Reach Control Problem on Simplices

Mireille E. Broucke

Systems Control Group Department of Electrical and Computer Engineering University of Toronto

May 7, 2012

Acknowledgements

- Past Students
 - Graeme Ashford, MASc
 - Marcus Ganness, MASc
 - Dr. Zhiyun Lin, Postdoc
 - Bartek Roszak, MASc
- Current Students
 - Mohamed Helwa, PhD
 - Dr. Elham Semsar-Kazerooni, Postdoc
 - Krishnaa Mehta, MASc
- [HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for affine dynamical systems on a full-dimensional polytope. *Automatica* 40, 2004.

Motivating Example

Cart and Conveyor Belts

Control Specifications:

- 1. Safety: $|x| \le 3$, $|\dot{x}| \le 3$, $|x + \dot{x}| \le 3$.
- 2. Liveness: $|x| + |\dot{x}| \ge 1$.
- 3. Temporal behavior: Every box arriving on conveyor 1 is picked up and deposited on conveyor 2.

State Space View

- The state space is a polytope with a hole, not \mathbb{R}^n .
- The safety specification determines the outer boundary.
- The liveness specification creates the hole.
- The arrows capture the temporal behavior.

Naive Approach

- Equilibrium stabilization gives no guarantee of safety or liveness.
- Safety, if achieved, is not robust.
- Difficult to design for trade-off between safety and liveness.
- Operationally inefficient system must be run unnaturally slowly.

Preferred Approach

- Safety is built in up front and is provably robust.
- Liveness can be traded off with safety by adjusting the size of the hole.
- Triangulation is used in algebraic topology, physics, numerical solution of PDE's, computer graphics, etc. Why not in control theory?

Reach Control Problem

What is Given

1. An affine system

$$\dot{x} = Ax + Bu + a$$
, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$. (1)

- 2. An *n*-dimensional simplex $S = \operatorname{conv}\{v_0, \ldots, v_n\}$.
- 3. A set of restricted facets $\{\mathcal{F}_1, \ldots, \mathcal{F}_n\}$.
- 4. One exit facet \mathcal{F}_0 .

Problem Statement

Problem. (RCP) Given simplex S and system (1), find u(x) such that: for each $x_0 \in S$ there exist $T \ge 0$ and $\gamma > 0$ such that

- $x(t) \in \mathcal{S}$ for all $t \in [0,T]$,
- $x(T) \in \mathcal{F}_0$, and
- $x(t) \notin S$ for all $t \in (T, T + \gamma)$.

Notation: $\mathcal{S} \xrightarrow{\mathcal{S}} \mathcal{F}_{\mathbf{0}}$ by feedback of class \mathbb{U} .

Basic Principles

Convexity and Affine Systems

Consider an affine system $\dot{x} = Ax + a$. If for all vertices v in \mathcal{F}_i ,

 $h_i \cdot (Av + a) \le 0,$

then

- $h_i \cdot (Ax + a) \le 0$, $\forall x \in F_i$.
- Trajectories that leave S do so through a facet \mathcal{F}_j , $j \neq i$.

Affine Feedback

[HvS04] L.C.G.J.M. Habets and J.H. van Schuppen. Automatica 2004.

Escaping Compact, Convex Sets

Theorem. Consider an affine system $\dot{x} = Ax + a$ on S. If

 $Ax + a \neq 0, \qquad \forall x \in \mathcal{S},$

then trajectories starting in S leave S in finite time.

Affine Feedback

A First Result

Theorem. $\mathcal{S} \xrightarrow{\mathcal{S}} \mathcal{F}_0$ by affine feedback iff there exists u(x) = Kx + g such that

- (a) The invariance conditions hold: $Av_i + a + Bu(v_i) \in C(v_i), \quad i \in \{0, ..., n\}.$
- (b) The closed-loop system has no equilibrium in S.

[HvS06] L.C.G.J.M. Habets and J.H. van Schuppen. IEEE TAC 2006. [RosBro06] B. Roszak and M.E. Broucke. Automatica 2006.

Numerical Example

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

S determined by: $v_0 = (-1, -3)$, $v_1 = (4, -1)$, and $v_2 = (3, -6)$.

