
Problem Set 7 Solutions

Problem 1

First, we calculate the contribution to the steady-state error due only to disturbance: Rearranging the block
diagram to show D(s) as the input,

D(s) −E(s)
+

−

K1(s+2)
s+3

K2

s(s+4)

Figure 1: Rearranged block diagram.

Therefore,

−E(s) = D(s)

K2

s(s+4)

1 + K1K2(s+2)
s(s+3)(s+4)

= D(s)
K2(s+ 3)

s(s+ 3)(s+ 4) +K1K2(s+ 2)

Next, we calculate the contribution to the steady-state error due to the reference input R(s):

ER(s) = R(s)
1

1 + K1K2(s+2)
s(s+3)(s+4)

For D(s) = 1
s
, eD(∞) = lims→0 sED(s) = − 3

2K1

.
This identity holds provided ED(s) has poles in the LHP or at most one pole in the origin.

For R(s) = 1/s2, eR(∞) = lims→0 sER(s) =
1

K1K2

6

= 6
K1K2

.

This identity holds provided ER(s) has poles in the LHP or at most one pole in the origin.
Design: eD(∞) = −0.000012 = − 3

2K1

, or K1 = 125000. Similarly, eR(∞) = 0.003 = 6
K1K2

, or K2 = 0.016
Note that, for these values of K1 and K2 to be acceptable, both ER(s) and ED(s) must satisfy the property
above (have poles in the LHP and at most one pole in the origin). It is easy to check that this is the case.

Problem 2

a. E(s) = R(s)− C(s). But, C(s) = [R(s)− C(s)H(s)]G1(s)G2(s) +D(s).

Solving for C(s),

C(s) =
R(s)G1(s)G2(s)

1 +G1(s)G2(s)H(s)
+

D(s)

1 +G1(s)G2(s)H(s)
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Substituting into E(s),

E(s) =

[

1− G1(s)G2(s)

1 +G1(s)G2(s)H(s)

]

R(s)− 1

1 +G1(s)G2(s)H(s)
D(s)

b. For R(s) = D(s) = 1
s
,

e(∞) = lim
s→0

sE(s) = 1− lims→0 G1(s)G2(s)

1 + lims→0 G1(s)G2(s)H(s)
− 1

1 + lims→0 G1(s)G2(s)H(s)

Problem 3

Trivial state space to transfer function conversions yield the following block diagram:

+
+

−

D

+
+

+
+−

s+a

s−2
1

s+a

1
s

1
s+1

u1

u2

G(s)

v1

v2

v3

R(s) Y (s)

The block diagram of the system after block simplifications is:

D

+
+

−
+

+

−
G(s)

R(s) Y (s)

with G defined above. Applying superposition and the Final Value Theorem one easily arrives at the
following:

e(∞) = 0.
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Problem 4

In order to calculate the steady-state tracking error, we calculate the error signal E(s) = R(s)− Y (s),

E(s) =[1− T (s)]R(s)

=
1

1 +G(s)
R(s)

=
s(τs + 1)

s(τs + 1) +K
· R0

s2

=
τs+ 1

s(τs + 1) +K
· R0

s
.

Next, in order to apply the Final Value Theorem, we have to check that the poles of E(s) are in the left half
plane (LHP) and there is at most one pole in the origin. In this case E(s) has one pole in the origin and
two poles given by the roots of the polynomial

s(τs + 1) +K = 0 ⇐⇒ τs2 + s+K = 0.

Since the polynomial is second-order, without calculating its roots we know that they are contained in the
LHP if and only if the coefficients of the polynomial are positive. Since this is the case, we conclude that
the hypothesis of the Final Value Theorem is satisfied and, hence,

e(∞) = lim
s→0

sE(s) =
R0

K
.

Problem 5

(a) The poles of the system are the roots of

s4 +Ks3 + (Kb+K)s2 +K(a+ b)s+Kab.

Form the Routh array:

s4 1 Kb+K Kab
s3 K K(a+ b) 0
s2 Kb+K − (a+ b) Kab 0

s
[Kb+K − (a+ b)]K(a+ b)−K2ab

Kb+K − (a+ b)
0 0

s0 Kab 0 0

Conditions for BIBO stability are obtained by imposing that all entries in the first column of the Routh
array be positive, i.e., (recall that we already have that K > 0, a > 0, b > 0),

Kb+K − (a+ b) > 0

[Kb+K − (a+ b)]K(a+ b)−K2ab > 0.

(b) Just apply the Final Value Theorem to obtain the following:

yss = lim
s→0

sY (s) = 1.

