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1. The observability matrix is

Qo =

[

C

CA

]

=

[

5 6
23 34

]

.

Since det(Qo) 6= 0, the matrix is full rank, so the system is observable.

2. We compute the controllability and observability matrices:

Qc =
[

B AB
]

=

[

0 −mg
l

−mg
l

0

]

.

Qo =

[

C

CA

]

=

[

1 0
0 1

]

.

Clearly both are full rank so the pendulum system is both controllable and observable.

3. For this system, we know that (A,B) is stabilizable iff rank
[

A − λI B
]

= 3 for every

eigenvalue λ of A with Reλ ≥ 0; (C,A) is detectable iff rank

[

A − λI

C

]

= 3 for every

eigenvalue λ of A with Reλ ≥ 0. The unstable eigenvalues of A are {λ1 = 100, λ2 = 300}.
Therefore, we can readily check that

rank
[

A − λ1I B
]

= rank





0 0 0 1 0
−1000 −800 1000 0 1
−700 −500 700 1 1



 = 3

rank
[

A − λ2I B
]

= rank





−200 0 0 1 0
−1000 −1000 1000 0 1
−700 −500 500 1 1



 = 3

rank

[

A − λ1I

C

]

= rank













0 0 0
−1000 −800 1000
−700 −500 700

4 2 −2
−4 −2 4













= 3

rank

[

A − λ2I

C

]

= rank













−200 0 0
−1000 −1000 1000
−700 −500 500

4 2 −2
−4 −2 4













= 3
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Hence, this system is stabilizable and detectable. Now we can get the modal representation
of this system as

˙̄x =





300 0 0
0 −200 0
0 0 100



 x̄ +





−0.0000 1.4142
−0.0000 0

1.4142 0



u

y =

[

0 0.8944 1.4142
1.4142 0 0.0000

]

x̄

The foregoing shows that x̄2 is uncontrollable and can be dropped. The corresponding minimal
realization of this system can be expressed as ˙̃x = Ãx̃ + B̃u, y = C̃x̃, i.e.,

˙̃x =

[

300 0
0 100

]

x̃ +

[

−0.0000 1.4142
1.4142 0

]

u

y =

[

0 1.4142
1.4142 0.0000

]

x̃

Of course, you can use the Matlab command minreal to get the minimal realization directly.

4. We design the observer (or state estimator) of the form

˙̂x = Ãx̂ + B̃u + L(y − C̃x̂),

or
˙̂x = (Ã − LC̃)x̂ + B̃u + Ly,

Our goal is to design the eigenvalues of (Ã − LC̃) so that

det(sI − Ã + LC̃) = s2 + 200s + 10000 .

First let’s write L in terms of four parameters:

L =

[

l1 l2
l3 l4

]

.

Then

A − LC =

[

300 −
√

2l2 −
√

2l1
−
√

2l4 100 −
√

2l3 .

]

,

We get

det(sI − Ã + LC̃) = s2 + (−400 +
√

2l2 +
√

2l3)s + (−300 +
√

2l2)(−100 +
√

2l3) − 2l1l4 .

This gives two constraints

l2 + l3 = 300
√

2

(−300 +
√

2l2)(−100 +
√

2l3) − 2l1l4 = 10000 .

Let’s pick l2 = l3 = 150
√

2. Then we get

l1l4 = 5000 .
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Let’s pick l1 = −l4 =
√

5000.

Another way you can design the observer is to use the multi-input pole placement procedure.
That is, we want to design a feedback gain LT for the system (AT ,−CT ) or

ẇ =

[

300 0
0 100

]

w +

[

0 −
√

2

−
√

2 0

]

u .

The controller should be of the form u = K1w + e1v, where v = Fw is a scalar input. First
we design K1. We compute the controllability matrix:

Qc =

[

0 −1.4142 0 −424.2641
−1.4142 0 −141.4214 0

]

.

