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Abstract

We consider the synthesis of optimal controls for con-
tinuous feedback systems by recasting the problem to a
hybrid optimal control problem: to synthesize optimal
enabling conditions for switching between locations in
which the control is constant. We provide a single-pass
algorithm to solve the dynamic programming problem
that arises, with added constraints to ensure non-Zeno
trajectories.

1 Introduction

In this paper we continue our investigation of the ap-
plication of hybrid systems and bisimulation to optimal
control problems. In the first paper [3] we developed a
discrete method for solving an optimal control problem
based on hybrid systems and bisimulation. We showed
that the value function of the discrete problem con-
verges to the value function of the continuous problem
as a discretization parameter § tends to zero. In this
paper we focus on the pragmatic question of how the
discretized problem can be efficiently solved.

Following the introduction of the concept of viscos-
ity solution [5], Capuzzo-Dolcetta [4] introduced a
method for obtaining approximations of viscosity so-
lutions based on time discretization of the Hamilton-
Jacobi-Bellman (HJB) equation. The approximations
of the value function correspond to a discrete time op-
timal control problem, for which an optimal control
can be synthesized that is piecewise constant. Finite
difference approximations were also introduced in [6]
and [10]. In general, the time discretized approxima-
tion of the HJB equation is solved by finite element
methods. Gonzales and Rofman [9] introduced a dis-
crete approximation by triangulating the domain of the
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finite horizon problem they considered, while the ad-
missible control set is approximated by a finite set.
Gonzales and Rofman’s approach is adapted in several
papers, including [8]. The approach of [11] uses the spe-
cial structure of an optimal control problem to obtain
a single-pass algorithm to solve the discrete problem,
thus bypassing the expensive iterations of a finite ele-
ment method. The essential property needed to find a
single pass algorithm is to obtain a partition of the do-
main so that the cost-to-go value from any equivalence
class of the partition is determined from knowledge
of the cost-to-go from those equivalence classes with
strictly smaller cost-to-go values. In this paper we ob-
tain a partition of the domain provided by a bisimula-
tion partition. The combination of the structure of the
bisimulation partition and the requirement of non-Zeno
trajectories enables us reproduce the essential property
of [11], so that we obtain a Dijkstra-like algorithmic
solution. Our approach has complexity O(N log N) if
suitable data structures are used, where N is the num-
ber of locations of the finite automaton.

While the objective is to solve a continuous optimal
control problem, the method can be adapted to solve
directly the problem of optimal synthesis of enabling
conditions for hybrid systems. In that spirit, [1] investi-
gates games on timed automata and obtains a dynamic
programming formulation as well.

2 Optimal control problem

cl(A) denotes the closure of set A. || - || denotes the
Euclidean norm. X(R™) denotes the sets of smooth
vector fields on R™. ¢;(zo, 1) denotes the trajectory of
Z = f(z,u) starting from zo and using control u(-).

Let U be a compact subset of R™, {2 an open, bounded,
connected subset of R", and €1y a compact subset of .
Define U,,, to be the set of measurable functions map-
ping [0,7] to U. We define the minimum hitting time
T :R* XU, = R by T(z,u) = oo if {t|gs(z,p) €
Q; } =0 and T(z,p) = min{t | ¢¢(z,p) € O} oth-
erwise. A control p € Un, specified on [0,T] is ad-
missible for © € Q if ¢y(z,u) € Q for all t € [0,T].
The set of admissible controls for x is denoted U,. Let
R:={zeQ|3uel, T(z,p) < oo }. We consider



the following optimal control problem. Given y € Q,

T(y,n)
minimize J(y,u) :/ L(x(s), u(s))ds
0

+ h(@(T(y, 1)) (1)
subject to & = f(z,pu), ae. t€[0,T(y,p)] (2)
z(0) =y 3)

among all admissible controls u € Uy,. J : R® xU,, -+ R
is the cost-to-go function, h : R® — R is the terminal
cost, and L : R" x R™ — R is the instantaneous cost.
At T'(y,u) the terminal cost h(z(T(y,u))) is incurred
and the dynamics are stopped. The control objective
is to reach €y from y € Q with minimum cost.

