

While the immediate contribution of the paper is to apply

the reach control methodology in output space to achieve

an aggressive maneuver, the ultimate contribution is to

stimulate future research on RCP in two directions. First,

the introduction of more formal iterative learning methods

in RCP, as related to the literature cited above. Second, to

formulate RCP on lower dimensional spaces, such as the

output space. The fact that we used heuristics and iterative

learning is a consequence of the lack of theory to support a

rigorous design on a lower dimensional space. For simplicity

of exposition of these ideas, we restricted our iterative

learning method to more-or-less trial and error. Despite this

somewhat crude and unchartered approach, we succeed in

illustrating the utility of the reach control concept in that we

can perform interesting aggressive maneuvers without the

need for tracking a predefined trajectory, as in the majority

of the literature.

II. MODEL OF GANTRY CRANE

The model for the gantry crane consists of a trolley on
a horizontal track carrying a load by a suspension chord.
Let z be the lateral displacement of the trolley with respect
to a fixed world frame (w1, w2) along the track. Let θ be
the angle of the load from the downward vertical position
in the counterclockwise sense, and let the control input u be
the force applied to the trolley. The trolley and load have
mass M and m, respectively. The suspension chord has a
fixed length L and is assumed to be massless and rigid.
See Figure 1. Frictional losses are neglected for simplicity
of modeling. Note that the suspension chord is restricted
to a fixed length to make the control problem of obstacle
avoidance more challenging. Let x1 = z, x2 = ż, x3 = θ,

and x4 = θ̇ and define the state vector x = (x1, x2, x3, x4).
Then the state model is:

ẋ1 = x2

ẋ2 =
mLx2

4 sin(x3) +
1
2
mg sin(2x3) + u

M +m sin2(x3)

ẋ3 = x4

ẋ4 = −
(M +m)g sin(x3) +

1
2
mLx2

4 sin(2x3) + u cos(x3)

L(M +m sin2(x3))
.

(1)
Next we linearize the state model about the equilibrium x =
0, u = 0, corresponding to the load hanging down vertically.
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Fig. 2. The crane-obstacle problem

This yields the linearized state space model

ẋ = Ax+Bu =
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The output is y = (x1, x3). For the purposes of simulation,

the model parameters are fixed at m = 0.23 kg, M = 1.07
kg, L = 0.33 m, and g = 9.8 m/s2. These parameters

are representative of what could potentially be tested in a

laboratory using a cart and pendulum to simulate a gantry

crane trolley and load.

III. COMPLEX CONTROL SPECIFICATIONS

In the present work the primary control objective is to

transport a payload from one end of a room to another. The

environment is cluttered by a large obstacle that stands in the

way of the start and end points. The height of the obstacle

is such that the payload would collide with it when hanging

vertically, but pass over it when rotated to a sufficiently large

angle. While the obstacle may be clearable by hoisting the

payload, we attempt this without hoisting. Doing so demands

for a rather aggressive crane maneuver and we aim to show

that safety, interpreted strictly as avoiding all collisions, can

be maintained using our control framework. The desired

behaviour of the crane can broken down into three conceptual

stages:

1) Move the crane to a starting position and begin motion

to start clearing the obstacle.

2) Fully clear the obstacle while remaining within oper-

ational limits.

3) Bring the crane to a full stop at the desired end point

while remaining within operational limits.

Figure 2 shows the crane model embedded within the

workspace. For purposes of simulation, we selected wtrack =
2.2 m, wobs = 0.3 m, htrack = L = 0.33 m, and hobs =
1

2
htrack = 0.165 m. The crane arm may not hit the wall

boundaries of the room, the ceiling or railing of the trolley,

and the obstacle.

The control specifications can be formalized in terms of

the states of the system. Let d and θ⋆ have the meaning

shown in Figure 3. By the geometry it is seen that d =
√

L2 − (htrack − hobs)
2

and θ⋆ = cos−1
(

htrack−hobs

L

)

. The
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Fig. 3. Possible collisions of crane with obstacle

complex control specifications for the crane-obstacle problem

are:

Safety Specifications:

(S1) |x1| ≤
1

2
wtrack

(S2) |x3| ≤
1

2
π

(S3)
∣

∣

π
2L

x1 + x3

∣

∣ ≤ π
4L

wtrack

(S4) If |x1| ≤
(

1

2
wobs + d

)

then |x3| ≥ θ⋆ or
∣

∣x1 +
d
θ⋆x3

∣

∣ ≥ 1

2
wobs

Desired Temporal Sequence: The load is transported from

the left wall to the right wall.