Problem 6

We calculate E(s),

E(s) =
1

1 + T (s)
R(s) =

1

1 + K(s+2)
s2(s+5)

1

s3
=

s2(s+ 5)

s2(s+ 5) +K(s+ 2)

1

s3

=
s+ 5

s(s3 + 5s2 +Ks+ 2K)
.
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Before using the Final Value Theorem one has to check that the poles of E(s) are in the LHP or there is at
most one pole in the origin. In this case E(s) has one pole in the origin and three poles given by the roots of

s3 + 5s2 +Ks+ 2K = 0.

Using the Routh criterion one can find conditions on K such that the roots of this polynomial are in the
LHP with at most one root at s = 0, and then apply the Final Value Theorem. The Routh table is:

s3 1 K
s2 5 2K
s 3

5K 0
s0 2K 0

from which it is immediately deduced that the FVT can be applied for any K > 0. By applying the Final
Value Theorem we get

e(∞) =
1

Ka

=
5

2K
.

Hence, in order for e(∞) = 0.01, we choose K = 250.

Problem 7

(a)

Y (s) =
1

s− 2
· 1
s

Since one pole of the TF is in RHP, it follows that the output y(t) → ∞ as t → ∞ ⇒ e(∞) =
limt→∞ u(t)− y(t) = 1−∞ = −∞.

Note: The Final value Theorem can not be applied here. Applying it would not only give a wrong
result, but would also represent an important conceptual mistake.

(b) We notice that

E(s) = U(s)− Y (s)

= U(s)−
s(s+1)
s2(s+2)

1 + s2(s+1)
s2(s+2)

U(s)

=

[

1− s+ 1

s(s+ 2) + s(s+ 1)

]

U(s)

=
s2 + 2s+ s2 + s− s− 1

s(2s+ 3)
· 1
s

E(s) has two poles at the orgin ⇒ e(t) → ∞ as t → ∞.

Note: The Final value Theorem can not be applied here. Applying it would represent an important
conceptual mistake.

(c)

Y (s) = YR(s) + YD(s)

YR(s) =
1

s(s+ 1) + 1
U(s)

YD(s) =
1

1 + 1
s(s+1)

D(s) =
s(s+ 1)

s(s+ 1) + 1
D(s)

E(s) = U(s)− Y (s) =
1

s

[

1− 1

s(s+ 1) + 1
− s(s+ 1)

s(s+ 1) + 1

]

=
1

s

[

s2 + s+ 1− 1− s2 − s

s(s+ 1) + 1

]

= 0 ⇒ e(∞) = 0
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Problem 8

(i) The poles of the closed-loop system are the roots of the polynomial

s4 + 8s3 + 17s2 + (K + 10)s+Ka = 0.

We form the Routh array
s4 1 17 Ka
s3 8 K + 10 0
s2 126−K

8 Ka 0
s ⋆ 0 0
s0 Ka 0 0

where

⋆ =
(K + 10)(126−K)− 64Ka

126−K
.

We impose that there be no sign variations in the first column of the array

K < 126

(K + 10)(126−K)− 64Ka > 0

Ka > 0.

(ii) Under the assumption that limt→∞ e(t) exists, such limit is

lim
t→∞

e(t) =
1

Kv

R,

where

Kv = lim
s→0

K(s+ a)

(s+ 1)(s+ 2)(s+ 5)
=

aK

10
.

We thus need
aK ≥ 40.

(iii) 20 ≤ K < 30.

Problem 9

(i) The closed-loop system has two poles. They are the roots of the polynomial

s2 +Ks+ 1 +K = 0.

Using the formula

%OS = exp(−πζ/
√

1− ζ2),

we want the damping ration of the poles of the closed-loop system to satisfy

1 ≥ ζ > 0.83.

It is thus sufficient to choose K such that ζ = 1. From the polynomial above we find ζ and ωn by
identifying coefficients as follows

2ζωn = K w2
n
= 1 +K.

We get

ζ =
K

2
√
1 +K

.

By imposing ζ = 1 we get K2 − 4K − 4 = 0. The positive root of this polynomial is K = 2 + 2
√
2.
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(ii) We have R(s) = R

s2+1 and

E(s) = R
s2 + p2

(s2 + 1)(s2 +Ks+ p2 +Kz)
.

We notice that if p 6= 1 then E(s) has two poles at ±j and hence limt→∞ e(t) does not exist. Recall,
in fact, that in order for such limit to exist E(s) must have poles in the open LHP and at most one
pole at the origin.

On the other hand, if p = 1, E(s) becomes

E(s) =
R

s2 +Ks+ 1 +Kz
.

By imposing that all poles be in the open LHP, that is,

K > 0, 1 +Kz > 0

we have the desired property limt→∞ e(t) = 0.

In conclusion the most general conditions are:

p = 1

K > 0

Kz + 1 > 0.
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