The wvalue function or optimal cost-to-go function V :
R* — R is given by V(y) = inf,cy, J(y,n) for y €
Q\ Qy, and by V(y) = h(y) for y € Qy. V satisfies the
Hamilton-Jacobi-Bellman equation

—;gg{L(m,u) + Z—Zf(a:,u)} =0 (4)

at each point of R at which it is differentiable. The
HJB equation is an infinitesimal version of the equiv-
alent Dynamic Programming Principle (DPP) which
says that

¢
V) = jnf { [ 20wt n(e)ds + Voo },
for x € @\ Qy and V(x) = h(z) for z € Qy, assuming
a small-time controllability condition holds. Viscosity
solutions [5] provide the unique solution of (4) without
assuming differentiability. We showed in [3] that under
assumptions of Lipschitz continuity of f,L, and h, and
non-Zenoness and transversality with 1y of e-optimal
trajectories, that a particular discrete approximation 14

of the value function converges to the viscosity solution
of HJB.

3 From hybrid automata to finite automata

In [3] we proposed a mapping from the continuous op-
timal control problem (1)-(3) to a hybrid optimal con-
trol problem. The first step is to restrict the class
of controls over which the cost function is minimized
to piecewise constant controls taking values in a set
35 CU. ¥5 CU is a finite approximation of U hav-
ing a mesh size § := sup,y minges; [lu — of|. Next
we restrict the continuous behavior to the set of vec-
tor fields {f(z,0)}sex;- If we associate each vector
field to a location of a hybrid automaton and, addi-
tionally, define a location reserved for when the tar-
get is reached, we obtain a hybrid automaton H :=
(X xR"”, X5, D, Ep, G, R) which has the following com-
ponents:

State set ¥ x R™ is a finite set ¥ = X5 U {0y} of
control locations and n continuous variables z €

R™. oy is a terminal location when the continuous
dynamics are stopped (in the same sense that the
dynamics are stopped in the continuous optimal
control problem).

Events Y; is a finite set of control event labels.

Vector fields D : ¥ — X(R") is a function assign-
ing an autonomous vector field to each location;
namely D(o) = f(z,0).

Control switches E, C ¥ x ¥ is a set of control
switches. e = (0,0') is a directed edge between
a source location o and a target location o'. If
Ep(0) denotes the set of edges that can be en-
abled at ¢ € X, then Ep(0) = {(o,0") | 0’ €
Y\ o} for o € 5 and Ep(oy) = 0. Thus, from a
source location not equal to oy, there is an edge
to every other location (but not itself), while lo-
cation oy has no outgoing edges.

Enabling conditions G : E;, — {gc}ecr, is a func-
tion assigning to each edge e an enabling (or
guard) condition g, C R".

The enabling conditions are unknown and must be syn-
thesized algorithmically. (See [3] for how the enabling
conditions are extracted once the discrete problem is
solved.) Trajectories of H evolve in o-steps and t-steps.
o-steps occur when H changes locations (and the con-
trol changes value, since there are no self-loops) and
t-steps occur when the continuous state evolves accord-
ing to the dynamics of a location as time passes. The
reader is referred to [3] for precise statements. A hybrid
trajectory is non-Zeno if between every two non-zero
duration t-steps there are a finite number of o-steps
and zero duration ¢-steps.

