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Abstract. Results from classical dynamical systems are generalized to
hybrid dynamical systems. The concept of w limit set is introduced for
hybrid systems and is used to prove new results on invariant sets and
stability, where Zeno and non-Zeno hybrid systems can be treated within
the same framework. As an example, LaSalle’s Invariance Principle is
extended to hybrid systems. Zeno hybrid systems are discussed in detail.
The w limit set of a Zeno execution is characterized for classes of hybrid
systems.

1 Introduction

Systems with interacting continuous-time and discrete-time dynamics are used
as models in a large variety of applications. The rich structure of such hybrid
systems allow them to accurately predict the behavior of quite complex sys-
tems. However, the continuous—discrete nature of the system calls for new sys-
tem theoretical tools for modeling, analysis, and design. Intensive recent activity
have provided a few such tools, for instance, Lyapunov stability results [1,14].
However, as will be shown in this paper, in many cases the results come with
assumptions that are not only hard to check but also unnecessary. There are
several fundamental properties of hybrid systems that have not been sufficiently
studied in the literature. These include questions on existence and uniqueness
of executions, which have only recently been addressed [12,7]. Another question
is when a hybrid system exhibits an infinite number of discrete transitions dur-
ing a finite time interval, which 1s referred to as Zeno. The significance of these
questions has been pointed out by many researchers, e.g., He and Lemmon [3]
write “An important issue [ . .. ] concerns necessary and sufficient conditions for
a switched system to be live, deadlock free, or nonZeno.”

The main contribution of the paper is to carefully generalize concepts from
classical dynamical systems like w limit sets and invariant sets, in a way so that
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Zeno executions are treated within the same framework as regular non-Zeno
executions. It is then straightforward to extend existing results, for instance,
Lyapunov stability theorems for hybrid systems [1,14]. We illustrate this by
proving LaSalle’s Invariance Principle for hybrid systems.

Zeno is an interesting mathematical property of some hybrid systems, which
does not occur in smooth dynamical systems. Real physical systems are not
Zeno. Models of physical systems may, however, be Zeno due to a too high level
of abstraction. In the latter part of the paper, we characterize Zeno executions
and their Zeno states, where the Zeno states are defined as the w limit points of
a Zeno execution. We are able to completely characterize the set of Zeno states
for a few classes of hybrid systems. It is shown that the features of the reset
maps are important. For example, if the resets are identity maps or the resets
are contractions, the continuous part of the Zeno state is a singleton.

The outline of the paper is as follows. In Section 2 notation and some basic
definitions of hybrid automata and executions are introduced. Some recent re-
sults on existence and uniqueness of executions for classes of hybrid automata
are also given. Section 3 introduces invariants sets and w limit sets for hybrid
automata and gives a generalization of LaSalle’s Invariance Principle. Finally,
results on Zeno hybrid automata are given in Section 4, where for instance the
w limit set for Zeno executions are discussed and some necessary and sufficient
conditions for Zenoness are given.

2 Hybrid Automata and Executions

2.1 Notation

For a finite collection V' of variables, let V denote the set of valuations of these
variables. We use lower case letters to denote both a variable and its valuation.
We refer to variables whose set of valuations is finite or countable as discrete and
to variables whose set of valuationsis a subset of a Euclidean space as continuous.
For a set of continuous variables X with X = R” for n > 0, we assume that
X is given the Euclidean metric topology, and use || - || to denote the Euclidean
norm. For a set of discrete variables (), we assume that Q is given the discrete
topology (every subset is an open set), generated by the metric dp(q,¢’) = 0
if ¢ = ¢ and dp(q,¢’) = 1 if ¢ # ¢'. We denote the valuations of the union
QU X by Q x X, which is given the product topology, generated by the metric
d((q,2),(¢",2")) =dp(q,q') +||z —z'||. Using the metric d, we define the distance
between two sets Uy, Uy C Q x X by d(Uy, Uz) = inf (g, z,)ev, d((q1, %1), (92, 2)).
We assume that a subset U of a topological space is given the induced topology,
and we use U to denote its closure, U° its interior, OU its boundary, U° its
complement, |U| its cardinality, and P(U) the set of all subsets of U.

2.2 Basic Definitions

The following definitions are based on [8,4,7].



