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Cart and Conveyor Belts
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Control Specifications:
1. Safety: |z| <3, |z| <3, |z + 2| < 3.
2. Liveness: |z| + |z| > 1.

3. Temporal behavior: Every box arriving on conveyor 1 is picked up
and deposited on conveyor 2.
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State Space View

e The state space is a polytope with a hole, not R™.
e The safety specification determines the outer boundary.
e The liveness specification creates the hole.

e The arrows capture the temporal behavior.
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Naive Approach

oy
h,

e Equilibrium stabilization gives no guarantee of safety or liveness.
e Safety, if achieved, is not robust.
e Difficult to design for trade-off between safety and liveness.

e Operationally inefficient - system must be run unnaturally slowly.
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Preferred Approach

e Safety is built in up front and is provably robust.
e Liveness can be traded off with safety by adjusting the size of the hole.

e Triangulation is used in algebraic topology, physics, numerical solution of
PDE's, computer graphics, etc. Why not in control theory?
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What is Given

1. An affine system
= Ax + Bu+a, reR" weR™. (1)

2. An n-dimensional simplex § = conv{vg, ..., v,}.

3. A set of restricted facets {F1,...,Fn}.

4. One exit facet Fy.
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The Setup

B =ImB

O={z| Ax +a € B}

Notation:  C(v;) :={y€R" | h; -y <0,j #i}
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Problem Statement

Problem. (RCP) Given simplex S and system (1), find u(x) such
that: for each x(o € S there exist T' > 0 and v > 0 such that

e x(t) €S forallt € [0,T],
° :U(T) e Fo, and
o x(t)¢ S forallt e (T, T+ 7).

Notation: & -5 Fo by feedback of class U.

Reach Control Problem



Basic Principles
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Convexity and Affine Systems

Consider an affine system © = Ax + a. If for all vertices v in F;,
h; - (Av +a) <0,
then
e h;- (Ax +a) <0, Vx € F;.

e Trajectories that leave S do so through a facet F;, j # 1.

h;
/ Uk

ij E

Basic Principles
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Affine Feedback

up = Kvo + g

vl 1 - - ul

0 0
KT _ t = Ax+ B(Kx+g)+a
gt ' 7 = Az +a.

vg 1 - - uz;

Invertible

[HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. Automatica 2004.
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Escaping Compact, Convex Sets

Theorem. Consider an affine system © = Ax 4+ a on S. If
Ax+a # 0, Ve es,

then trajectories starting in S leave S in finite time.

Basic Principles
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A First Result

Theorem. S -2 Fo by affine feedback iff there exists
u(x) = Kx + g such that

(a) The invariance conditions hold:
Av; + a + Bu(v;) € C(v;), i €40,...,n}.

(b) The closed-loop system has no equilibrium in S.

[HvS06] L.C.G.J.M. Habets and J.H. van Schuppen. IEEE TAC 2006.
[RosBro06] B. Roszak and M.E. Broucke. Automatica 2006.
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Numerical Example

S determined by: vy =

Invariance conditions give:
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Numerical Example

Choose ug = —1.175, u1 = 0.2, us = 0.5.

V1 = (4, —1)

Vo = (—1, —3)

equilibrium

Affine Feedback

17



Numerical Example

The affine feedback is: u = [0.325 — 0.125]z — 1.225

ho

V1 — (4, —1)

Vo — (—1, —3)

equilibrium

Affine Feedback
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Equilibrium Set and Triangulations

Let B = ImB. The equilibrium set is
O={x|Ar+a€ B} .

Define
G:=8nO0O.

Assumption. IfG # (), then G is a k-dimensional face of S, where
0 < kK < n. Reorder indices so that

G =conv{vy,...,Vkt1}-

Note: vg & G, otherwise there’s a trivial solution to RCP.

Can be achieved using the placing triangulation.

Affine Feedback
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A Second Result

Theorem. Suppose the triangulation assumption holds. TFAE:

(a) S = F by affine feedback.

(b) S =5 5 by continuous state feedback.

Proof. Fixed point argument using Sperner’s lemma, ./ -matrices.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Affine Feedback
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Limits of Continuous State Feedback

Vo

U1

V2 Fo

Let u(x) be a continuous state feedback satisyfing the invariance conditions. If B = sp{b}
and § = viv3, then

y(z) := c(x)b, x € D103 c:R"™ — R continuous,

where ¢(v1) > 0 and c(v2) < 0. By Intermediate Value Theorem there exists T s.t. ¢(xz) = 0.

