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1. The solution of the system is:

x(t) = eAtx0 +

∫

t

0
eA(t−τ)Bu(τ)dτ

y(t) = CeAtx0 +

∫

t

0
CeA(t−τ)Bu(τ)dτ + Du(t) .

In this case we get: 0 < t ≤ T :

x(t) = eAtx0 +

∫

t

0
eA(t−τ)Budτ

y(t) = CeAtx0 +

∫

t

0
CeA(t−τ)Budτ + Du .

t > T :

x(t) = eAtx0 +

∫

T

0
eA(t−τ)Budτ

y(t) = CeAtx0 +

∫

T

0
CeA(t−τ)Budτ .

2. First compute the eigenvalues and eigenvectors of A. We get eig(A) = {1, 4} and the corre-
sponding eigenvectors are v1 = [ − 1 2 ]T and v2 = [ 1 1 ]T . Then we can write

x0 = α1v1 + α2v2 .

Solving for the α’s we get α1 = −1
3 , and α2 = 8

3 . Hence the modal decomposition of x(t) is

x(t) = −
1

3
et

[

−1
2

]

+
8

3
e4t

[

1
1

]

.

3. Using Matlab (command eig), we find that the modal form (or Jordan form) of A is diagonal,
so the columns of the transforming matrix P are the eigenvectors of A:

P =





0 0.1826 −0.3482
0 −0.3651 −0.3482

1.0000 −0.9129 −0.8704



 ,

Λ =





−1 0 0
0 −2 0
0 0 1



 ,
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The new state equation in modal form is Λ = P −1AP which we obtained above and B̃ =
P−1B. Again with the help of Matlab we get

B̃ = P−1B =





−0.0000
1.8257

−1.9149



 ,

Also, C̃ = CP , or
C̃ =

[

0 0.1826 −0.3482
]

.

The model representation can be expressed as

˙̄x =





−1 0 0
0 −2 0
0 0 1



 x̄ +





−0.0000
1.8257

−1.9149



u,

y =
[

0 0.1826 −0.3482
]

x̄.

5. First, we construct a controllability matrix for each system. Second, we find out the rank of
the controllability matrix. The system is completely controllable iff Qc is full rank.

(a)

Qc =
[

B AB A2B
]

=





0 3 11
0 4 0
1 0 3





Clearly, the rank of Qc is equal to 3, so the system is controllable.

(b)

Qc =
[

B AB A2B
]

=





0 0 0
1 0 0
1 0 0





Clearly, the rank of Qc is equal to 1, so the system is not controllable.

6. We need to compute Qc in terms of k1 and k2. First we get

AB =

[

1 −1
−1 1

] [

k1

k2

]

=

[

k1 − k2

−(k1 − k2)

]

.

Then the controllability matrix is

Qc =
[

B AB
]

=

[

k1 k1 − k2

k2 −(k1 − k2)

]

.

The system is completely controllable iff Qc has full rank, i.e.,

|k1| 6= |k2|.
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7. At first sight, one will be thrown off by the question due to the ugliness of the numbers.
However, we can see that A has a block structure. That is

A =

[

A11 A12

A21 A22

]

with A12 = 02×2. Therefore, the eigenvalues can be found from eig(A11) and eig(A22).

Noticing that A22 =

[

0 13
0 0

]

has two eigenvalues (poles) at the origin we can conclude that

the system is not asymptotically stable.

For the second part of the question, let’s first check if the system is actually stabilizable with
a state feedback controller (i.e. with a controller of the form u = Kx, where K has no zero
terms). By checking the rank of the controllability matrix Qc, we notice that rank(Qc) = 4
(use Matlab if you like):

Qc =









−0.2000 −0.1700 0.0343 −0.0066
0.0300 −0.0043 0.0008 −0.0002

0 −0.2000 0.2200 −0.0216
0 0.0300 −0.0043 0.0008









.

Therefore, since the system is controllable it is automatically stabilizable. Notice that if the
system were not stabilizable with an arbitrary state feedback controller then clearly it would
not be stabilizable with the given controller.

Next, we’re told that the input must be of the form u = −[k1 0 k3 0]x. Also, notice

that the matrix Ã11 =

[

0 −6
0 0

]

is a good approximation of A11. Similarly, we can set

B̃ = [−20 3 0 0]T . There is no loss of generality for changing the B matrix, as we can
simply let the scaling factor be distributed to k1 and k3. The above approximation allows us
to work with a much nicer system:

ẋ =









0 −6 0 0
0 0 0 0
1 0 0 13
0 1 0 0









x +









−20
3
0
0









u

The next step is to find the characteristic polynomial of (Ã − B̃ K) and use for instance the
Routh-Hurwitz criterion to determine if one can shift the poles to the left half plane. After
some manipulation, you’ll notice that all the poles can be shifted. For instance, by setting
u = −[−0.2 0 0.1 0]x, or u = −[−20 0 10 0]x for the original system. With the
chosen u we get that the eig(A − BK) = −3.7354, − 0.1407, − 0.1619 ± 0.6279i, which are
all in the left half complex plane. So the answer is, yes, we can stabilize the system with
u = −[k1 0 k3 0]x.

Two comments:

(a) You don’t have to approximate the system, but it is much nicer to work with the approx-
imation rather than the original. Also, whenever approximations are used, one must go
back and actually check if the results are true for the original system.
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(b) The choice of k1 and k3 is not unique.
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