
Problem Set 4 Solutions

Problem 1

Compute eAt using the Laplace transform method and the eigenvalue/eigenvector method for the following
matrix:

A =





−2 −2 0
0 0 1
0 −3 −4



 .

Using the Laplace transform method, we must compute (sI −A)−1. We have:

(sI −A) =





s+ 2 2 0
0 s −1
0 3 s+ 4



 .

We have that det(sI −A) = (s+ 2)(s+ 1)(s+ 3) and hence,

(sI −A)−1 =
1

(s+ 2)(s+ 1)(s+ 3)





(s+ 1)(s+ 3) −2(s+ 4) −2
0 (s+ 2)(s+ 4) (s+ 2)
0 −3(s+ 2) s(s+ 2)



 .

Next, we take the inverse Laplace transform of each entry. Firstly, we must simplify some of the entries
using partial fraction expansions. We have

−2(s+ 4)

(s+ 2)(s+ 1)(s+ 3)
=

4

s+ 2
−

3

s+ 1
−

1

s+ 3

−2

(s+ 2)(s+ 1)(s+ 3)
=

2

s+ 2
−

1

s+ 1
−

1

s+ 3

s+ 4

(s+ 1)(s+ 3)
=

3/2

s+ 1
−

1/2

s+ 3

1

(s+ 1)(s+ 3)
=

1/2

s+ 1
−

1/2

s+ 3

−3

(s+ 1)(s+ 3)
= −

3/2

s+ 1
+

3/2

s+ 3

s

(s+ 1)(s+ 3)
= −

1/2

s+ 1
+

3/2

s+ 3
.
Lastly, we have eAt equals the inverse Laplace transform of the entries of (sI −A)−1. Hence,

eAt =





e−2t 4e−2t − 3e−t − e−3t 2e−2t − e−t − e−3t

0 3
2e

−t − 1
2e

−3t 1
2e

−t − 1
2e

−3t

0 −
3
2e

−t + 3
2e

−3t −
1
2e

−t + 3
2e

−3t



 .
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Now, we solve the problem using the eigenvalue/eigenvector method. The MATLAB command [V,D] =
eig(A) produces

V =





1 −2 2
0 1 1
0 −1 3





D =





−2 0 0
0 −1 0
0 0 −3



 .

So, we have A = V DV −1. Hence, eAt = eVDV −1t = V eDtV −1. We have

eDt =





e−2t 0 0
0 e−t 0
0 0 e−3t





V −1 =





1 4 2
0 3

2
1
2

0 −
1
2 −

1
2



 .

Hence

eAt =





e−2t 4e−2t − 3e−t − e−3t 2e−2t − e−t − e−3t

0 3
2e

−t − 1
2e

−3t 1
2e

−t − 1
2e

−3t

0 − 3
2e

−t + 3
2e

−3t − 1
2e

−t + 3
2e

−3t



 .

Problem 2

Determine the best method to compute eAt for the following A matrix and then compute it:

A =





0 1 0
0 0 1
0 0 0



 .

In this problem, the matrix A is not diagonalizable. It has only one eigenvalue, i.e. zero, with multiplicity
3, but only one linearly independent eigenvector. Hence, the eigenvalue/eigenvector method will not work
in this case. Hence, we use the Laplace transform method. We have:

(sI −A)−1 =





1
s

1
s2

1
s3

0 1
s

1
s2

0 0 1
s





So, taking the inverse Laplace transform of each entry, we get

eAt =





1 t t2/2
0 1 t
0 0 1




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Problem 3

You are given the SISO system
Y (s)

G(s)
=

(s− 1)

(s2 + 2s− 3)
.

Show that it is possible for this system to generate an unbounded initial state reponse and a bounded input
response.

We have the transfer function given by

G(s) =
(s− 1)

(s2 + 2s− 3)

The corresponding differential equation model is

v̈ + 2v̇ − 3v = u̇− u .

Taking x1 = v and x2 = v̇, we have

ẋ1 = x2, ẋ2 = 3x1 − 2x2 + u, y = −x1 + x2

and thus

A =

[

0 1
3 −2

]

, B =

[

0
1

]

C =
[

−1 1
]

, D = 0

We have

eAt =

[

3
4e

t + 1
4e

−3t 1
4e

t − 1
4e

−3t

3
4e

t − 3
4e

−3t 1
4e

t + 3
4e

−3t

]

If we choose the initial condition xo =
[

1 1
]T

with zero input we get

x(t) = eAtxo =

[

et

et

]

which is unbounded.
Now if we choose xo = 0 and u(t) = e−t − 2te−t we get

x(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ =

∫ t

0

[

1
4e

(t−τ) −
1
4e

−3(t−τ)

1
4e

(t−τ) + 3
4e

−3(t−τ)

]

(e−τ
− 2te−τ )dτ =

[

1
4 (e

−3t − e−t + 2te−t)
−

1
4 (3e

−3t − 3e−t + 2te−t)

]

which is bounded.
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Problem 4

Consider the closed loop system in Figure 1, where K and z are real numbers which you’ll have to pick in
part 2 of this problem.

+
+

−
U(s)

Y (s)
K

2(s+z)
s2+2s

Figure 1: System block diagram

1. The closed-loop transfer function is

T (s) =
2K(s+ z)

s2 + 2s+ 2K(s+ z)

Notice that this transfer function is not in the standard form

ω2
n

s2 + 2ζωns+ ω2
n

.

Thus, the formulas for settling time and percent overshoot do not actually apply. Nevertheless, we will
carry out the instructions of the problem to find the region of the complex plane where the closed-loop
poles should lie. We have

Ts =
4

ζωn
, %OS = e

−
ζπ

√

1−ζ2

Solve the two equations imposing Ts = 0.8, %OS = 0.01 and get ζ and ωn

ζωn =
4

0.8
= 5 = σ

e
−

ζπ
√

1−ζ2 = 0.01 ⇔
ζπ

√

1− ζ2
= 4.6 ⇔

ζ2π2

1− ζ2
= 21.2

⇔ ζ2π2 = 21.2− 21.2ζ2

⇔ (21.2 + π2)ζ2 = 21.2 ⇔ ζ =

√

21.2

31.07
= 0.83

2. The poles of the CLS are the roots of s2 + 2s + 2K(s + z) = 0 ⇔ s2 + 2(K + 1)s + 2Kz = 0. By
identifying the coefficients of this polynomial with those of s2 +2ζωn +ω2

n = 0 we express ζ and ωn as
a function of K, z:

Let ζωn > 1, then

ζωn = K + 1

ω2
n = 2Kz

∣

∣

∣

∣

∣

⇒

K = ζωn − 1

z =
ω2
n

2ζωn − 2

Conclusion: We can assign ANY ζ and ωn by choosing K and z as above. Pick, for example,
ζ = 1, ωn = 7. With this choice of ζ and ωn the poles of CLS are in the region found in part (1). The

values of K and z yielding ζ = 1, ωn = 7 are K = 7− 1 = 6 and z = 72

2·7−2 = 49
12 .
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desired region

real

imag.

cos−1(0.83)

ζωn = σ = 5

Figure 2: Region for the poles when Ts ≤ 0.8s and %OS≤ 0.01.
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