The desired temporal sequence is a qualitative description

of the sequence of events which must be enacted by the

closed-loop system, and it can be further formalized using

discrete event system theory. (S1) characterizes that the

trolley position may not exceed the limits of the track. (S2)

imposes that the pendulum arm may not swing too high to

hit the track. (S3) describes how far the pendulum arm may

swing as the trolley approaches the limits of the track on

either side. (S4) imposes that as the trolley position gets

within a vicinity of the obstacle, the pendulum arm must

be within a particular range of angles to avoid collision

with the obstacle on either side. The safety constraints to

avoid collisions are, strictly speaking, nonlinear constraints

in (x1, x3). Here the safe region of operation is approximated

by linear constraints, yielding (S3)-(S4); details are omitted.

IV. METHODOLOGY

The safety specifications impose that the pair (x1, x3) re-

main inside a non-convex, doughnut-shaped polytopic region

P , as shown in Figure 4. The hole in P corresponds to

safety constraints induced by the obstacle, whereas the outer

boundaries correspond to safety constraints induced by the

walls. Note that the obstacle is of a significant size so as to

push the limitations of the system and thereby illustrate the

capabilities of the proposed control method.

The set P determines the output space of the problem.

We partition P into a set of regions where controllers can

be specified. Ideally these regions would be topologically

identical so that a standardized control synthesis method

could be employed. Since P is a non-convex polytope we

employ a triangulation of P into simplices.

An n-dimensional simplex S := co{v0, . . . , vn} is the

convex hull of n + 1 affinely independent points in R
n.

Informally, it is the higher-dimensional generalization of a

triangle. A facet of a simplex is a boundary face of dimension

n− 1. A triangulation is a partition of a set P ⊂ R
n into p

simplices and is denoted as T = {S1, . . . ,Sp} [11]. Then T

satisfies the properties:

(i) T = S1 ∪ . . . ∪ Sp and
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Fig. 4. The output space determined by the safety specifications.

(ii) Si ∩Sj , i 6= j, is a lower dimensional simplex of both

Si and Sj or the empty set ∀i, j ∈ {1, . . . , p}.

Once a triangulation of P has been specified, the next

step of the design is to identify a sequence of simplices

to be visited by trajectories in order to ”play out” the

desired temporal sequence. Since the left and right vertical

boundaries of P correspond to the left and right walls, this

sequence of simplices should start with a simplex containing

the point (x0

1, x
0

3) =
(

−wroom

2
, 0
)

and finish with a simplex

containing the point (xf
1
, x

f
3
) =

(

wroom

2
, 0
)

.

Using the sequence of simplices, an exit facet for each

simplex is designated. The trajectories starting in the given

simplex may only exit the simplex through the exit facet.

Finally, controllers are designed for each simplex based on

the reach control problem (RCP). The reach control problem

formulation, its theoretical developments, and conditions for

solvability are discussed in the literature [2], [3], [6], [7],

[15]. The main purpose of RCP is to guide trajectories of a

dynamical system through a specific region of the state space

defined by safety and performance requirements. Ultimately,

the trajectories should reach a target set of states in finite time

without violating the boundaries of the specified region.

The following algorithm summarizes the basic design

steps assuming no iteration for learning the controllers. Each

step of the algorithm will be further elaborated in Section V,

where also the iterative learning method associated with steps

4-5 of the algorithm will be explained.

Algorithm 1: Consider system (1) and a control specifica-

tion consisting of safety specifications and a desired temporal

sequence.

1) Express the safety specifications as affine inequalities

in terms of the state variables of (1). Denote the region

of the state space defined by these inequalities by P .

2) Triangulate P using the vertices of P . (A refinement

of the initial triangulation using more vertices other

than those of P may be required).

3) Determine a sequence of simplices S1 − Sp such that

the desired temporal sequence can be satisfied by the

closed-loop trajectory. (This may require iterating on

the triangulation to ensure solvability of step 4 of the
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Fig. 5. Triangulation of P .

algorithm). Designate an exit facet for each simplex in

the sequence.

4) For each simplex Si, i = 1, . . . , p − 1, compute

an affine feedback u = Ky + g by formulating a

reach control problem on Si in the output space.

This involves selecting control values u0, u1, u2 at the

vertices v0, v1, v2, respectively, and solving for K and

g using the formula




−vT0 − 1
−vT

1
− 1

−vT
2
− 1





[

KT

gT

]

=





uT
0

uT
1

uT
2



 . (3)

5) Design a pole placement controller u = Kppx+gpp for

the linearized model (2) to be activated upon reaching

a target simplex Sq in order to stabilize to a chosen

rest position xf .