Let X represent an arbitrary time interval. A bisimu-
lation of H is an equivalence relation ~C (X5 x R™) x
(X5 x R") such that for all states p;,p2 € X5 x R?,
if p1 ~ p2 and 0 € %5 U {)\}, then if p; = p, there
exists p) such that ps = p) and p| ~ ph. One sees that
~ encodes o-steps and t-steps of H in a time abstract
form by partitioning ¥5 x R™. If ~ has a finite number
of equivalence classes, then they form the states of a
finite automaton A. If ¢ := [(0,2)] and ¢' := [(¢', )]
are two different equivalence classes of ~, then A has
an edge ¢ — ¢ if there exists (o,y) € ¢ and (¢',y') € ¢'
such that (o,y) — (¢',9') is a o-step or t-step of H.
We define the set of interesting equivalence classes of
~, denoted @, as those that intersect X5 x ¢l(2), and
we identify a distinguished point (0,£) € ¢ for each
¢ € Q, denoted g = [(,€)].

Consider the non-deterministic automata with cost
structure A = (Q, X5, E,0bs, Qy, L, h). Q is the state
set just defined, and X; is the set of control labels as
before. obs : E — X¥; is a map that assigns a control
label to each edge and is given by obs(e) = o', where

e=1(¢,¢"), ¢=[(0,8)] and ¢’ =[(¢',¢")]. Qy is an over



(or under) approximation of Q¢, Qf = {¢ € Q | Iz €
Qf . (0,2) € ¢ }. ECQ xQ is the transition rela-
tion of A and is defined assuming that each enabling
condition is initially the entire region Q. The identity
map on control switches is implemented in A by an
over-approximation in terms of equivalence classes of
~. That is, for o # o', [(0, )], [(¢',2')]) € E if the pro-
jections to R™ of [(o,z)] and [(¢', z')] have non-empty
intersection. This over-approximation introduces non-
determinacy in A. Let

{t | y=¢t($70) }

Tqg = sup
(0,2),(0,y)€q

Let e = (g,¢') with ¢ = [(0,¢)] and ¢' = [(¢',&")].
L : E — R is the discrete instantaneous cost given by

7 - qL(f, ) if =o'
Lie) '_{ o T ez ®)

h: Q — Ris the discrete terminal cost given by h(q) :=
h(€). A transition or step of A from g € Q to ¢' € @

with observation o’ € X5 is denoted ¢ % ¢'. If o # o’
the transition is referred to as a control switch, and it
is forced. o = o' the transition is referred to as a time
step. If E(q) is the set of edges that can be enabled from
g € @, then for o € 5, E,(q) = {e € E(q) | obs(e) =
o}. If |[E,(¢)| > 1, then we say that e € E,(q) is
unobservable in the sense that when control event o is
issued, it is unknown which edge among E, (q) is taken.
(Note that unobservability of edges refers strictly to the
discrete automaton A, whereas in H one may be able
to reconstruct which edge was taken using continuous
state information). If 0 = ¢’, then |E,(q)| = 1, by the
uniqueness of solutions of ODE’s and by the definition
of bisimulation.

A control policy ¢ : Q — X is a map assigning a control
event to each state; ¢(q) = o is the control event issued
when the state is at q. A trajectory m of A over ¢ is a
sequence m = qo 3 q1 B2 B ..., ¢; € Q. Let I.(q)
be the set of trajectories starting at ¢ and applying
control policy ¢, and let II.(g) be the set of trajectories
starting at ¢, applying control policy ¢, and eventually
reaching Q¢. If for every ¢ € @, m € II.(g) is non-
Zeno then we say c is an admissible control policy. The
set of all admissible control policies for A is denoted
C. A control policy ¢ is said to have a loop if A has a

trajectory qo elag) q elag) | clomes) m = 9o, ¢ € Q.
A control policy has a Zeno loop if it has a loop made
up of control switches and/or zero duration time steps
(i.e. 7 =0) only.

Lemma 1 A control policy ¢ for non-deterministic au-
tomaton A is admissible if and only if it has no Zeno
loops.