This matrix has rank 2 so the system is completely controllable. Next we construct the matrix
Q using the linearly independent columns of Qc. We obtain:

Q =

[

0 −1.4142
−1.4142 0

]

, Q−1 =

[

0 − 1
√

2

− 1
√

2
0

]

S =

[

0 0
1 0

]

, K1 = SQ−1 =

[

0 0
0 − 1

√

2

]

Now we can write our new single input system:

ẇ = (A + BK1)w + b1v

=

[

300 1
0 100

]

w +

[

0

−
√

2

]

v .

Let v = Fw, where F = [f1 f2]. Now it seems easiest to use a “brute force” approach to find
F . The characteristic polynomial of (A + BK1 + b1F ) is

s2 + (−400 +
√

2f2)s + 30000 − 300
√

2f2 +
√

2f1 .

The desired characteristic polynomial is

s2 + 200s + 10000 .

Comparing coefficients, we get two constraints:

−400 +
√

2f2 = 200

30000 − 300
√

2f2 +
√

2f1 = 10000 .

This yields

F =

[

160000√
2

600√
2

]

.

The overall controller is

LT = K1 + e1F =

[

160000
√

2

600
√

2

0 − 1
√

2

]
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5. The dynamics for the height of tank 1, x1, is described by

dx1

dt
=

1

A
(f1 − f2).

Similarly, the dynamics for x2 is given by

dx2

dt
=

1

A
(f2 − f3),

with the flow rate between the two tanks f2 given by

f2 =
√

2g(x1 − x2).

The state space model for the nonlinear system is

[

ẋ1

ẋ2

]

=

[

−k
√

x1 − x2

k
√

x1 − x2

]

+

[

1

A
0

0 − 1

A

] [

f1

f3

]

,

where k =
√

2g
A

= 0.26.

Suppose the equilibrium condition is x1 − x2 := H. Fix x1 = x1. Then at equilibrium
x2 = x1 − H. Let u be the value of the control at this equilibrium. In this case

[

f1

f3

]

=

[ √
2gH√
2gH

]

.

Letting x̃ = x − x, ũ = u − u, we obtain the linear model

[

˙̃x1

˙̃x2

]

=

[

− k

2
√

H

k

2
√

H
k

2
√

H
− k

2
√

H

]

[

x̃1

x̃2

]

+

[

1

A
0

0 − 1

A

] [

f̃1

f̃3

]

. (1)

Let K denote k

2
√

H
. It is easy to check that rank[B AB] = rank

(

1

A

[

1 0 −K −K

0 −1 K K

])

=

2, i.e., this system is controllable.

In order to stabilize the height of the tanks at x1 − x2 = 1, we must examine the dynamics
of x1 − x2. This means we cannot explicitly use the ilnear model we just obtained. Rather
we define a new state variable z = x1 − x2 − 1. It has the nonlinear dynamics

ż = −2K
√

z + 1 +
1

A
(f1 − f3) .

We linearize this model about the equilibrium z = 0. We have f 1 − f3 = 2KA. Let’s pick
f1 = f3 = kA. This yields

˙̃z = −Kz̃ +
1

A
(f̃1 + f̃3) .

Then we can see that z = 0 is an asymptotically stable equilibrium point so long as f̃1+f̃3 = 0.
Thus, we don’t have to do a feedback design.
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Now we return to our original model (1). Since only x2 can be measured, we set C = [0, 1]

and D = [0, 0]. It is easy to check that rank(C;CA) = rank(

[

0 1
K −K

]

) = 2, such that

the system is observable. We design an observer

L =

[

l1
l2

]

,

to estimate x1. From det(sI − A + LC), we can obtain the characteristic polynomial of this
observer as s2 +(2K + l2)s+ l1K + l2K. If we want two poles of the observer at s = −2, then
we can calculate l1 = 27.0292 and l2 = 3.74. The final equation for the observer is given by

[

˙̂x1

˙̂x2

]

=

[

−K K

K −K

] [

x̂1

x̂2

]

+

[

1 0
0 −1

] [

f̃1

f̃3

]

+ L(y − x̂2).

