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1.

ẋ =





−1 0 0
0 −θ 0
0 0 −2



x +





h1 0
0 h2

0 h3



u .

y =

[

0 0 1
1 1 0

]

x .

2. Let ẋ = f(x, u). Suppose this system can be linearized to

△ẋ = A△x + B△u,

△y = C△x.

An equilibrium point x0 =

[

x10

x20

]

, u0 satisfies f(x0, u0) = 0, i.e.,

0 = x10(−α1 + sin x20) + x20 sin x20 + u0,

0 = x10 sin x10 + x20(−α2 + sin x20) + u0.

Taking one equation minus the other, we get

−α1x10 + α2x20 + x10 sin x20 − x10 sin x10 = 0

Now let’s take x10 = x20 = 0, which means u0 = 0. Then we compute the Jacobian matrices:

A =
∂f

∂x

∣

∣

∣

∣

(x0,u0)

=

[

−α1 + sin x20 x10 cos x20 + sin x20 + x20 cos x20

sin x10 + x10 cos x10 −α2 + sin x20 + x20 cos x20

]

(x0,u0)

=

[

−α1 0
0 −α2

]

,

B =
∂f

∂u

∣

∣

∣

∣

(x0,u0)

=

[

1
1

]

,

C =
[

1 0
]

.

The next part is to determine the response to a step input e−3u(t). First, we calculate the
state transition matrix:
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(sI − A)−1 =

[ 1
s+α1

0

0 1
s+α2

]

,

eAt =

[

e−α1t 0
0 e−α2t

]

, t ≥ 0

Since the initial state is zero and D = 0, an approximate solution corresponding to the
linearized model can be expressed as

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ

=

∫ t

0

[

1 0
]

[

e−α1(t−τ) 0

0 e−α2(t−τ)

] [

1
1

]

e−3dτ

=
1

α1
e−3(1 − e−α1t).

3. We consider each of the input-output pairs. Let Y1(s) = V1(s) + V2(s) and Y2(s) = V3(s)
where V1(s) = 1

s
U1(s), V2(s) = 1

s(s+2)U2(s), and V3(s) = 1
s+2U2(s). These transfer functions

can be written as differential equations and are given as follow:

v̇1 = u1

v̈2 + 2v̇2 = u2

v̇3 + 2v3 = u2

The first and third differential equations are first order while the second differential equation
is second order. Hence, this is a fourth order system so we introduce four state variables:
x1 = v1, x2 = v2, x3 = v̇2, and x4 = v3. The state space model of the system is shown below:









ẋ1

ẋ2

ẋ3

ẋ4









=









0 0 0 0
0 0 1 0
0 0 −2 0
0 0 0 −2

















x1

x2

x3

x4









+









1 0
0 0
0 1
0 1









[

u1

u2

]

[

y1

y2

]

=

[

1 1 0 0
0 0 0 1

]









x1

x2

x3

x4









4. Let x =

[

x1

x2

]

, u =

[

u1

u2

]

and ẋ = f(x, u). Suppose this system can be linearized to

△ẋ = A△x + B△u.

An equilibrium point x0 =

[

x10

x20

]

, u0 =

[

u10

u20

]

= 0 satisfies f(x0, u0) = 0, i.e.,
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0 = c1 −
c2x20

c3 + x20
− c4x10 − c5x10x20,

0 =
c6x20

c7 + x20
− c7x10x20.

From the second equation, we can get

0 = (
c6

c7 + x20
− c7x10)x20,

such that x20 = 0. Therefore, x10 = c1
c4

. Then the Jacobians evaluate to

A =
∂f

∂x

∣

∣

∣

∣

(x0,u0)

=

[

−c4 − c5x20 + u10 − c2c3
(c3+x20)2 − c5x10

−c7x20
c6c7(1−u20)
(c7+x20)2

− c7x10

]

(x0,u0)

=

[

−c4 − c2
c3

− c1c5
c4

0 c6
c7

− c1c7
c4

]

,

B =
∂f

∂u

∣

∣

∣

∣

(x0,u0)

=

[

x10 0
0 − c6x20

c7+x20

]

(x0,u0)

=

[

c1
c4

0

0 0

]

.