The resulting control law is a piecewise affine feedback with

switching between controllers occurring at the boundaries

between contiguous simplices.

V. ITERATIVE LEARNING OF AFFINE CONTROLLERS

We now elaborate each step of the algorithm and also

discuss an iterative method for learning the affine controllers

for each simplex.

The first step of the algorithm to express the safety specifi-

cations as affine inequalities in the states has been completed

in Section III. For the second step, in the crane problem P
is defined in the output space (x1, x3); rather than working

with 4D simplices we only require 2D simplices. Figure 5

shows a triangulation consisting of 13 2D simplices. This

triangulation was naively generated using existing polytope

vertices. After experimentation in simulation it was found

that adding an additional vertex at the bottom of S4 improved

the ability to design the controllers. This will be further

described below.

For the third step of the algorithm we must determine

a sequence of simplices of the triangulation to be visited

by closed-loop trajectories based on the desired temporal

sequence. Based on our triangulation, the sequence must

start with S1 and end with S8. It is clear from Figure 4

there are two ways to get around the hole: either S1 →
S2 → S3 → S4 . . . or S1 → S13 → S12 → S11 . . ..

According to the physics of the system, when the trolley

moves from left to right, it is natural for the pendulum arm to

swing backwards, attaining negative angles corresponding to

simplices S1, S2, S3, etc. Therefore, we choose the sequence

S1 → S2 → S3 → S4 . . .. This choice also fixes the exit

facet for each simplex in the sequence.

In the fourth step of the algorithm it is required to choose

an RCP controller for each simplex. In the present problem

we do not follow the usual approach to select control values

at the vertices of each simplex to achieve the invariance

conditions (for details, see the RCP literature mentioned

earlier). This is because the simplices are defined in the

output space and satisfying the associated two dimensional

invariance conditions would not guarantee that closed-loop

trajectories exit only through the designated exit facets.

Instead we use an iterative procedure to choose the three

vertex control values u0, u1, and u2 ∈ R for each simplex

using only basic intuition about the physics. This method is

now elaborated.

The main concept of the affine control design is to work

sequentially from the beginning of the temporal sequence,

ensuring that over each simplex the closed-loop trajectory

exits through the desired exit facet. If a collision occurs in

the simulation, we redesign the control values at the latest

simplex and resimulate to verify the change. Typically only

one vertex control value should be modified at a time in small

increments. If difficulty is encountered clearing a particular

simplex, earlier simplex control values must be reselected in

such a way to give better leverage in later simplices. Related

approaches using iterative learning have been based on actual

experimental results [16] in order to correct for disturbances;

in contrast, we iterate based on simulation results using the

full nonlinear model (1) to find the gains in our controllers.

While it is possible to automate this iterative approach,

there is a simple intuitive rule that can be employed when

selecting control values manually for the present problem.

First we recall that control input u is the lateral force applied

to the cart. The control value at each vertex is the force

applied at that (x1, x3) coordinate. Using the feedback (3),

the control value at an arbitrary point in each simplex is

an affine combination of the control values at the vertices.

Hence positive values of u push the cart forward, making the

pendulum arm swing backwards and vice versa for negative

values. Also large values of u result in a strong push,

causing quick gains in speed and changes in state, while the

opposite occurs for small values. Therefore, a feedback on

each simplex is generated by characterizing physically how

much force is required in that configuration to reach the next

configuration.

We remark that the above procedure is more intuitive



−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

Trolley Position (m)

C
ra
n
e
A
n
g
le

(r
a
d
)

State Space Polytope

−1 −0.5 0 0.5 1
−0.3

−0.2

−0.1

0

0.1

Trolley Position (m)

V
er
ti
ca
l
P
o
si
ti
o
n
(m

)

Crane Problem Animation

Fig. 6. Nonlinear simulation result for a high, moderately wide obstacle.

than selecting closed-loop poles to generate linear state

feedbacks. In any case, the poles are related to settling

time and overshoot, which are irrelevant to meeting our

complex specifications. In fact, to achieve this maneuver

we are making the system temporarily unstable to push it

over the obstacle, which is why the maneuver is inherently

aggressive. Heuristics for the control values are described

next.