Definition 1 (Hybrid Automaton). A hybrid automaton H is a collection
H=(Q, X, Init, f, Dom, Reset), where

— @ s a finite collection of discrete variables;

— X s a finite collection of continuous variables with X = R™;
— Init C Q x X is a set of wnitial states;

— [:Q xX = TX is a vector field;

— Dom C Q x X is the domain of H;'

— Reset : Q x X = P(Q x X) is a reset relation.

We refer to (q,2) € Q x X as the state of H. Unless otherwise stated, we
introduce the following assumption, to prevent some obvious pathological cases.

Assumption 1 |Q| < oo and f is Lipschitz continuous in its second argument.

Note that, under the discrete topology on Q, f is trivially continuous in its first
argument. A hybrid automaton can be represented by a directed graph (Q, E),
with vertices Q and edges

EF={(9,9)eQxQ: Jz,2' € X,(¢',2') € Reset(q,z)}.

With each vertex ¢ € Q, we associate a set of continuous initial states

Init(q) = {x € X : (¢, z) € Init},
a vector field f(q,), and a set

I(q) ={z € X: (¢,z) € Dom}.
With each edge e = (¢,¢') € E, we associate a guard

Gle) ={zeX: 2’ € X, (¢, 2') € Reset(q,z)},
and a reset map
R(e,z) = {2z’ € X : (¢',z') € Reset(q,z)}.

Since there is a unique graphical representation for each hybrid automaton, we
will use the corresponding graphs as formal definitions for hybrid automata in
most examples.

Definition 2 (Hybrid Time Trajectory). A hybrid time trajectory T is a
finite or infinite sequence of intervals T = {I;}, such that

— L =[m, 7] fori< N, and, if N < oo, In = [tn,Tn] or IN = [Tn, TN); and
— 17 <71/ =741 fori>0.

! The set Dom is often called the invariant set in the hybrid system literature in
computer science. We reserve this term for later in the paper, where we will discuss
sets invariant in the usual dynamical systems sense.



A hybrid time trajectory is a sequence of intervals of the real line, whose end
points overlap. The interpretation is that the end points of the intervals are
the times at which discrete transitions take place. Note that 7; = 7/ is allowed,
therefore multiple discrete transitions may take place at the same “time”. Since
the dynamical systems we will be concerned with are time invariant we will
sometimes, without loss of generality, assume 75 = 0. Hybrid time trajectories
can extend to infinity if 7 is an infinite sequence or if it is a finite sequence ending
with an interval of the form [rx, 00). We denote by T the set of all hybrid time
trajectories and use t € 7 as shorthand notation for that there exists i such that
t € I; € 7. For a topological space K we use k : 7 — K as a short hand notation
for a map assigning a value from K to each ¢ € 7; note that % is not a function
on the real line, as it assigns multiple values to the same t € R: ¢t = 7/ = 7,41
for all z > 0. Each 7 € T is fully ordered by the relation < defined by #; < 5

for t; € [1;, /] and t5 € [Tj,T]’»] if and only if i < j, or i = j and ¢; < 5.

Definition 3 (Execution). An execution x of a hybrid automaton H is a col-
lection x = (1,q,2) withT € T, q:7— Q, and z : 7 = X, satisfying

— (g(m0), z(m0)) € Init (initial condition);

— foralli withr; < 7/, q(-) is constant and x(-) is a solution® to the differential
equation dx/dt = f(q,z) over [r;,7}], and for all t € [r;, 7)), (q(t),z(t)) €
Dom (continuous evolution); and

— forall i, (q(7i41), 2(Ti41)) € Reset (q(TZ»’), I(TZ»/)) (discrete evolution).

We say a hybrid automaton accepts an execution y or not. For an execution
X = (7,q, %), we use (qo, zg) = (q(ro), m(ro)) to denote the initial state of x. The
erecution time Too () is defined as 7o (x) = Zf\;o(ri’ — 1), where N 4 1 is the
number of intervals in the hybrid time trajectory. The argument y will sometimes
be left out. An execution is finite if 7 is a finite sequence ending with a compact
interval, it is called infinite if 7 is either an infinite sequence or if 7o (x) = oo,
and it is called Zeno if it is infinite but 7o (x) < co. The execution time of a Zeno
execution is also called the Zeno time. We use &g (qo, 2o) to denote the set of all
executions of H with initial condition (qq, zg) € Init, £5 (g0, zo) to denote the
set of all infinite executions of H with initial condition (go, zg) € Init. We define
Ey = U(qu,xu)elnit Em(go, xo) and & = go,0) Elnit EF (9o, zo). To simplify the
notation, we will drop the subscript H whenever the automaton is clear from
the context.