Proof: First we show that a non-deterministic au-
tomaton with non-Zeno trajectories has a control pol-
icy without Zeno loops. For suppose not. Then a tra-
jectory starting on a state belonging to the loop can

TN
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Figure 1: Fragment of automaton with a zero duration
time step.

take infinitely many steps around the loop before tak-
ing a non-zero duration time step. This trajectory is
not non-Zeno, a contradiction. Second, we show that
a control policy without Zeno loops implies non-Zeno
trajectories. Suppose not. Consider a Zeno trajectory
that takes an infinite number of control switches and /or
zero duration time steps between two non-zero duration
time steps. Because there are a finite number of states
in @, by the Dirichlet Principle, one of the states must
be repeated in the sequence of states visited during the
control switches and/or zero duration time steps. This
implies the existence of a loop in the control policy. Ei-
ther each step of the loop is a control switch, implying
a Zeno loop; or the loop has one or more zero duration
time steps. But the bisimulation partition permits zero
duration time steps only if 7, = 0, which implies a Zeno
loop. ™

Example 1 Consider the automaton in Figure 1.
Suppose that we define a control policy c(q1) = o,
c(qs) = o', ¢(lqs) = o, and c(g5) = o. Starting at

q1 two possible trajectories are q1 = q3 5 g4 — @, OT
a5 35 g0 S qu. The first trajectory has a zero
duration time step. The control is inadmissible since
the second trajectory has a Zeno loop.

4 Dynamic programming

In this section we formulate the dynamic programming
problem on A. This involves defining a cost-to-go func-
tion and a value function that minimizes it over control
policies suitable for non-deterministic automata.

Let m=qo 3 qv...qn—1 > qn, where ¢; = [(04,&)]
and 7 takes the sequence of edges e1es ...en. We define
a discrete cost-to-go J : Q x C — R by

N

J(g,¢) = max L(e;) + h(qn,

(¢,) Weﬁc@{; () + hlav.) }

if M.(¢q) = M.(¢) and J(¢,c) = oo otherwise, where
Ny =min{j > 0| ¢; € Qf}. We take the maximum



over II.(q) because of the non-determinacy of A: it We observe a few properties of the algorithm. First, if

is uncertain which among the (multiple) trajectories all states of () can reach Q¢ then Q — Qf = U,B,.
allowed by ¢ will be taken so we must assume the worst- Second, as in the deterministic case, the algorithm
case situation. The discrete value function V : Q — R computes V' in order of level sets of V. In particu-
is lar, V(B,) < V(Bp41). Finally, we need the following

N A roperty.

V() = min J(g,c) PR

ceC

forg € Q\Qy and V(q) = h(q) for q € Q. We showed Lemma 2 For all g € Q and o' € T,

in [3] that V satisfies a DPP that takes into account the 00 < i o
non-determinacy of A and ensures that optimal control Vig) < =0V, (q){ (€) +V(g)}-
policies are admissible. Let A, be the set of control

assignments ¢(q) € s at ¢ such that ¢ is admissible.
Proof: Fix g € Q and ¢’ € X5. There are two cases.

Proposition 1 V satisfies Case 1.
V(g) = min max Lie) + V(¢ 6 Vig) < V(g)}.
@)= 5, {e:(q,qf)eE,,@){ ©+7(@)}} © @<, 5%, o)
for g € Q\ Qs and V(q) = h(q) for q € Q. In this case the result is obvious.
Case 2.
5 Non-deterministic Dijkstra algorithm v ) > max V( Y. (7)

e=(¢,¢')EE,(q)
The dynamic programming solution (6) can be viewed
as a shortest path problem on a non-deterministic
graph subject to all optimal paths satisfying a non-

We observed above that ¢ belongs to some B,,. Suppose
wlo.g. that ¢ € B;. Together with (7) this implies

Zeno condition. We propose an algorithm which is a q' € Fj for all ¢’ such that ¢ & ¢'. This, in turn,
modification of the Dijkstra algorithm for determinis- means that ¢’ € ¥;(¢g) and according to the algorithm
tic graphs [7]. F, is the set of states that have been A B A .

assigned a control and are deemed “finished” at itera- Vig) =Vj(g) < max {L(e) +V(¢")}

tion n, while U,, are the unfinished states. At each n, e=(0.4)€E (a)

