
Problem Set 1 Solutions

Problem 1

The mathematical model is

u− vC + L
diL

dt
= 0

iL + C
dVC

dt
+ h(vC) = 0.

The state space model is
dx1

dt
=

1

L
x2 −

1

L
u

dx2

dt
= −

1

C
x1 −

1

C
h(x2).

Problem 2

Free-body diagram: there are two masses, m1 and m2, hence we will draw two diagrams:

M 1 M 2

b(Ẋ1 − Ẋ2)

u

k2(X1 −X2)

k3X2

b(Ẋ1 − Ẋ2)

k2(X1 −X2)

k1X1

Figure 1: Free-body diagrams

Note that, when x1 > x2 and hence x1 − x2 > 0, the spring k2 pushes m1 to the left, and m2 to the right.
Hence the orientation of the forces in the free-body diagram. A similar reasoning holds for the damper b.

Applying Newton’s law to the free-body diagram we get:

m1ẍ1 = −k1x1 − k2(x1 − x2)− b(ẋ1 − ẋ2) + u

m2ẍ2 = −k3x2 + k2(x1 − x2) + b(ẋ1 − ẋ2)

NOTE: Suppose that one wants to position m2 at a desired location, i.e., to control x2. In this case, the
control input is the force u, the output is x2.

Problem 3

Free-body diagram:
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BODY 1 BODY 2
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V
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H θ

θ lM
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u

We need to characterize three things:

(i) The translational motion of body 1

(ii) The rotational motion of the body 2

(iii) The translational motion of body 2

Part (i). Fix an inertial reference frame and let x denote the corresponding displacement of the cart, as in
the figure above. Apply Newton’s law to body 1:

Mẍ = −H + u. (1)

Part (ii). Pass a vertical axis through the center of gravity of body 2, as in the figure above. Let I denote
the moment of inertia of the rod measured at its center of gravity. Then Newton’s law for rotational motion
gives:

Iθ̈ = V l sin θ −Hl cos θ. (2)

Part (iii). The displacement of the center of gravity of body 2 with respect to the inertial reference frame
is x + l sin θ. Apply Newton’s law to characterize the translational motion of the center of gravity of body
2. We write two equations for the horizontal and vertical motions, respectively.

H = m
d2

dt2
(x+ l sin θ)

= mẍ+m
d

dt
(l cos θθ̇)

= mẍ−ml sin θ(θ̇)2 +ml cos θθ̈

V −mg = m
d2

dt2
(l cos θ)

⇐⇒ V = mg +ml(− cos θ(θ̇)2 − sin θθ̈)

We now replace the expressions for H and V just found into (1) and (2). In conclusion:

Mẍ = −mẍ+ml sin θ(θ̇)2 −ml cos θθ̈ + u

Iθ̈ = ml2[− sin θ cos θ(θ̇)2 − sin2 θ(θ̈) + sin θ cos θ(θ̇)2 − cos2 θ(θ̈)]−mlẍ cos θ +mgl sin θ

= −ml2θ̈ −mlẍ cos θ +mgl sin θ

In order to get the equation of motion we need to solve the two equations above for ẍ and θ̈. This part is
left as an exercise.
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Problem 4

(a)KVL to loop

vc + vL +RiL − U = 0

Noting that vL = L diL

dt
, we get Vc + L diL

dt
+RiL − U = 0 (1)

KCL to node 1

iL = iC + iR

Noting that ic = C dvC

dt
and iR = h(vR) = h(vC)

we have that iL = C dvC

dt
+ h(vC) (2)

(b) Choose state variables x1 = vC , x2 = iL.

By massaging (1) and (2) we get:

ẋ1 =
1

C
[−h(x1) + x2]

ẋ2 =
1

L
[−x1 −Rx2 + u]

(c) Equilibria are found by setting ẋ1 = 0 and ẋ2 = 0.
In other words,

1

C
[−h(x1) + x2] = 0 or x2 = h(x1)

1

L
[−x1 −Rx2 + U ] = 0 or x2 = −

1

R
x1 +

U

R

−
1

R
x1 +

U

R
= h(x1) → gives x1

x2 = h(x1) → gives x2

Graphically the equilibria are given by:
Equilibria: (x1

1
, x1

2
), (x2

1
, x2

2
), (x3

1
, x3

2
)

Depending on U and R there may be one, two, or three equilibria. In other words, the circuit may have
more than one operating point. This type of circuit is said to be MULTISTABLE.
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Figure 2: Equilibria of the Tunnel-Diode
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