2.3 Classes of Automata

The notation previously introduced gives a convenient way to express existence
and uniqueness of executions.

Definition 4 (Non-Blocking Automaton). A hybrid automaton H is non-
blocking if £57 (qo, zo) is non-empty for all (go, xo) € Init.

2 «Solution” is interpreted in the sense of Caratheodory.



Definition 5 (Deterministic Automaton). A hybrid automaton H is deter-
ministic if £ (qo, o) contains at most one element for all (qo, zg) € Init.

Note that if a hybrid automaton is both non-blocking and deterministic, then
it accepts a unique infinite execution for each initial condition. In [7] conditions
were established that determine whether an automaton is non-blocking and de-
terministic. The conditions require one to argue about the set of states reachable
by a hybrid automaton, and the set of states from which continuous evolution
is impossible. A state (¢,z) € Q x X is called reachable by H, if there exists a
finite execution x = (7, ¢, ) with 7 = {[r;, 7/}, and (q(ry), 2(74)) = (g, ).
We use Reachy to denote the set of states reachable by a hybrid automaton,
and Reachyr(¢) the projection of Reachy to discrete state q. We will drop the
subscript H whenever the automaton is clear from the context. The set Reach
is in general difficult to compute. Fortunately, the conditions of the subsequent
results will not require us to do so: any outer approximation of the reachable
set will be sufficient. In [2,7] methods for computing such outer approximations
using simple induction arguments are outlined.
The set of states from which continuous evolution is impossible is given by

Outy = {(¢°,2°) € Q x X : Ye >0, It € [0,¢), (¢°,2(t)) ¢ Dom]},

where z(-) is the solution to dz/dt = f(q°, z) with z(0) = z°. Note that if Dom
is an open set, then Out is simply Dom®. If Dom is closed, then Out may also
contain parts of the boundary of Dom. In [7] methods for computing Out were
proposed, under appropriate smoothness assumptions on f and the boundary
of Dom. As before, we will use Outg(g) to denote the projection of Out to
discrete state ¢, and drop the subscript H whenever the automaton is clear from
the context. With these two pieces of notation one can show the following two
results [7].

Proposition 1. A (deterministic) hybrid automaton is non-blocking if (and
only if ) for all (q,z) € Out N Reach, Reset(q,z) # 0.

Proposition 2. A hybrid automaton is deterministic if and only if for all (¢, z) €
Reach, |Reset(q,z)| <1 and, if Reset(q,z) # 0, (q,z) € Out.

We characterize the hybrid automata such that the state remains in the closure
of the invariant along all executions.

Definition 6 (Domain Preserving). A hybrid automaton is domain preserv-
ing if Reach C Dom.

The following result is now straightforward.

Proposition 3. A hybrid automaton is domain preserving if and only if Init C
Dom and for all (¢, z) € Dom N Reach, Reset(g,z) C Dom.

Note that the use of Reach is again not limiting. Note also that the conditions of
the lemma do not depend on the vector field f. This is because, by the definition
of an execution, the state can never end up outside the closure of the domain
along continuous evolution.



Definition 7 (Transverse Domain). A hybrid automaton H is said to have
transverse domain if there exists a function o : Q x X — R continuously differ-
entiable in its second argument, such that

Dom = {(q,2) € Q x X : o(q,z) >0}

and for all (¢, ) with o(q,2) =0, Lso(q,z) # 0.
Here Lyo : Q x X — R denotes the Lie derivative of o along f defined as

_ oo

Lyolg,2) = 5-(q,2) - f(g,2)

In other words, an automaton has transverse domain if the set Dom is closed,
its boundary is differentiable, and the vector field f is pointing either inside or
outside of Dom along the boundary.® If H has transverse domain the set Out g
admits a fairly simple characterization.

Proposition 4. If H has transverse domain, then

Outy = {(q,2) e Q xX: o(q,z) <0}
U{(q,2) e QxX : o(q,z) =0 and Lyo(g,z) < 0}.