6. Since the A matrix is diagonal and its eigenvalues are distinct, we must simply examine the
B and C matrices to determine which modes are controllable and observable, respectively.
Since modes {1, 2, 4, 5} have non-zero rows in the B matrix, they are controllable. Also,
modes {1, 2, 3, 5} are observable because they have non-zero columns in C matrix. Hence,
only modes {1, 2, 5} are observable and controllable. The minimum realization of the system
then:

ẋ =





1 0 0
0 2 0
0 0 5



x +





1 2
0 1

−1 0



u

y =

[

1 0 0
0 −1 −1

]

x

7. Let’s consider the radial thruster alone, and calculate the controllability matrix. Recall, that
the controllability matrix for the given input is Qr = [br Abr A2br A3br], resulting in

Qr =









0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω 0
0 −2ω 0 2ω3









,

with rank(Qr) = 3. Therefore, the system is not controllable from the radial thruster
alone. Next, consider the tangential thruster, and calculate the controllability matrix Qt =
[bt Abt A2bt A3bt], which gives

Qt =









0 0 2ω 0
0 2ω 0 −2ω3

0 1 0 −4ω2

1 0 −4ω2 0









,

and has full rank, i.e. the system is controllable with respect to the tangential thruster. Now,
since the system is controllable with respect to the tangential thruster, it is automatically
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controllable using both thrusters.

Note: Even though we were given the actual value for ω there was really no need to use
it. The only information that we needed was that ω 6= 0.

8. This problem is meant to give you some practice with a real design example using Matlab.

(a) First we run the eig command to obtain the eigenvalues

>> eig(A)

0, 0, 0, -0.2500 + 0.1936i, -0.2500 - 0.1936i

Because the system has zero eigenvalues, it is stable, but it is not asymptotically stable.
(Note, if you do not know the difference, then ask).

(b) Next we use the Matlab command ctrb to determine if the system is controllable. This
gives:

>> Qc = ctrb(A,B)

0 1.0000 -0.5000 0.1500 -0.0250

1.0000 -0.5000 0.1500 -0.0250 -0.0025

0 0 0.5000 -0.2500 0.0750

0 0 0 5.0000 -2.5000

0 1.0000 0 -0.1000 0.0500

Next we check the rank

>> rank(Qc)

4

Since the answer is less than n, the system is not controllable.

(c) To determine the minimal realization in Matlab we use the command minreal. Use
the help command to determine its arguments. You will see the command requires as
input a state space model that we call sys.

>> sys=ss(A,B,C,D);

>> msys=minreal(sys)

1 state removed.

a =

x1 x2 x3 x4

x1 0 1 0 0

x2 -0.1 -0.5 0 0

x3 0.5 0 0 0

x4 0 0 10 0

b =
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u1

x1 0

x2 1

x3 0

x4 0

c =

x1 x2 x3 x4

y1 0 0 0 1

d =

u1

y1 0

Now we have a fourth order model. If we tried to do this in the Laplace domain, we
would first convert the state equations to a transfer function using the command ss2tf:

>> [num,den] = ss2tf(A,B,C,D,1)

num = 0 0.0000 0.0000 0.0000 5.0000 0

den = 1.0000 0.5000 0.1000 0 0 0

Next we check the poles and zeros of this transfer function

>> zeros = roots(num(5:6))

0

>> poles = roots(den)

0

0

0

-0.2500 + 0.1936i

-0.2500 - 0.1936i

We see that there is a pole-zero cancellation at s = 0. After cancelling the pole we get
a new transfer function

>> num2 = .5;

>> den2 = den(1:5);

>> [A2,B2,C2,D2]=tf2ss(num2,den2)

A2 =

-0.5000 -0.1000 0 0

1.0000 0 0 0
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0 1.0000 0 0

0 0 1.0000 0

B2 =

1

0

0

0

C2 =

0 0 0 5

D2 =

0

Finally, we check that this system is controllable.

>> ctrb(A2,B2)

1.0000 -0.5000 0.1500 -0.0250

0 1.0000 -0.5000 0.1500

0 0 1.0000 -0.5000

0 0 0 1.0000

8


