ECE311S: Dynamic Systems and Control Problem Set 10

Problem 1

Show that the eigenvalues of the linear system $\dot{x}(t) = Ax(t) + Bu(t)$ with a linear state feedback, u(t) = Kx(t), can be arbitrarily assigned for

$$A = \begin{bmatrix} 3 & 4 \\ -2 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Problem 2

•

Consider the linear system $\dot{x}(t) = Ax(t) + Bu(t)$ with

	-2	0	0		[1]
A =	3	-5	0	B =	2
	-9	0	7		1

The eigenvalues for A are -2, -5 and 7, hence the open loop system is unstable. Show that for any linear state feedback, u(t) = Kx(t), the matrix A + BK will always have 7 as an eigenvalue and hence no linear state feedback can stabilize this system.