3 Invariant Sets and Stability

We first recall some standard concepts from dynamical system theory, and dis-
cuss how they generalize to hybrid automata.

Definition 8 (Invariant Set). A set M C Init is called invariant if for all
(q0,20) € M, (1,9,2) € En(qu, z0), and t € 7, it holds that (q(t),z(t)) € M.

The class of invariant sets is closed under arbitrary unions and intersections.
Invariant sets are such that all executions starting in the set remain in the set for
ever. We are interested in studying the stability of invariant sets, 1.e., determine
whether all trajectories that start close to an invariant set remain close to 1it.

Definition 9 (Stable Invariant Set). An invariant set M C Init is called
stable if for all ¢ > 0 there exists & > 0 such that for all (qo,z0) € Init, with
d((qo0,z0), M) < 6, all (1,9,2) € Eu(qo,z0), and allt € 7, d((q(t),z(t)), M) < €.

An invariant set is called (locally) asymptotically stable if it is stable and in
addition there exists A > 0 such that for all (qu, zo) € Init, with d((qo, z0), M) <
A, and all (1,q,2) € £ (q0, z0), limy—, d((q(2), z(t)), M) = 0.

% Under appropriate smoothness assumptions on ¢ and f the definition of transverse
domain can be relaxed somewhat by allowing Lyo(q,z) = 0 on the boundary of
Dom and taking higher-order Lie derivatives, until one that is non-zero is found.
Even though many of the results presented here extend to this relaxed definition,
the proofs are slightly more technical. We will therefore limit ourselves to the notion
of transverse domain given in Definition 7.



Note that since 7 is fully ordered the above limit 1s well defined. The asymptotic
behavior of an infinite execution is captured in terms of its w limit set.

Definition 10 (w limit set). The w limit point (§,Z) € Q x X of an execution
X = (1,q,2) € EF is a point for which there exists a sequence {0, 5Ly, On € T,
such that as n — oo, 8, — Te and (q(0,),2(0,)) = (¢,%). The w limit set
Sy € Q x X s the set of all w limit points of an execution .

The following lemma establishes a relation between w limit sets and invariant
sets. For convenience the assumptions on the reset relation and the domain are
given in the graphical notation introduced in Section 2.2.

Lemma 1. Consider a deterministic hybrid automaton H with transverse do-
main. Assume it is domain preserving and that f(q,-) is C! for all ¢ € Q.
Furthermore, assume that for all e = (q,9') € E, R(e,-) is continuous, and
G(e) N I(q) is an open subset of OI(q). Then, for any execution x = (1,q,z) €
Ex, ifx(-) is bounded, then Sy is (i) nonempty, (ii) compact, and (iii) invariant.
Further, (1) for all € > 0 there exists T € T such that d((q(t), z(t)),Sy) < e,
ter, forallt>T.

Proof. See [15]. The proofs of (i), (ii), and (iv) are similar to the corresponding
result for continuous dynamical systems [10, 13].

The conditions of the lemma are sufficient. They can also be shown to be tight:
one can construct hybrid automata that violate any one of the conditions of the
lemma that accept infinite executions whose w limit set is not invariant. The
conditions of the lemma are also sufficient to establish continuity of executions
with respect to initial conditions, see [15].

LaSalle’s Invariance Principle is a useful tool when studying the stability of
conventional, continuous dynamical systems. Lemma 1 allows us to extend this
tool to hybrid systems.

Theorem 1 (LaSalle’s Invariance Principle). Consider a hybrid automa-
ton H that satisfies the conditions of Lemma 1. Assume there exists a compact
invariant set 2 C Qx X and let 21 = 2N0ut® and 25 = 2N0Out. Furthermore,
assume there exists a continuous function V : 2 — R, such that

— for all (q,2) € §21, V is continuously differentiable with respect to x and
L;V(g,z) <0; and
— forall (q,z) € 22, V (Reset(q,2)) < V(q, ).

Define

(g 2) €6t LyV(q,z) =0}
(¢,7) € 251 V (Reset(q,2)) = V(q,2)},

and let M be the largest invariant subset of Sy U Sy. Then, for all (qo,z0) € 2
every execution (7,q,x) € £ (qo, o) approaches M as t — To.