Invariance conditions give:

- $h_1^T(Av_0 + Bu_0 + a) \le 0 \implies u_0 \ge -1.75$
- $h_2^T(Av_0 + Bu_0 + a) \le 0 \quad \Rightarrow \quad u_0 \le -0.6$
- $h_2^T(Av_1 + Bu_1 + a) \le 0 \quad \Rightarrow \quad u_1 \le 0.2$
- $h_1^T(Av_2 + Bu_2 + a) \le 0 \implies u_2 \ge 0.5.$

Affine Feedback

Numerical Example

Choose $u_0 = -1.175$, $u_1 = 0.2$, $u_2 = 0.5$.

Numerical Example

The affine feedback is: u = [0.325 - 0.125]x - 1.225

Equilibrium Set and Triangulations

Let $\mathcal{B} = ImB$. The **equilibrium set** is

$$\mathcal{O} = \{ x \mid Ax + a \in \mathcal{B} \} .$$

Define

 $\mathcal{G} := \mathcal{S} \cap \mathcal{O}$.

Assumption. If $\mathcal{G} \neq \emptyset$, then \mathcal{G} is a κ -dimensional face of \mathcal{S} , where $0 \leq \kappa < n$. Reorder indices so that

 $\mathcal{G} = \operatorname{conv}\{v_1,\ldots,v_{\kappa+1}\}.$

Note: $v_0 \not\in G$, otherwise there's a trivial solution to RCP.

Can be achieved using the **placing triangulation**.

Affine Feedback

A Second Result

Theorem. Suppose the triangulation assumption holds. TFAE: (a) $S \xrightarrow{S} \mathcal{F}_0$ by affine feedback. (b) $S \xrightarrow{S} \mathcal{F}_0$ by continuous state feedback.

Proof. Fixed point argument using Sperner's lemma, *M*-matrices.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Limits of Continuous State Feedback

Let u(x) be a continuous state feedback satisyfing the invariance conditions. If $\mathcal{B} = sp\{b\}$ and $\mathcal{G} = \overline{v_1 v_2}$, then

y(x) := c(x)b, $x \in \overline{v_1v_2}$ $c : \mathbb{R}^n \to \mathbb{R}$ continuous,

where $c(v_1) \ge 0$ and $c(v_2) \le 0$. By Intermediate Value Theorem there exists \overline{x} s.t. $c(\overline{x}) = 0$.

Affine Feedback

Conditions for a Topological Obstruction

- 1. $\mathcal{B} \cap \mathsf{cone}(\mathcal{S}) = \mathbf{0}$ nontriviality condition
- 2. $\not\exists$ lin. indep. set $\{b_1, \ldots, b_{\kappa+1} \mid b_i \in \mathcal{B} \cap \mathcal{C}(v_i)\}$ system is "underactuated

Reach Control Indices

M-Matrices

Let $1 \leq p \leq q \leq \kappa + 1$ and $b_i \in \mathcal{B} \cap \mathcal{C}(v_i)$. Define

$$M_{p,q} := \begin{bmatrix} (h_p \cdot b_p) & (h_p \cdot b_{p+1}) & \cdots & (h_p \cdot b_q) \\ \vdots & \vdots & & \vdots \\ (h_q \cdot b_p) & (h_q \cdot b_{p+1}) & \cdots & (h_q \cdot b_q) \end{bmatrix} \in \mathbb{R}^{(q-p+1) \times (q-p+1)}$$

- A matrix is a *2***-matrix** if the off-diagonal elements are non-positive.
- Because $b_i \in \mathcal{B} \cap \mathcal{C}(v_i)$, each $M_{p,q}$ is a \mathscr{Z} -matrix.
- A *2*-matrix is a **non-singular** *M*-**matrix** if every real eigenvalue is positive.
- Because $\mathcal{B} \cap \operatorname{cone}(\mathcal{S}) = \mathbf{0}$, certain $M_{p,q}$ are non-singular \mathscr{M} -matrices.