Q=U,UEF,. ¥,(q) C Xs is the set of control events
at iteration n that take state g to finished states ex-
clusively. U, is the set of states for which there exists
a control event that can take them to finished states
exclusively. V;,(g) is a tentative cost-to-go value at it-
eration n. B, is the set of “best” states among U,.
It is assumed in the following description that initially

V(g) = o0 and ¢(g) = 0 for all ¢ € Q. Proof:  First we prove optimality. Let V(q) be the
optimal (best worst-case) cost-to-go for ¢ € @ and ) =
{g€ Q| V(g <V(g} Letl(r,) be the number of

which proves the result. ™

Theorem 1 Algorithm NDD is optimal and synthe-
sizes a control policy with no Zeno loops.

Procedure NDD: edges taken by the shortest optimal (best worst-case)
Fi=QnU1=Q-Qn trajectory 7, from ¢. Define § = argmin, 5{l(m,)}.
for each q € Qy, V(q) = h(q); Suppose that the best worst-case trajectory starting at
for n=1to N, do gismg =95 q— .... Weshowed in the previous
for each q € U,, lemma that
Ta(q) = {0’ € 5 | if ¢ 5 q',then q' € F, }; . . . . L
U, = {q € Uy | Ta(q) # 0); V@<,  max  {L(e)+V(()} < Lie) + V(D).

for each q € U,
Va(q) = min, s, (q) {MaXe=(q.q')eE, (@ {L(e) + V(q')}}; Since w7 is the best worst-case trajectory from g and

Bn = argmin_ g {Va(a)}: by the optimality of V'(q)

for each q € B, X N N
A ~ V(g) = L V(g) =L V(q).
V(q) = Va(q); ) ) @ e:(q,gp)ae}%‘,, (E){ (e) +V(d)} (e) +V(9)
c(q) = argmingex, (q) {Maxe=(q,a) ek, (@ {L(e) + V(a)}} , ,

endfor Since 7y is the shortest best worst-case trajectory, we

Fos1 = Fn UBp; Ungr = Q — Foga; know that § € @Q, so V(g) = V(). This implies V(g) <

endfor L(e) + V() = V(q), a contradiction.



(b) V for A =0.1.

Figure 2: Continuous and discrete value functions for dou-
ble integrator

To prove that the algorithm synthesizes a policy with
no Zeno loops we argue by induction. The claim is ob-
viously true for Fi. Suppose that the states of F,, have
been assigned controls forming no Zeno loops. Con-
sider F,, 1. Each state of B,, takes either a time step
or a control switch to F,, so there cannot be a Zeno
loop in B,,. The only possibility is for some q € B,, to
close a Zeno loop with states in F},. This implies there
exists a control assignment that allows an edge from
F,, to q to be taken; but this is not allowed by NDD.
Thus, F, 41 has no Zeno loops. ™

6 Example

We apply our method to the time optimal control prob-
lem of a double integrator

.Ci]l = X2

jﬁz = U.

Given the set of admissible controls U = {u : |u| <1},
we select @ = (—1,1) x (—1,1) and Q; = B(0), the
closed epsilon ball centered at 0. The cost-to-go func-
tion is J(z,u) = OT(w’” ) dt. The bang-bang solution
obtained using Pontryagin’s maximum principle is well
known to involve a single switching curve. The contin-

uous value function V is shown in Figure 2(a).

To construct the hybrid automaton H we select X5 =
{-1,1}. H is show in Figure 3. The state space is
{01 =—-1,010 =1,04}xR". g._, and g., are unknown
and must be synthesized, while g, = ge, = Q. A first
integral for vector field &1 = za, &2 = 1is 1 — $23 =
c1, ¢c1 € R For &y = x5, 2 = —1 a first integral is
T + %w% = ¢9, 3 € R. We select a transverse foliation
(see [2]) for each vector field, given by z2 = c3. We
define @, Qy¢, E, L and h for automaton A derived from

H in Figure 3. ) can be visualized using Figure 4.