Proof. Consider an arbitrary state (¢o, 20) € 2 and let x = (7, ¢, 2) € €57 (g0, o).
Since 2 is invariant, (¢(¢),z(t)) € 2 for all ¢ € 7. Since £ is compact and V
is continuous, V(q(t), z(t)) is bounded from below. Moreover, V(¢(¢), z(t)) is a
non-increasing function of ¢ € 7 (recall that 7 is fully ordered), so therefore the
limit ¢ = lim; () V(q(t), 2(t)) exists.

Since {2 is bounded, z is bounded, and therefore the w limit set S, is
nonempty. Moreover, since {2 is closed, Sy, C {2. By definition, for any (¢, &) €
Sy, there exists a sequence {0,152, 0, € 7, such that 8, — 7o and (¢(6,), z(6,))
(4,2) as n — oo. Then,

V(3.) = V(lim (¢(8,), 2(6,)) = lim V(q(0a),2(0.)) =
by continuity of V. Since Sy is invariant (Lemma 1), it follows that LV (g, ) = 0
if (§,2) € Out, and V(Reset(q,2)) = V(§, ) if (¢, 2) € Out. Therefore, S, C
S1U Sy, which implies that S, C M since Sy is invariant. Moreover, by (iv) in
Lemma 1, the execution x approaches Sy, and hence M, as t — 7o

4 Zeno Hybrid Automata

Zeno hybrid automata accept executions with infinitely many discrete transitions
within a finite time interval. Such systems are hard to analysis and simulate in
a way that gives constructive information about the behavior of the real system.
It is therefore important to be able to determine if a model is Zeno and in
applicable cases remove Zenoness. These problems have been discussed in [4,
5]. In this section, some further characterization of Zeno executions are made.

Recall that an infinite execution x is Zeno if 7o (x) = Y io(7/ — 7) is bounded.

Definition 11 (Zeno Hybrid Automaton). A hybrid automaton H is Zeno
if there exists (qo, zo) € Init such that all executions in £ (qo, xo) are Zeno.*

Ezxample 1. The hybrid automaton in Figure 1 is Zeno. This is easily checked by
explicitly deriving the time intervals 77 —7;, which in this case gives a converging
geometric series. Figure 2 shows an execution accepted by the automaton.

We malke the following two straightforward observations.

Proposition 5. A hybrid automaton is Zeno only if the graph (Q, E) has a
cycle.

Proposition 6. If there exists a finite collection of states {(q;, z;)}}L, such that

- (91,331) = (IJN,CL‘N);

* An alternative definition is to say that a hybrid automaton is Zeno if there is at
least one Zeno execution in £3 (qo, o). In that case, a non-deterministic Zeno hy-
brid automaton may accept both Zeno and non-Zeno executions, which may be an
undesirable feature for instance in Reach set calculations. For deterministic hybrid
automata the two definitions coincide.
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Fig. 1. An example of a Zeno hybrid automaton.
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Fig.2. An example of an execution for the hybrid automaton in Example 1. The
continuous part of the state is shown: z; (solid) and =z, (dotted).

— (qi,z;) € Reachy for somei=1,...,N; and
— (qi41, i41) = Reset(qs, z;) foralli=1,...,N —1;

then there exists a Zeno execution.

Zenoness is critically dependent on the reset relation. For example, if in Exam-
ple 1 the reset maps z3 := —cxy are replaced by z5 := z3/(dzs — 1), where
d =1/+/2021(1g), then the time intervals 7] — 7; decrease as {1/7}$2,. This is a
diverging series, so the new hybrid automaton is not Zeno.

If the continuous part of the Zeno execution i1s bounded, then i1t has an w
limit point. We introduce the term Zeno state for such a point.

Definition 12 (Zeno State). The w limit point of a Zeno execution is called
the Zeno state.

We use Z, C Q x X to denote the set of Zeno states, so that Z, is the w limit
set of the Zeno execution. We write Q. for the discrete part of 7., and F, for
the corresponding edges. In Example 1, we have

Zoo = {(41,(0,0)), (92, (3,0)), (g2, (5,0))},



7. <0 £01<0  z1:=5 z1 <5

2 <0 2 <0 Ty 1= —CI2 z2 <0
r3 < 0.5 z3 > 05 x3:=4z3(l—x3) 22 <0.5
q L qz
T1 = &2 1 = T2
Ty = —10 9 = —10
z3 =0 z3 =0
1 >0 N~ 1 >5
To 1= —CT2 z1:=0 1 <5 To 1= —CT2
zs = 4z3(l — z3) 39 := —cx2 z2 <0 zs 1= 4z3(1 — 3)

zs = 4z3(1 — x3)®3 > 0.5

Fig.3. A hybrid automaton that accepts Zeno executions that do not periodically
jump between the discrete states.