Affine Feedback
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Conditions for a Topological Obstruction

1. BNcone(S)=0 nontriviality condition
2. Alin. indep. set {b1,...,bsy1 | b € BNC(v;)} system is “underactuated
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A -Matrices

Let 1 <p<qg<k+1andb; € BNC(v;). Define

Mpq —

Y

(hp ' bp)

(hq ' bp)

(p - bp1)

(hq ) bp+1)

(hp ' bq)

(hq ' bq)

c Rla—p+1)x(g—p+1)

e A matrix is a Z-matrix if the off-diagonal elements are

non-positive.

e Because b, € BNC(v;), each M, , is a Z-matrix.

e A Z-matrix is a non-singular .7Z-matrix if every real eigenvalue
Is positive.

e Because BN cone(S) = 0, certain M, , are non-singular
A -matrices.

Reach Control Indices
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Reach Control Indices

Theorem. There exist integers ry,...,r, > 2 such that w.l.o.g.

BﬂC(’UrL’) C Sp{bml,---ybm1+r1—1}7 1=mi,...,m1+1r1 —1,

BNC(vi) C sp{bmy;--- bmptrp—1}, 8 =Mp,...,mp+1p —1,

where b; € BN C(v;) and
mg =71+ -+rg_1+1, k=1,...,p. Moreover, for each
k=1,....p, {bm,,---,bm,+r.—2} are linearly independent and

bmk—l—rk—l — kabmk + o _|_ ka—l—Tk—Qbmk—FTk—Q 9 Ci < O .
{r1,...,rp} are called the reach control indices of system (1).

[BG12] M.E. Broucke and M. Ganness. |IEEE TAC, in revision 2012.

Reach Control Indices
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Reach Control Indices

For k =1,...,p define

Gr := conv{ VU, - -, Umytrp—1] -

Theorem. Let u(x) be a continuous state feedback satisfying the
invariance conditions. Then each G;. contains an equilibrium of the
closed-loop system.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Reach Control Indices
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Piecewise Affine Feedback
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Piecewise Affine Feedback

(b)

e As we slide v’ from vg to vy, cone(St) widens at vy until by points into cone(St). For

1
such v/, ST 255 F, by affine feedback.

2
e S?is not “underactuated” since G* = {w>}. Thus, S 25 8N s? by affine feedback.

Piecewise Affine Feedback
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Recursive Subdivision Algorithm

Subdivision Algorithm:

1. Set k = 1.

2. Select v" € (vo, Vi, ) such that BN cone(S*) # 0, where
S* := conv{v’,v1,...,vn}.

3. Set § := conv{vg,v1,..., vmk_l,v’, (L P D

4. If Kk < p,set k:=k + 1 and go to step 2.
5. Set SPT! .= S,

Vo

V2 JT-'O

Piecewise Affine Feedback
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Piecewise Affine Feedback

127
l \

1
\ N\
0.8F
\ 0.8f
0.6
0.6 A
0.4
0.4

NNESE %/ L ] alio i ,

1 1 1 1 1 1 1 1
-1 -08 -06 -04 -02 0 02 04 06 038 1 -1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

(a) Affine feedback (b) PWA feedback
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A Third Result

Theorem. Suppose the triangulation assumption holds. For a
somewhat stronger version of RCP, TFAE:

1.8 Fo by piecewise affine feedback.

2.5 -2, Fo by open-loop controls.

[BG12] M.E. Broucke and M. Ganness. |IEEE TAC, in revision 2012.

Piecewise Affine Feedback
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Piecewise Affine Feedback

Time-varying Affine Feedback
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Time-varying Affine

Equilibria are such a drag...

Piecewise Affine Feedback

Feedback
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A Fourth Result

Theorem. Suppose the triangulation assumption holds and the
invariance conditions are solvable. There exists ¢ > 0 sufficiently small

such that S -2 Fo using the time-varying affine feedback
u(z,t) = e “ul(z) + (1 — e Hu™(x)
where u®(z) = K%z + ¢° places closed-loop equilibria at

v )
mai o y Umyp

and u>(x) = K®x + g places closed-loop equilibria at

Umi+ri—1s-+ 5 Umy+r,—1 -

[AB12] G. Ashford and M. Broucke. Automatica, accepted 2012.

Piecewise Affine Feedback
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pd
BNcone(S)#0 ]

Motivating Example

Preferred Approach

Sml(”):(Z)[Bm]

B N cone(S) # 0 [B10]

[AB12] or [BG12]

%
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Motivating Example
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Final Design
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