When ci = 1 for i = 1, . . . , 7, the eigenvalues of the resultant system are {−1, 0}, so that this
system is not asymptotically stable.

5. (a)
Y (s)

U(s)
= C(sI − A)−1B =

1 + cs

s2 + as + b

Also,

x1 = ẏ + ay + cu

x2 = y .

(b)
Y (s)

U(s)
= C(sI − A)−1B =

1 + cs

s2 + as + b

Also,

x1 = y

x2 = ẏ − cu .
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(c)

6. (a) Recall

Y (s)
U(s) = C[sI − A]−1B + D

= 1
s2

−1
[0 1]

[

s 1
1 s

] [

−1
1

]

= s−1
s2

−1

= 1
s+1

This transfer function has a single pole −1 in the left-half plane, clearly implying stability.
Notice that anytime we have a pole/zero cancellation in the right half plane, then we
might run into problems, as is illustrated in part (b).

(b) Our goal is to show that the output grows exponentially. Recall from class that

y(t) = CeAtx0 + C

∫ t

0
eA(t−τ)Bu(τ) dτ .

Lets first find eAt = L−1{(sI−A)−1)} (you are not restricted to use the Laplace method
to find eAt). We already have (sI − A)−1 from part (a), and by manipulation we get
that

eAt =
1

2

[

et + e−t et − e−t

et − e−t et + e−t

]

and

CeAtx0 =
1

2

[

et − e−t et + e−t
]

x0 .

Normally we would also compute the second term of y(t), but since the question asks
us to show that in general y(t) will grow exponentially, we don’t need to. We can see
that as t → ∞ the term et → ∞ and so will y(t), depending on the initial condition. In
particular, for all x0 6= [k − k]T , with k ∈ R, y is unstable. (Why? If you’re unsure,
come to the tutorial. Think of eigenvectors).

7.

J =





−1 0 0
0 −2.7321 0
0 0 .7321





8. Consider the autonomous system ẋ = Ax. In these problems we are asked to find the
Jordan form of A. Generally this would require computing the eigenvectors and generalized
eigenvectors of A. You have not been taught about generalized eigenvectors, but you are
provided with extra data about A that enables you to solve these problems.

(a) Suppose that eigs(A) = {−1,−3,−3,−1 + j2,−1 − j2}. Also, suppose the rank of
(A − λI)λ=−3 is 4. Now we know that the Jordan form must look like one of the
following two cases. Either

Λ =













−1 0 0 0 0
0 −3 0 0 0
0 0 −3 0 0
0 0 0 −1 + 2j 0
0 0 0 0 −1 − 2j












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or

Λ =













−1 0 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 −1 + 2j 0
0 0 0 0 −1 − 2j













.

Basically you need to determine how many 1’s are on the upper diagonal corresponding
to the Jordan block for eigenvalue −3, which is the only eigenvalue that is repeated.
This can be determined directly from the rank information provided. We are told that
the rank of (A − λI)λ=−3 is 4. Now the relationship between A and Λ is by way of
a similarity transformation A = PΛP−1 and this does not change the rank. In other
words rank(A− λI)λ=−3 = rank(Λ− λI)λ=−3. Knowing that rank(Λ− λI)λ=−3 = rules
out the first choice for Λ above since we would get two columns zeroed out, resulting in
a rank of 3. Therefore, we obtain the solution

Λ =













−1 0 0 0 0
0 −3 1 0 0
0 0 −3 0 0
0 0 0 −1 + 2j 0
0 0 0 0 −1 − 2j













.

(b) Suppose that eigs(A) = {−1,−2,−2,−2}. Also, suppose the rank of (A− λI)λ=−2 is 3.
Following the same procedure as described above,

Λ =









−1 0 0 0
0 −2 1 0
0 0 −2 1
0 0 0 −2









.

(c) Suppose that eigs(A) = {−1,−2,−2,−2,−3}. Also, suppose the rank of (A − λI)λ=−2

is 3. Then,

Λ =













−1 0 0 0 0
0 −3 0 0 0
0 0 −2 1 0
0 0 0 −2 0
0 0 0 0 −2













.
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