Qwx =1{q1,92}, and E, = E.

It is easy to construct an example with a Zeno executions that do not have
a Zeno state. The idea is to let the continuous part of the execution become
unbounded as ¢ — 7o (x). It is also straightforward to derive examples where
the set of Zeno states have any number of elements, as well as an infinite but
countable or uncountable number of elements. An interesting question is if for a
Zeno execution x = (¢, z,7), the discrete part ¢ must become periodic for ¢ € 7
sufficiently close to 7o (x), as in Example 1. The answer is no as illustrated by
the following example.

Ezample 2. Consider the Zeno hybrid automaton in Figure 3 (cf. Example 1).
This system does not accept Zeno executions that periodically jump between
the two discrete states. A simulation is presented in Figure 4, where z; and z,
are shown. The third continuous state is initialized at z3(79) = 0.9. The reason
for the quasi-periodic behavior is that the reset map of z3 is the logistic map
and iteration of this map will give any value in (0, 1), e.g., [10].

A reset relation Reset is non-ezpanding, if there exists § € [0,1] such that
(¢',2") € Reset(q,z) implies [|z’|| < d||z||. Tt is contracting, if there exists § €
[0,1) such that (¢', ') € Reset(q,z) and (¢', y') € Reset(q,y) imply ||z’ — ¢/|| <
d|ly — z||. Note that the reset relation has to be a function in the second case.
For smooth dynamical systems, a Lipschitz assumption on the vector field
excludes finite escape time. This is not a sufficient condition for hybrid systems.
However, if the reset relation is non-expanding (in addition to the Lipschitz
assumption on f(q,-)), then the continuous state is bounded along executions.

Lemma 2. Consider a hybrid automaton with non-expanding reset relation.
Then, there exists ¢ > 0 such that for all executions x = (1,q,2) € Eg and
ter,

2@ < (ll2 (o)l + 1)) — 1.
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Fig.4. An example of an execution for the hybrid automaton in Example 2. The
continuous states z; (solid) and z; (dotted) are shown. Note how they illustrate the
quasi-periodicity.

Proof. The proof, see [15], is similar to the corresponding result for continuous
systems [10, Proposition 5.3].

When z(-) is bounded, the Bolzano—Weierstrass Property implies that there
exists at least one Zeno state for each Zeno execution. If the continuous part of
the reset relation is the identity map, then the continuous part of the Zeno state
is a singleton, as proved next.

Theorem 2. Consider a hybrid automaton such that (¢',z') € Reset(q,z) im-
plies ¥’ = x. Then, for every Zeno execution x = (1,q,x), it holds that 7o, =
Qo x {2} for some Qo C Q and & € X.

Proof. For all sequences {6;}52,, 0; € 7, such that ; — 7, suppose 0; €

/

[Tn;, Ty,], where n; — oo as i — co. We have

2(6:) = () + / F(a(ma), 2(7)) dr

Ty

= () + (0 = ) fa(m,), (21(63,), - 2 (€))7,

for some &, ..., &8 € [, 75, ]. Hence, for all k > £ >0,
z(0k) = 2(0e) + (71, = ) f (a(7,), (21(63,), - 2 (€7,))T)
ng—1
+ > (d—m)falm), (@El), o a(€)T)
i=ng+1

+ (Qk - Tﬂk)f<q(7_ﬂk)¢ (231( rlLk)’ B xﬂ( Zk))T)’
which gives that

Nk

[2(0k) = 2(00)[| < K > (f = 7),

i=ng



where K > 0 is a constant such that ||f(q,z)|| < K for all (¢,2) € Q x X.
Such constant exists due to Lemma 2. By the fact that Y ;o (7/ — 1) < oo,
we know that {z(6;)}52, is a Cauchy sequence. The space X = R" is complete,
so the sequence has a limit & = lim;_,c 2(6;). This limit is independent of the
choice of sequence {0;}2, as follows from the following argument. Consider two
sequences {a; 152, and {3;}52,, a;, B; € 7, such that o; = 7 and §; = 7e.
Suppose ; € [Tm,,7),,] and B; € [1,,, 7, ], where m; — oo and n; — oo as
t — oo, and m; > n;. Then,

z(ai) = z(B) + (10, — Bi) f(a(ra,), (1 (EL)s - zn(€2)T)
S () fal) @ €D, €))

j=n;+1
+ (i = T ) F(9(Tm), (1(E0)s s (€))7 )
This gives that ||z(a;) — 2(8)|| < K Y. 2, (7! — ;). Hence, ||z(a;) —z(3)|| = 0