We keep in mind the three conceptual stages of the crane

behavior. For the first few simplices (S1 − S2) a good start

is to push forward to gain a sufficiently large angle to be

able to clear the obstacle. In the next simplices (S3 − S5) a

good start is to keep the force constant to maintain the angle.

However, it is possibly better to “juggle” the force applied

forward and backward in each sequential simplex to start to

reduce forward speed. This is the reason why this region

is triangulated in more simplices in order to provide more

opportunities to exercise the rapid changes in force. In the

remaining simplices (S6 −S8) the obstacle has been cleared

and so a good start is to push backward very hard to slow

down the system. Doing so causes the closed-loop trajectory

to brush closely against the right side of the obstacle region

in P , which then gives more forward room for the pendulum

arm to swing back safely when the stabilizing pole placement

controller is activated. From these starting points the values

can be iterated gradually in the manner described above.

A useful simplification for the initial guess of vertex

control values is to use the same control value at all the

vertices of a given simplex. From (3) it can be seen that this

results in K = 0 and g = u0 = u1 = u2. If this does not

work, then the control values can be modified one at a time.

Finally, for step 5 of the algorithm a pole placement

controller based on the linearized model is design (despite

the fact that the nonlinear model operates far from equilib-

rium). This controller is activated permanently after the first

instance that the state is detected in S9. Thus, it is used to

terminate the design because RCP controllers cannot stabilize

the system to rest. Upon reaching S9 and just prior to

activating the pole placement controller, the RCP controllers

have already performed their duty in transporting the crane

over the obstacle. If the heuristics described earlier were

followed over the conceptual stages of the maneuver, then the

pole placement controller should have little trouble keeping

the closed-loop trajectory within P as the crane comes to

rest. As the stopping occurs, the states backtrack through

the simplices to reach the final state, xf , which is situated

on the line of equilibrium states, x3 = 0. The decision to

initiate the pole placement controller upon reaching S9 was

based on obtaining a feasible closed-loop trajectory; in fact

we could have tried any of the simplices S6 − S10 as the

switching criterion.

It can be verified that the linearized system (A,B) in

(2) is controllable. Hence the closed-loop poles can be set

arbitrarily, which gives K . The affine term can be selected as

g = −Kxf . Poles that are too large can cause an aggressive

response, resulting in the pendulum arm to hit the track.

Poles that are too small do not stop the cart early enough

and the pendulum hits the right wall.

VI. SIMULATION RESULTS

In this section we present the results for the crane problem.
After applying the method described above, the resulting
piecewise affine feedback is

u =



















































25 , x ∈ S1

5 , x ∈ S2
[

158.15 0.00 −167.26 0.00
]

x− 196.70 , x ∈ S3

−10 , x ∈ S4

−11 , x ∈ S5

−80 , x ∈ S6

−100 , x ∈ S7

150 , x ∈ S8
[

−60.71 −38.52 56.08 −3.50
]

x+ 30.35 , x ∈ S9 .

The last controller on S9 is the pole placement controller,

and the control is not switched again after reaching S9.

We simulate the closed-loop response using the nonlinear

model (1) and the results are shown in Figures 6 and 7.

The top subplot of Figure 6 shows the triangulation of P
and the closed-loop trajectory in the output space (x1, x3):
by remaining inside P the crane has avoided all possible

collisions. The bottom subplot of Figure 6 shows a snapshot

of an animation where the dotted line represents the motion

of the load. Finally, the four subplots of Figure 7 show the

states as a function of time. We remark that the control inputs

to achieve this maneuver are very large, on the order of 100

N in some instances. If we had imposed actuator constraints,

it may have been that the desired maneuver would inherently

be too aggressive to perform.

An important consideration in evaluating the usefulness

of the proposed method is the robustness of the controller

performance to perturbations in the payload mass, m. The

effect of varying m is shown in Figure 8. Our simulation

results showed at least a ±30% insensitivity to variations
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in m under the same control law, while greater perturbations

would result in collisions. In particular, decreasing m further

would result in a collision around S5 because of excessive

input force, and increasing m further would result in a

collision in S8 − S10 because of insufficient input force to

slow down the crane.

A second consideration is robustness to choice of initial

condition. The proposed controller cannot be used for all

initial conditions in the state space P as one would expect

of a feedback controller. This is because we have not strictly

solved RCP since we work on 2D simplices, not 4D sim-

plices. However, in practical terms the proposed controller

can be used for all initial conditions corresponding to the

cart being to the left of the obstacle. One can employ a pole

placement controller with weak poles to bring the cart to our

designed initial condition within the starting simplex.
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