Reach Control Indices

There exist integers $r_1, \ldots, r_p \ge 2$ such that w.l.o.g. Theorem. $\mathcal{B} \cap \mathcal{C}(v_i) \subset sp\{b_{m_1}, \ldots, b_{m_1+r_1-1}\}, i = m_1, \ldots, m_1 + r_1 - 1,$ $\mathcal{B} \cap \mathcal{C}(v_i) \subset \operatorname{sp}\{b_{m_p}, \ldots, b_{m_p+r_p-1}\}, i = m_p, \ldots, m_p + r_p - 1,$ where $b_i \in \mathcal{B} \cap \mathcal{C}(v_i)$ and $m_k := r_1 + \cdots + r_{k-1} + 1$, $k = 1, \ldots, p$. Moreover, for each $k = 1, \ldots, p$, $\{b_{m_k}, \ldots, b_{m_k+r_k-2}\}$ are linearly independent and $b_{m_k+r_k-1} = c_{m_k}b_{m_k} + \dots + c_{m_k+r_k-2}b_{m_k+r_k-2}, \quad c_i < 0.$ $\{r_1, \ldots, r_p\}$ are called the **reach control indices** of system (1). [BG12] M.E. Broucke and M. Ganness. IEEE TAC, in revision 2012.

Reach Control Indices

Reach Control Indices

For $k = 1, \ldots, p$ define

$$\mathcal{G}_k := \operatorname{conv} \{ v_{m_k}, \dots, v_{m_k+r_k-1} \}.$$

Theorem. Let u(x) be a continuous state feedback satisfying the invariance conditions. Then each \mathcal{G}_k contains an equilibrium of the closed-loop system.

[B10] M.E. Broucke. SIAM J. Control and Opt. 2010.

Piecewise Affine Feedback

Piecewise Affine Feedback

- As we slide v' from v₀ to v₁, cone(S¹) widens at v₂ until b₁ points into cone(S¹). For such v', S¹ → F₀ by affine feedback.
- S^2 is not "underactuated" since $\mathcal{G}^2 = \{v_2\}$. Thus, $S^2 \xrightarrow{S^2} S^1 \cap S^2$ by affine feedback.

Piecewise Affine Feedback

Recursive Subdivision Algorithm

Subdivision Algorithm:

- 1. Set k = 1.
- 2. Select $v' \in (v_0, v_{m_k})$ such that $\mathcal{B} \cap \operatorname{cone}(\mathcal{S}^k) \neq \mathbf{0}$, where $\mathcal{S}^k := \operatorname{conv}\{v', v_1, \dots, v_n\}.$
- 3. Set $S := \operatorname{conv}\{v_0, v_1, \dots, v_{m_k-1}, v', v_{m_k+1}, \dots, v_n\}.$
- 4. If k < p, set k := k + 1 and go to step 2.
- 5. Set $\mathcal{S}^{p+1} := \mathcal{S}$.

Piecewise Affine Feedback

A Third Result

Theorem. Suppose the triangulation assumption holds. For a somewhat stronger version of RCP, TFAE:

1.
$$\mathcal{S} \xrightarrow{\mathcal{S}} \mathcal{F}_0$$
 by piecewise affine feedback.

2.
$$\mathcal{S} \xrightarrow{\mathcal{S}} \mathcal{F}_0$$
 by open-loop controls.

[BG12] M.E. Broucke and M. Ganness. IEEE TAC, in revision 2012.

Time-varying Affine Feedback

Time-varying Affine Feedback

Equilibria are such a drag...

A Fourth Result

Theorem. Suppose the triangulation assumption holds and the invariance conditions are solvable. There exists c > 0 sufficiently small such that $S \xrightarrow{S} \mathcal{F}_0$ using the time-varying affine feedback

$$u(x,t) = e^{-ct}u^{0}(x) + (1 - e^{-ct})u^{\infty}(x)$$

where $u^0(x) = K^0 x + g^0$ places closed-loop equilibria at

$$v_{m_1},\ldots,v_{m_p}$$

and $u^{\infty}(x) = K^{\infty}x + g^{\infty}$ places closed-loop equilibria at

$$v_{m_1+r_1-1},\ldots,v_{m_p+r_p-1}.$$

[AB12] G. Ashford and M. Broucke. Automatica, accepted 2012.

Motivating Example

Preferred Approach

Final Design