The states ¢ € @ are of the form (o,[z]) with o €
{o0_1,01}. For the case 0 = o1 with ¢1,¢c2 € R, [z]

T € gey\ ©2

Figure 3: Hybrid automaton for time optimal control of
a double integrator system

Figure 4: Partitions for states o1 and o_1 of the hybrid
automaton of Figure 3

is either an open subset of R? bounded by the leaves
c1 <x1—%x§ <ec+Aand ey < 13 < e+ Aj or
an open interval in a horizontal leaf z; — 123 = ¢,
ca < T9 < ¢o + A; or an open interval in a vertical leaf
¢ <x1— 323 <c1+A, zy = cy; orapoint zy — 3 =
¢1, T2 = ¢2. Analogous expressions can be written for
o = o_1. In Figure 4, A = 0.25, ¢; € [-1,1] and
¢y € [—1,1]. If we identify equivalence classes (o, [z])
by their Euclidean coordinates (ci,c2) directly, then
Q ¢, shown in Figure 4 as the regions inside the dotted
lines, includes states (o, [z]), where [z] satisfies ¢1,¢o €

(_Aa A)

Let us consider the edges corresponding to control
switches of A. ¢ = (01,[%]) € Q has an outgoing edge
to ¢ = (0-1,[y]) € Q if [zf] N[y] # 0. For example,
for ¢ = (o1,[z]) and [z] satisfying ¢; € (—.25,—.5)

and ¢y = .25, there are three outgoing edges from ¢
to ¢j,i = 1,...,3, with [y] satisfying ¢o = .25 and
¢ € (—.5,—-.25), ¢ = —.25, and ¢; € (—.25,0), re-

spectively. Edges corresponding to time steps of A are
determined from the direction of the flows. For exam-
ple, for ¢ = (o1, [z]) with [z] satisfying ¢; € (—.25,—.5)
and ¢» = .25, there is an outgoing edge from ¢ to
q'" = (o1,[y]) with [y] satisfying ¢; € (—.25,—.5) and
¢y € (.25,.5).

The results of algorithm NDD are shown in Figure 2(b)
and Figure 5. In Figure 5 the dashed line is the



(a) ge_4 (b) ges

Figure 5: Enabling conditions

smooth switching curve for the continuous problem.
The black dots identify equivalence classes where NDD
assigns a control switch. Considering g._, we see that
the boundary of the enabling condition in the upper
left corner is a jagged approximation using equivalence
classes of the smooth switching curve. Initial condi-
tions in the upper left corner just inside the enabling
condition must switch to a control of 4 = —1, otherwise
the trajectory will increase in the x2 direction and not
reach the target. Initial conditions in the upper left
corner just outside the enabling condition must allow
time to pass until they reach the enabling condition,
for if they switched to u = —1 they would be unable
to reach the target. Hence the upper left boundary of
the enabling condition is crisp. The lower right side of
the enabling condition which has islands of time steps
shows the effect of the non-determinacy of automaton
A. These additional time steps occur because it can
be less expensive to take a time step than to incur the
cost of the worst case control switch. Notice that all
such initial conditions eventually take a control switch.
This phenomenon of extra time steps is a function of
the mesh size §: as § decreases there are fewer extra
time steps. Finally we note that the two enabling con-
ditions have an empty intersection, as expected in order
to ensure non-Zeno trajectories.

7 Conclusion

We have developed a prototype tool for the synthesis
of hybrid optimal controls based on bisimulation. The
algorithm has complexity O(N log N) where N is the
number of states of the automaton. The number of
states is exponential in the dimension of the contin-
uous state space. In the “vanilla” version of our ap-
proach, the automaton is constructed before running
the Dijkstra-like algorithm. To improve the speed and
the memory usage of the algorithm, we plan to build
the automaton on the fly while algorithm NDD is exe-
cuting. In addition, we plan to apply the approach to
solving a number of optimal control problems arising
in automotive engine control.
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