J=ni\'j
as 1 — 00, which shows that both sequences have the same limit. This completes

the proof.

Note that Theorem 2 gives the structure of the Zeno state for the large class of
hybrid systems called switched systems [9], since these systems can be modeled
as hybrid automata with identity reset relation.

If the reset relation is contracting and (¢’, z') € Reset(q, 0) implies that z’ is
the origin, then the continuous part of the Zeno state is also the origin.

Theorem 3. Consider a Zeno hybrid automaton with contracting reset relation
and such that (¢, ') € Reset(q,0) implies ' = 0. Then, for every Zeno erecu-
tion x = (7,q, ), it holds that 7 = Qo X {0} for some Qo C Q.

Proof. For all sequences {6;}52,, 0; € 7, such that 6; — 7, suppose 0; €

[Tnl;T;‘Ll], where n; — 0o as 1 — co. We have

lz(0:)]] < [l (7,)]

! H /9 Fa(mn,), 2(7)) dr

< lz(m)ll + K (7, = ™),
where K > 0 is the same constant as in the proof of Theorem 2. Using the fact

that ||z(7,,)|| < dl|(7,,_1)]], it follows that

2 (@)l < 8ll= (s, Il + K (7, = 7))

I

z(Tn,—1) + /Tnl_l f<Q(Tm—1)’ I(T)) dr

n;—1

=4 —|—K(T,’“ — Tn,)

< Olle(mna)ll 4+ Ké(rh, o1 = Tai1) + K (75, = 7).

By induction,

llz(8:)]] < 6™

()|l + K D> 8™ (1, = ).
m=0



Since
o0

. n, oo K (o)
> Kn;anz—m(r,’n — Tm) = Kn;(% — ) 3= <o

n;=0 n;=0

it holds that Ky '  d™i~™ (7}, — 1) — 0 as n; — oo. This yields that

m

[|lz(6;)]] = 0 as i — og, which, hence, completes the proof.

A generalization of Theorem 3 holds if we change the assumption to that (¢', z’) €
Reset (g, z*) implies ' = z* for some z* € Dom, see [15].

For a large class of Zeno hybrid automata, the continuous part of the Zeno
state is located on the intersection of the boundaries of Dom(g, -) for ¢ € Q.
Next this result is stated for hybrid automata with non-expanding reset relation.
Recall that I(q) = {z € X : (¢,2) € Dom}.

Proposition 7. Consider a hybrid automaton H with non-expanding reset re-
lation. Assume it accepts a Zeno execution x = (7,q,z) € E with set of Zeno
states Zoo = {(qi,zi}y, N > 1. If, forall i € {1,...,N} and = € I(g;)°,
Reset(q;,z) = 0, then x; € 0I(q;) for all i € {1,..., N}. Furthermore, if there
exists & € Dom such that for all i€ {1,... N}, z; =z, then & € ﬂf\il 9I(g;).

Proof. See [15].

It follows from Proposition 7 that if the boundaries of I(-) are not intersecting,
then there exist no Zeno executions with non-empty Zeno state and N > 1.
Proposition 7 is thus a refinement of the condition given in Proposition 5, which
states that a hybrid automaton is non-Zeno if the graph (Q, E) has no cycle.

5 Conclusions

Motivated by numerous assumptions like “In this paper, we assume that the
switched system is live and nonZeno” [3] and suggestions like “Additional work
is needed in determining the role that Zeno-type control might play in hybrid
system supervision” [6], we have extended some classical results to hybrid sys-
tems, using tools that capture both non-Zeno and Zeno executions. We have also
tried to illustrate some of the nature of Zeno by characterizing Zeno executions
and Zeno states for a few quite broad classes of hybrid systems. Zeno hybrid
automata are characterized from a geometric point of view in [11].
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