Problem Set 5 Solutions

Problem 1

Combine G_6 and G_7 yielding G_6G_7 . Add G_4 and obtain the following diagram:

Figure 1: Initial block diagram.

Next combine G_3 and $G_4 + G_6G_7$, as shown in Figure 2. Push G_5 to the left past the pickoff point. See Figure 3 for this arrangement.

Notice that the feedback is in parallel form. Thus the equivalent feedback, $H_{eq}(s) = \frac{G_2}{G_5} + G_3(G_4 + G_6G_7) + G_8$. Since the forward path transfer function is $G(s) = G_{eq}(s) = G_1G_5$, the closed-loop transfer function is

$$T(s) = \frac{G_{eq}(s)}{1 + G_{eq}(s)H_{eq}(s)}.$$

Hence,

$$T(s) = \frac{G_5G_1}{1 + G_1(G_8G_5 + G_7G_6G_5G_3 + G_5G_4G_3 + G_2)}$$

Problem 2

Combine the feedback with G_6 and combine the parallel G_2 and G_3 . Displayed below in Figure 4. Move $G_2 + G_3$ to the left past the pickoff point. Shown is Figure 5. Combine feedback and parallel pair in the forward path yielding and equivalent forward-path transfer function of: $(G_2 + G_3) = (G_3 + G_3) = (G_4 - G_4) = (G_4 - G_5)$

$$G_e(s) = \left(\frac{G_2 + G_3}{1 + G_1(G_2 + G_3)}\right) \left(G_5 + \frac{G_4}{G_2 + G_3}\right) \left(\frac{G_6}{1 + G_6}\right)$$

Figure 2: Combine G_3 and $G_4 + G_6G_7$.

Figure 3: Push G_5 left, past the pickoff point.

Figure 4: Feedback combined with G_6 and G_2 & G_3 in parallel.

Figure 5: $G_2 + G_3$ moved left past pickoff point.

But, $T(s) = \frac{G_e(s)}{1+G_e(s)G_7(s)}$. Thus,

$$T(s) = \frac{G_6(G_4 + G_5G_3 + G_5G_2)}{G_6(G_7G_4 + G_7G_5G_3 + G_7G_5G_2 + G_3G_1 + G_2G_1 + 1) + G_1(G_3 + G_2) + 1}$$

Problem 3

Equation for T_s : $\sigma = \zeta \omega_n = \frac{4}{T_s} = 4;$ Equation for overshoot: $\zeta = \frac{-\ln(12.3/100)}{\sqrt{\pi^2 + \ln^2(12.3/100)}} = 0.5549;$

$$\sigma = \zeta \omega_n = 0.5549 \omega_n = 4; \quad \therefore \, \omega_n = 7.21$$
$$\therefore G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} = \frac{51.96}{s^2 + 8s + 51.96}$$

Problem 4

Use the following equations:

1)
$$KVL$$
 $V_i - RC\frac{dV_c}{dt} - L\frac{di_L}{dt} - V_c = 0$
2) KCL $C\frac{dV_c}{dt} = i_L$

Calculate the Laplace transforms and derive the TF:

$$\frac{V_c(s)}{V_i(s)} = \frac{\frac{1}{Cs}}{R + Ls + \frac{1}{Cs}} = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Also, $T_s = 2 * 10^{-3} = \frac{4}{\sigma} = \frac{4}{\frac{R}{2L}} = \frac{8L}{R}$. Thus, $\frac{R}{L} = 4000$. Using Eq. (4.39) with 15% overshoot, $\zeta = 0.5169$. But, $2\zeta\omega_n = \frac{R}{L}$. Thus, $\omega_n = 3869 = \sqrt{\frac{1}{LC}} = \sqrt{\frac{1}{L(10^{-5})}}$. Therefore, L = 6.7 mH and $R = 26.72 \ \Omega$.